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Abstract
In the realm of food industry, the choice of non-consumable materials used plays a crucial role in ensuring consumer safety and
product quality. Aluminum is widely used in food packaging and food processing applications, including dairy products. However,
the interaction between aluminum and milk content requires further investigation to understand its implications. In this work, we
present the results of multiscale modelling of the interaction between various surfaces, that is (100), (110), and (111), of fcc alumi-
num with the most abundant milk proteins and lactose. Our approach combines atomistic molecular dynamics, a coarse-grained
model of protein adsorption, and kinetic Monte Carlo simulations to predict the protein corona composition in the deposited milk
layer on aluminum surfaces. We consider a simplified model of milk, which is composed of the six most abundant milk proteins
found in natural cow milk and lactose, which is the most abundant sugar found in dairy. Through our study, we ranked selected pro-
teins and lactose adsorption affinities based on their corresponding interaction strength with aluminum surfaces and predicted the
content of the naturally forming biomolecular corona. Our comprehensive investigation sheds light on the implications of alumi-
num in food processing and packaging, particularly concerning its interaction with the most abundant milk proteins and lactose. By
employing a multiscale modelling approach, we simulated the interaction between metallic aluminum surfaces and the proteins and
lactose, considering different crystallographic orientations. The results of our study provide valuable insights into the mechanisms
of lactose and protein deposition on aluminum surfaces, which can aid in the general understanding of protein corona formation.
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Introduction
The interface between biological systems and engineered mate-
rials has gained significant attention in recent years because of
its wide range of applications, spanning from food to medicine

and environmental science [1,2]. This interface plays a crucial
role in ensuring the safety and quality of processed and pack-
aged products. The selection of packaging materials and their
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Figure 1: Schematic representation of the life cycle of dairy products, showcasing potential sources and pathways of contamination. It features the
stages of grazing, collection, processing, and packaging. The relevant processes include surface fouling and milk contamination during food transfor-
mation as well as the formation of a protein corona on surfaces and nanoparticles after packaging. The figure was created with BioRender.com,
https://biorender.com/. This content is not subject to CC BY 4.0.

interaction with biological components have emerged as criti-
cal determinants impacting the preservation, shelf life, and
overall acceptability of dairy products [3]. Consequently, the
interface between biologically relevant molecules and nano-
scale materials, such as aluminum, has become an increasingly
important and intriguing area of research [4]. For long-term
storage and preservation of prepared food, the choice of
containers and utensils made from specific materials is essen-
tial [5]. For example, it was shown that ripened cheese and
cheese spreads acquire a higher aluminum content as compared
to other milk products [6]. Aside from wrapping and container
packaging, aluminum has found a wide popularity in other ap-
plications, such as manufacturing of kitchen utensils, cosmetics,
and components for medical and scientific equipment [7].
Figure 1 presents a schematic contamination cycle of dairy
products, showcasing potential sources and pathways of
aluminum pollution. It illustrates the journey of milk from a
cow grazing on grass contaminated with heavy metals, high-
lighting the crucial role of metallic containers, metal-based
equipment, and kitchen utensils in maintaining product
integrity. The figure further demonstrates the potential to intro-
duce heavy metal contamination, including iron and aluminum,

during processing and emphasizes the formation of a milk layer
in form of a protein/lactose corona at the outer surface of
macroscropic and micro- and nano-sized particulate after pack-
aging. It also highlights the dynamic interactions at the bionano
interface associated with potential human health hazards.
Through biomolecule adsorption, change of conformation, and
surface chemistry, foreign materials engage in a complex
interplay of dynamic physicochemical interactions, kinetics,
and thermodynamic exchanges that can lead to undesirable
outcomes [1,8-10].

In a more general context, the importance in understanding the
mechanism of bionano interactions arises from the increasing
awareness and concerns regarding the safety of nanoparticles
(NPs) in relation to human and animal health. The toxicity of
NPs is closely linked to their chemical aggressiveness and
varies with their physicochemical properties, including surface
area, charge, and reactivity. Understanding the intricate inter-
play between these properties and the biological systems is vital
for assessing and mitigating any potential adverse effects asso-
ciated with exposure to NPs [11]. To advance in this field, it is
crucial to comprehend the underlying forces and molecular
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Beilstein J. Nanotechnol. 2024, 15, 215–229.

217

Figure 2: A chart of the main factors determining the structure of the bionano interface. The quantitative model comprises three essential aspects,
that is, surface properties of the nanomaterial, the characteristics of the surrounding medium, and the biological factors at play.

constituents that govern the interactions between biomolecules
and metals. However, traditional safety assessment methods can
be costly, time-consuming, and often involve animal studies. In
this regard, in silico modelling offers a promising alternative
that can predict the interactions of NPs with living organisms.
By leveraging computational approaches, in silico modelling
provides a humane and cost-effective means of obtaining the
necessary information, thus aiding in the evaluation of NP
safety and reducing reliance on animal experimentation [12-14].
Data-driven methods that rely on statistical analysis are em-
ployed for this purpose, particularly when sufficient data are
available. These methods leverage the power of large datasets to
identify patterns, trends, and correlations between metal proper-
ties and their interactions with biomolecules [15-18]. In recent
years, researchers have focused on using physics-based models
to understand the mechanisms underlying the formation of NP
protein corona, a complex layer of biomolecules that surrounds
NPs upon their exposure to biological fluids [19,20]. It is
widely recognized that composition and configuration of the
protein corona play a crucial role in determining the biochem-
ical reactivity, sensitivity of NPs, as well as their cellular uptake
and systemic transfer [21]. However, in order to develop predic-
tive models, a deeper understanding of the interactions at the
bionano interface and their relationship to material and protein
properties is necessary. Gathering more information on these
intricate interactions will facilitate the development of accurate

predictive models, thereby advancing our ability to assess the
behavior and potential implications of NPs in biological
systems. The bionano interface can be broken down into three
interconnected components: (i) the surface of the NP, which is
influenced by its physicochemical composition, (ii) the inter-
face between the solid NP and the surrounding liquid environ-
ment, where notable changes occur upon interaction, and
(iii) the contact zone between the solid–liquid interface and bio-
logical substrates (Figure 2) [22].

In this work, we study bionano interactions involving metallic
aluminum and common dairy biomolecules, namely lactose and
the six most abundant milk proteins [23]. The main objective of
our analysis is to computationally quantify the relative binding
of these proteins on zero-valent aluminum surfaces based on
their energy of adsorption and orientation. We employ a three-
level multiscale method (as shown in Figure 3) to calculate the
energies of adsorption and the content of the corona for these
proteins on the selected surfaces. In the section “Results and
Discussion”, we provide a detailed explanation of the theoreti-
cal model developed to study the interaction between protein
and lactose with metals, as well as the rationale behind the para-
meterization scheme used. Subsequently, we discuss the simula-
tion results and analyze the individual adsorption affinities pre-
dicted for molecules representing the biological aspect of the
interface, including amino acids (AAs), milk proteins, and
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Figure 3: A dataflow scheme of the multiscale modelling approach implemented in this study, including an all-atom model of surface and AAs, a CG
UnitedAtom model for the entire protein-surface interaction, and a CG competitive adsorption model. The figure provides an overview of input and
output data at each scale.

carbohydrates. Additionally, we examine the preferred orienta-
tions of these molecules upon adsorption and investigate the
kinetics of competitive adsorption among the proteins and
lactose, aiming to understand the process of protein deposition
on metallic surfaces. Finally, the key insights gained from this
study are summarized, highlighting the implications and poten-
tial applications of the findings.

Results and Discussion
Here, we aim to predict the content of a biomolecular corona on
a metallic aluminum surface. At the largest scale, our methodol-
ogy employs a coarse-grained (CG) kinetic Monte Carlo (KMC)
method [16] to simulate competitive adsorption of biomole-
cules onto the aluminum surface. To achieve this, we evaluate
individual binding energies at various orientations (represented
by heatmaps) for each selected protein immobilized on differ-
ent fcc planes of the aluminum surface. These heatmaps for
individual proteins are acquired through UnitedAtom (UA)
simulations [24,25]. While the UA method has been parameter-
ized for a range of rigid surfaces, including metals (Ag, Au,
Cu, and Fe), oxides (TiO2, SiO2, and Fe2O3), carbonaceous NPs
(graphene, carbon nanotubes, and carbon black), semiconduc-
tors (CdSe) [26], and polymers [27], it lacks the set of short-
range potentials required for calculating milk protein-alumi-
num adsorption energies. Here, we compute potentials of mean
force (PMF) for Al surfaces derived from explicit all-atom mo-
lecular dynamics simulations utilizing a previously established
scheme [2,24,28]. These PMFs provide the input required to de-

termine the adsorption energies between milk proteins and alu-
minum surfaces by using multiscale UA CG model, spanning
from the atomistic level of description to the complete
mesoscale model of the corona. Figure 3 shows the parameteri-
zation and simulation workflow, outlining different stages and
components involved in the study.

All-atoms short-range interaction modelling
results
All-atom metadynamics simulations were conducted using
GROMACS-2018.6 and PLUMED (PLUMED2-2.5.1.conda.5)
software packages [29-31]. CHARMM-GUI/Nanomaterial
Modeler was employed to construct the topology and force
fields of three fcc surfaces of Al: (100), (110), and (111) [32].
The General Amber Force Field (GAFF) was utilized to model
side-chains analogues (SCA) within the system [33,34]. The
AMBER force field is a widely recognized and extensively vali-
dated force field that provides accurate descriptions of molecu-
lar systems [35]. We evaluated the short-range PMFs between
22 SCAs and an Al slab in a solvent environment comprising
water and salt ions. The system’s pH value was maintained at a
neutral level, and the NaCl salt concentration was set to
150 mM, mimicking the overall ionic strength of milk and
equivalent to one salt molecule per 10 nm3. The system under-
went equilibration for 1.0 ns under constant pressure conditions
at 1.0 bar and a temperature of 300 K, following the NPT en-
semble, employing Berendsen weak coupling method [36].
Subsequently, a pre-equilibration phase was conducted for
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Figure 4: Adsorption free energy profiles of SCAs on three aluminum fcc slabs as a function of the surface separation distance (SSD). These profiles
were calculated using all-atom AWT-MetaD. The vertical lines indicate the positions of water and ion layers. (a) Al(100), (b) Al(110), and (c) Al(111).

10 nanoseconds within the NVT ensemble. For the short-range
interactions, the cut-off distance was defined as 1.0 nm. In the
adaptive well-tempered metadynamics (AWT-MetaD) simula-
tions, the adsorption energy was calculated at a temperature of
300 K, a pressure of 1.0 bar, and a neutral pH within the NVT
ensemble. Additionally, we measured the interaction energy as
a function of surface separation distance (SSD) as a collective
variable, enabling a comprehensive analysis of the AA–NP
interactions. For a detailed explanation of the method used in
this study, please refer to previous reports [2,24,28] where
the method has been described in depth. Figure 4 and dataset
[37] show the obtained free energy of adsorption in units of
kBT.

The water density profiles obtained from MD simulations for
the slab–water system in the context of Al surfaces revealed
characteristics that were previously observed for other simu-
lated metallic surfaces [2,28]. The profiles exhibited two
distinct regions with elevated water density located approxi-
mately 0.15–0.18 nm and 0.42–0.48 nm away from the alumi-
num surface. These regions corresponded to the first and second
water layers adjacent to the metal surface, respectively (as
depicted in Supporting Information File 1, Figure S1). Further
examination of the ion density profiles indicated the presence of
sodium ions within a range of 0.55–0.60 nm and chloride ions
within a range of 0.42–0.46 nm from the Al surface. Notably,
the positions of the chloride ions align closely with the second



Beilstein J. Nanotechnol. 2024, 15, 215–229.

220

Figure 5: Minimum energy of adsorption (kBT) for each SCA on three Al fcc slabs obtained through all-atom simulations: (a) Al(100), (b) Al(110), and
(c) Al(111). Notably, Al(111) exhibits a stronger binding affinity than Al(100) and Al(110).

water layer, while sodium ions are located past this layer, as
marked by the blue and purple vertical dashed lines in Figure 4.
This alignment suggests that the chloride ions integrate into the
network of water molecules comprising the second adlayer. Ad-
ditionally, the analysis of the PMFs revealed a significant
minimum at a distance of 0.21–0.25 nm. Figure 5 shows the
minimum energy values obtained for each AA on different
facets of the aluminum surface (100, 110, and 111) in a bar
chart.

A comparison of the adsorption energies on aluminum and iron
surfaces reveals distinct preferences for different AAs. On alu-

minum surfaces, ARG, PRO, TRP, TYR AAs show the
strongest attraction (−63.32kBT to −41.46kBT), followed by
HIE, GLN, PHE, GAN (−43.86kBT to −20.85kBT). VAL, THR,
SER, CYS, ALA exhibit the weakest attraction (−19.51kBT to
−1.76kBT). On iron surfaces, charged and aromatic PRO,
TYR, ARG, HIS AAs are strongly adsorbed (−91.29kBT to
−43.34kBT), while hydrophobic VAL, LEU, ALA AAs show a
weaker adhesion (−21.70kBT to 2.86kBT) [2]. We also show the
PMF for glucose with aluminum surfaces, used as the basis for
a model of lactose, a sugar highly present in milk, as discussed
later, computed using the PMFPredictor software in Figure 6
[38].
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Figure 6: The interaction potential of glucose with the three Al sur-
faces predicted using the PMFPredictor Toolkit. The solid lines give the
ensemble average of ten versions of the model while the shaded
regions indicate the 95% confidence intervals.

Protein–NP interactions
To further understand the adsorption energy and orientation of
each individual protein, a primary coarse-graining step was per-
formed. In this part, we use the UA model to predict the pro-
tein–NP binding energies. This model takes into account
various factors, such as the material’s chemical composition,
size, shape, surface roughness, charge, functionalization, and
hydrophobicity, when constructing CG models for the bionano
interface. The UA model simplifies the protein–NP interactions
by representing proteins as rigid structures composed of 20 AA
types, each represented by a single bead. This interaction is de-
scribed through a short-range surface non-bonded potential
( ) (including van der Waals (vdW) repulsion and solvent
effects), a long-range core vdW potential ( ), and an elec-
trostatic potential (Uel). Through interaction potentials for spe-
cific AAs with the NP, the overall interaction potential between
the NP and the complete protein (Up−NP) is expressed in a pair-
wise additive manner:

(1)

The potential Up−NP depends on the distance di between the
centers of mass of the NP and each AA in the protein. This dis-
tance is determined by the protein’s orientation with respect to

the NP’s surface, which is defined by two rotational angles
(ϕ, θ) relative to the protein’s initial orientation. This initial ori-
entation is set by performing a principle axis transformation
such that the axis associated with the smallest moment of inertia
is aligned to the z axis and the second smallest to the y axis, that
is, the z axis is now typically associated with the greatest extent
of the protein. Since this does not uniquely specify the orienta-
tion, further rotations of 180° are then applied if necessary such
that the electric dipole moment is positive along these two axes.
This produces a convenient reference state by which other
orientations are defined. The specific orientation (ϕ, θ) is gener-
ated by applying a rotation of −ϕ around the z axis followed by
a rotation of 180° − θ around the y axis. The short-range sur-
face non-bonded potentials are extracted from AWT-MetaD
simulations, which were described in the section “All-atoms
short-range interaction modelling results”. The Hamaker tech-
nique is used to approximate the long-range term that results
from the vdW forces working through the aqueous medium be-
tween the NP core and the i-th AA. The electrostatic interaction
between the NP and AA is represented by the screened
Coulomb potential. More comprehensive information about the
theoretical aspects of the UA model can be found in our
previous publications [2,25,28,39,40]. The output of the UA
simulations contains a collection of rotational configurations
and their corresponding E(θk,ϕl) values. By employing Boltz-
mann averaging and weighting factors based on the potential
energy as a function of distance for each angle, we calculate the
average adsorption energy of these configurations. Using this
approach, we evaluate the adsorption energies of the entire pro-
teins on aluminum surfaces. To predict the three-dimensional
(3D) structures of proteins, we utilize the I-TASSER (Iterative
Threading ASSEmbly Refinement) 5.1 software [41], which
uses the protein’s AA sequences as an input.

For this study, we have chosen six representative cow milk pro-
teins and lactose, which constitute most of the non-fat milk
solids. Table 1 displays properties of the chosen compounds. It
includes their UniProt IDs, molecular weights, charges, and the
number of AAs in each protein. The charge data was deter-
mined through the PROPKA method [42,43] at a pH of 7.0. We
model the lactose molecule as a pair of glucose beads; it does
not possess a UniProt ID or a count of AA residues. We esti-
mated the concentration of each protein and lactose based on
their weight fraction in milk and considering the fact that cow
milk has 30–39 g/L of protein and 45–55 g/L of lactose in total.
The molar mass of each protein was taken from AlphaFold
database [44]. Following this, all proteins underwent a 50 ns
equilibration in water using NVT and NPT ensembles.

The UA computations were conducted using nine different Al
NPs with varying radii, namely 2, 5, 10, 20, 30, 40, 50, 80, and
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Table 1: Characteristics of the selected milk proteins and lactose.

Abbreviation UniProt ID Compound name MWa, Da Charge, e Resb Cc [10−4], mol/L Rg
d [Å]

AS1C P02662 αs1-casein 24528.00 −8.5 214 4 20.05
AS2C P02663 αs2-casein 26018.69 4.5 222 1 40.81
BC P02666 β-casein 25107.33 −4.5 224 4 22.53
ALAC P00711 α-lactalbumin 16246.61 −5 142 0.9 15.01
BLAC P02754 β-lactoglobulin 19883.25 −6 178 2 15.50

BSA P02769 bovine serum
albumin 69293.41 −4.5 607 0.1 27.69

LAC — lactose 342.3 0 — 1300 4.28
aMolecular weight, bNumber of residues, cConcentrations [mol/L] of the molecules in milk that were used in KMC calculations, dRadius of gyration of
the biomolecules in Ångstrom.

100 nm, to investigate the influence of size and curvature on the
adsorption energies. The results and detailed information on the
calculation can be found in Supporting Information File 1,
Figure S2 and Figure S3, which illustrate the variations in
adsorption energies as a function of NP size. Within the range
of 2–20 nm the binding energies of ALAC, BLAC, BC, and
BSA show an initial increase on all surfaces, followed by a
stabilization at larger NP sizes. In contrast, AS1C and AS2C ex-
hibit a continuous rise in binding energy across the entire size
spectrum, ranging from −48.0kBT at 2 nm to −281.09kBT at
100 nm for AS1C and −15.26kBT at 2 nm to −275.60kBT at
100 nm for AS2C, with AS2C exhibiting the most dramatic
changes in binding energy as a function of size. This strong size
dependence in binding energy for AS2C can be attributed to its
rod-like 3D structure and the rigidity assumption in our model.
As the size of the NP increases, AS2C can make more exten-
sive contact with the surface. This increased contact area leads
to enhanced binding affinity, resulting in the observed stronger
binding across the size range. This is not the case for other pro-
teins on the list as they are more compact and, therefore, reach
the maximum number of contacts at relatively small NP sizes.
Regarding the binding affinity rankings, for the smallest NPs
(2 nm), the order from weakest to strongest is observed as
AS2C, BSA, ALAC, BLAC, AS1C, and BC on Al(100), with
similar rankings observed on Al(110) and Al(111) surfaces.
However, for the largest (flattest) NPs (100 nm), the binding
affinity ranking changes to ALAC, BLAC, BSA, BC, AS2C,
and AS1C on Al(100), BC, ALAC, BLAC, BSA, AS2C, and
AS1C on Al(110), and BLAC, ALAC, BC, BSA, AS2C, and
AS1C on Al(111) (see Supporting Information File 1, Figure
S2). In reality, protein structures are not rigid, allowing them to
adapt to the surfaces upon immobilisation. This can potentially
affect their binding behavior. This can be especially significant
for caseins, as they belong to the group of flexible milk pro-
teins with no tertiary structure. Globular milk proteins
(lactoglobulin and lactalbumin) are expected to be less prone to
this shortcoming of the UA model.

Figure 7 shows the output of the UA model for the selected
milk proteins on aluminum NPs with a surface size of 80 nm
with zeta potential −5 mV at pH 7.0. The heatmaps display the
adsorption energies for all values of θ and ϕ. Blue areas with
lower energies indicate more favorable orientations of the pro-
teins. Each heatmap is accompanied by a 3D representation of
the protein on the NP surface, with the AAs closest to the NP’s
surface marked. The AAs that are most likely to make contact
with the metal surfaces, according to analysis, are LYS, TYR,
PHE, GLU, ARG, and ASP.

The rankings of protein adsorption on each aluminum surface
are shown in Table 2, highlighting the variations in adsorption
energies (Eads/kBT) and the particular protein–surface interac-
tions (θ and ϕ in degrees). Moreover, the minimum distance
(rmin in nm) indicates the closest approach of the protein to the
aluminum surface during the adsorption process.

The ranking of adsorption energies highlights the distinct
adsorption behaviors of various proteins on different metal fcc
surfaces. We can see that AS1C exhibits the highest adsorption
energy on Al(100) and Al(111) surfaces, while on Al(110),
AS1C, and AS2C show similar adsorption energies. In contrast,
on metallic iron, AS1C consistently demonstrates the highest
adsorption energy on Fe(100), Fe(110), and Fe(111) surfaces.
This result reflects the size and shape of the AS1C protein,
which allows it to make the largest number of contacts with the
metal as compared to the other proteins. Regarding the most
weakly bound proteins, on aluminum surfaces, ALAC consis-
tently exhibits the lowest adsorption energy across all three sur-
faces, while BLAC shows slightly higher adsorption energies.
In contrast, on iron surfaces, ALAC and BLAC demonstrate
comparable adsorption energies, with ALAC exhibiting slightly
lower energies on Fe(110) and Fe(111) surfaces [2]. We note
that generally the binding of proteins to aluminum is weaker
than to iron, which may be caused by the smaller lattice con-
stant of fcc iron and higher density of surface atoms.



Beilstein J. Nanotechnol. 2024, 15, 215–229.

223

Figure 7: Adsorption energy heatmaps obtained from the UnitedAtom model and corresponding 3D representations of the interactions of (a) AS1C,
(b) AS2C, (c) BC, (d) BLAC, (e) ALAC, and (f) BSA with Al(110) in the preferred orientations. The figure highlights the closest AAs to the surface of
the material.

Supporting Information File 2, Table S2 reports the preferred
orientations of all 820 milk proteins based on the lowest energy
from the UnitedAtom output. In our investigation of these pro-
teins, we focused on identifying the most strongly adsorbing
proteins when exposed to Fe and Al. These proteins, including
P19660, A6QP30, G3X745, F1MMI6, E1BBY7, A6QLY7, and
Q9N2I2, demonstrated remarkable similarity in their binding
behavior towards Fe(100) and Al(100) surfaces, E1BGJ4,
A5D7M6, F1MMI6, A6QP30, G3X745, and F1N1C7 on
Fe(110) and Al(110) surfaces, and F1MMI6 and E1B748 and
A6QP30 on Fe(111) and Al(111) surfaces.

In the subsequent step, we predicted the composition of the
milk protein layer at the aluminum surfaces. For this analysis,
we consider the Al surface as a spherical NP with the protein
layer uniformly adsorbed on its entire surface, forming the pro-
tein corona.

Competitive adsorption and biomolecular
corona
Kinetic Monte Carlo (KMC) simulations as implemented in the
CoronaKMC tool [26] were employed to investigate competi-
tive adsorption and to determine the composition of the protein
corona. This method models adsorbates as hard spheres, which
adsorb and desorb to the surface of the NPs, with different
orientations of each protein treated as different potential adsor-
bates to allow for a more physically realistic model of corona
formation for anisotropic proteins. In brief, a standard kinetic
Monte Carlo routine is used to advance the simulation from one
event, collision of an incoming adsorbate with the NP or de-
sorption of an adsorbed species, to the next, with events occur-
ring with a probability proportional to their rate. In the initial
form of the model, adsorption is assumed to occur with unit
probability if the incoming species does not overlap with any
currently adsorbed species and fails to take place otherwise. We
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Table 2: Comparison of milk proteins’ binding affinities and orienta-
tions on Al(100), Al(110), and Al(111) with NP radius of 80 nm, derived
from the UnitedAtom model and ordered by the binding strength on
each surface.

Individual protein adsorption description on Al(100)

Protein, Eads/kBT ϕ,° θ,° rmin, nm

AS1C −145.65 175 100 0.19
BC −108.13 305 40 0.13
AS2C −96.12 315 95 0.05
BSA −91.11 45 60 0.11
BLAC −67.35 65 90 0.19
ALAC −49.12 125 35 0.20

Individual protein adsorption description on Al(110)

Protein, Eads/kBT ϕ,° θ,° rmin, nm

AS1C −278.37 175 100 0.32
AS2C −224.01 345 90 0.10
BSA −173.77 40 60 0.23
BLAC −157.70 50 95 0.28
ALAC −155.17 70 90 0.29
BC −132.52 0 70 0.20

Individual protein adsorption description on Al(111)

Protein, Eads/kBT ϕ,° θ,° rmin, nm

AS1C −242.93 175 100 0.15
AS2C −181.65 330 90 0.11
BSA −137.46 45 60 0.13
BC −131.93 140 110 0.15
ALAC −125.76 75 90 0.17
BLAC −113.39 45 75 0.20

parameterize this model using adsorption and desorption rate
constants extracted from UnitedAtom results as described previ-
ously [16,45]. In brief, each potential adsorbate (e.g., a small
molecule or a particular orientation of a protein) is projected
onto the surface of the NP and a convex hull procedure used to
estimate the area of the NP occupied by that adsorbate, Ai. The
adsorbate is then assigned an effective radius Ri such that a
sphere projected onto the NP would produce the same radius
[16]. The per-site adsorption rates are calculated using kinetic
theory for the rate of collisions between two spheres in solution,
normalized by the number of binding sites for that protein,

(2)

where RNP is the radius of the NP, NA is Avogadro’s number,
RA is the effective adsorbate radius, D is the pair diffusion coef-
ficient given by

(3)

taking the viscosity η = 8.9 × 10−4 Pa·s. We employ SI units in
the above calculation, noting that ka must then be multiplied by
1000 to convert from units m3·mol−1 to L·mol−1. Desorption
rates are found by requiring that 
where Eads is the value obtained for that orientation using
UnitedAtom [45]. A concentration is then assigned to the adsor-
bate based on the bulk concentration of that adsorbate, weighted
by the relative abundance of that orientation of the adsorbate if
necessary. This means that for protein i with a bulk concentra-
tion of Ci and a set of orientations θk, an orientation θj is
assigned a concentration

(4)

to ensure that orientations are correctly weighted and the total
concentration summed over orientations is correctly repro-
duced. Scripts to automate this parameterization based on UA
output and adsorbate structure files are available as part of the
UnitedAtom repository [26].

We further analyze the results for adsorption of milk compo-
nents obtained from KMC simulations, specifically focusing
on the mean absolute and relative abundance of proteins
(10−3 nm2) adsorbed on Al surfaces per unit area (nm2). Table 3
shows the abundances of proteins and lactose on Al surfaces.

The simulations were performed using NPs with a radius of
80 nm, and the results are collected in Table 3. It presents the
number concentration and mass abundance of proteins adsorbed
on three different Al surfaces, namely Al(100), Al(110), and
Al(111). Each protein’s adsorption behavior is quantified in
terms of its number concentration (expressed in units of
10−3 nm−2) and mass abundance (represented as a percentage of
the total adsorbed mass). These calculations were performed
utilizing the most recent KMC method modifications, including
an alternative mode in which the acceptance–rejection criteria
for incoming adsorbates are altered to allow replacement of pre-
existing adsorbates. We should note that Al(111) has the lowest
energy of all three surfaces, according to the Materials Project
data, so we expect the adsorption profile in real systems to be
similar to that predicted for Al(111).
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Table 3: Mean amounts of proteins adsorbed on Al surfaces per unit area: number concentration (per nm2) and mass abundance obtained from KMC
simulations with NPs of radius 80 nm. These calculations have been done using the KMC method with displacements.

Al(100) Al(100) Al(110) Al(110) Al(111) Al(111)

Protein Nads [10−3, nm−2] Mab, % Nads [10−3, nm−2] Mab, % Nads [10−3, nm−2] Mab, %

AS1C 12.26 57.16 16.70 67.82 27.21 83.19
BC 4.45 21.24 3.38 14.07 1.91 5.84
BLAC 2.91 10.99 2.97 9.79 1.00 2.43
LAC 96.59 6.28 89.13 5.05 84.50 3.62
ALAC 1.14 3.51 1.13 3.05 1.84 3.60
AS2C 0.11 0.55 0.04 0.16 3.00 1.09
BSA 0.02 0.25 0.00 0.05 0.02 0.21

Figure 8: Mass abundance of proteins on Al and Fe surfaces (100, 110, and 111) using the original KMC approach without molecular displacements
and a NP radius of 80 nm.

We also compared the protein composition in the corona on alu-
minum and iron [2], obtained in our previous work using the
original KMC approach without molecular displacements. This
comparison is shown in Figure 8. AS1C exhibited the highest
abundance on both iron and aluminum among the studied pro-
teins, indicating a strong affinity for both metals with both
KMC methods as well as its high number concentration in solu-
tion. The following AS1C, BC, BLAC, and ALAC also showed
fairly equal abundances on the surfaces of iron and aluminum.
In contrast, BSA displayed the lowest abundance on both metals
because of its larger size and the relatively low molar fraction in
milk as compared with other proteins. Figure 8 shows the mass
abundance of each protein on both aluminum (Al(100), Al(110),
and Al(111)) and iron (Fe(100), Fe(110), and Fe(111)) surfaces.

We can also observe that AS1C, BLAC, and ALAC display sig-
nificantly enhanced presence on Fe surfaces in contrast to Al.
Conversely, AS2C shows greater adsorption on Al surfaces as
compared to Fe. Overall, we expect a somewhat different
corona formed on these metallic surfaces.

Real-life organic media do not consist only of proteins, but they
also include many other molecules, for example, sugars and
other organic compounds that may bind to NPs along with pro-
teins. It can reasonably be assumed that these molecules may
alter both the kinetics and equilibrium state of the corona and,
moreover, may play a role in biological outcomes. Thus, it is of
interest to include these small molecules in the corona simula-
tion to not only gain further insight into this particular case of
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aluminum in milk, but also to establish a methodology by which
more general molecules can be included in these simulations.
We choose lactose as a prototypical example of a small mole-
cule capable of binding to NPs, since it is present at a high con-
centration in milk. We model the lactose molecule as a pair of
glucose beads separated by a distance determined by the equi-
librium structure of lactose. Although this is not completely
rigorous, it demonstrates how the UnitedAtom software can be
adapted to model larger molecules other than proteins using the
same fragment-based approach. To avoid the need to run a
time-consuming parameterization protocol based on metady-
namics simulations, we produce PMFs for the glucose bead
using a machine-learning technique (PMFPredictor) trained on
previous metadynamics results [38]. For the lactose molecule,
each constituent glucose bead is assigned a charge of 0, and the
Hamaker term is neglected because of the small size of these
beads. Following this parameterization, the coarse-grained
lactose molecule is processed identically to proteins using the
same automated pipeline, that is, UnitedAtom is run to produce
a table of orientation-specific binding energies. These are
mapped to rate constants for adsorption and desorption. We
stress that this procedure is sufficiently generic that essentially
arbitrary organic molecules can be included in the simulation by
performing a fragment-based decomposition, generating PMFs
via traditional or machine-learning approaches, and construct-
ing a coarse-grained representation for input to UA. To simplify
this procedure for more complex molecules, we have de-
veloped a Python script (MolToFragments.py) employing
RDKit [46] to automate splitting larger molecules into suitable
fragments and producing coarse-grained input files suitable for
UnitedAtom and included it in this repository [26].

The addition of lactose (or other small molecules) to the corona
simulation poses a challenge for the form of the CoronaKMC
algorithm previously employed because of the high concentra-
tion and very small binding area of this small molecule relative
to proteins [16,45]. As a consequence of these factors, the orig-
inal form of the algorithm results in rapid coverage of the NPs
with a very large quantity of lactose. This greatly increases the
required computational time, which scales as (N2) for N
adsorbed particles. Moreover, in this original form of the model,
a single adsorbed lactose molecule inhibits the adsorption of a
large protein, no matter how strongly the protein may adsorb.
To counteract these issues, the following features were added to
the new version of the CoronaKMC software. First, we imple-
mented a method to accelerate the simulation by adjusting rate
constants for quasi-equilibriated processes (e.g., the adsorption
of lactose) according to the methodology of Dybeck and
co-workers [47]. Second, we added an optional mode in which
the acceptance–rejection criteria for an incoming adsorbate are
modified such that an incoming adsorbate is no longer immedi-

ately rejected if it overlaps with a pre-existing adsorbate.
Instead, the incoming adsorbate is accepted with a probability p
given by,

(5)

where ΔE is the difference in energy between the two states,

(6)

where j is the set of all adsorbed particles that would overlap
with this particle, taking ΔE = Eads if no overlaps are found. If
the adsorbate is accepted, then all the overlapping particles are
removed from the NP. We note that this breaks the principle of
detailed balance in that it allows for the replacement of a set of
adsorbates by a single molecule, but does not allow for the
converse in which a set of incoming molecules can displace an
adsorbate. We justify this neglect on the basis that the required
event of multiple simultaneous collisions on a single target
would occur so rarely that it would essentially not be sampled
in the course of a simulation. The probabilistic acceptance to
regions of the NP without explicit adsorbates present effec-
tively multiplies the adsorption rate by a factor of p(Eads). Thus,
to maintain the same equilibrium constant, we must multiply the
desorption rate by this same factor, noting that this correction is
only significant for very weakly adsorbing particles with
Eads  −3kBT. This methodology does not treat adsorption of
water to the NP explicitly. Instead, it is assumed that all binding
energies are defined relative to the adsorption of water, which is
assigned an affinity Eads = 0kBT, and that the concentration of
water is sufficiently high such that any region of the NP with-
out an explicit adsorbate can be assumed to be covered in water.

The results of simulations obtained with the updated Coron-
aKMC (i.e., including the molecule displacement) are shown in
Table 3, and they suggest a notable variation in the abundances
of proteins and lactose among different Al crystallographic
orientations. Notably, on all surfaces studied, AS1C and BC
consistently exhibited the highest protein abundances, while
BLAC, LAC, and ALAC demonstrated moderate adsorption
levels. In contrast, AS2C and BSA consistently displayed the
lowest adsorption among the proteins considered in our simula-
tions. Furthermore, when considering different Al facets, it is
evident that the (110) surface consistently exhibited the weakest
average adsorption across all proteins. When the displacement
is allowed, AS1C gains much more space in the corona by
replacing other proteins, mostly BLAC, ALAC, and AS2C.
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Figure 9: Mass abundance of proteins on Al and Fe surfaces (100, 110, and 111) using the KMC model with molecule displacement and a NP radius
of 80 nm.

Figure 9 presents a comparison between the protein abun-
dances in the corona on Al and Fe obtained using the enhanced
version of the KMC algorithm with molecular displacements.
As discussed earlier, this improved algorithm addresses compu-
tational efficiency concerns and more accurately represents
long-term scenarios during protein corona formation. As shown
in the Figure, these algorithmic improvements have a profound
impact on the mass concentration of milk proteins on metallic
surfaces, particularly on iron. In the original algorithm
(Figure 8), proteins showed comparable mass abundances
on both metals. However, the enhanced algorithm reveals a
distinct change in the adsorption behavior of the AS1C
protein on Fe and Al surfaces, characterized by a substantial
increase in mass concentration compared to other proteins.
The data in Table 3 show that in terms of mass abundance
lactose ranks fourth among the corona components (see Sup-
porting Information File 1, Figure S3). As compared to the
algorithm without displacement [2], the protein abundance
ranking on iron (NP radius 80 nm) surfaces changes to AS1C ≫
BC ≥ BLAC ≥ ALAC > AS2C ≈ BSA. A comparable affinity
ranking is also now observed for aluminum surfaces (80 nm)
studied in current work: AS1C ≫ BC ≥ BLAC ≥ ALAC >
AS2C ≈ BSA.

Conclusion
In this work, we applied a multiscale computational model to
study the adsorption of milk solids on the metallic surfaces of
aluminum, widely used in food processing/packaging. The milk
model contained the six most common milk proteins and
lactose. To account for the size differences of selected milk
constituents, we used an improved competitive adsorption algo-

rithm that can potentially achieve a realistic description of
biocorona formation processes with diverse adsorbates (e.g., for
predicting an eco-corona).

Our computational model predicts strong binding of milk pro-
teins to pure aluminum surfaces, which is in agreement with our
previous observations for metallic iron surfaces [2]. For alumi-
num, we also found that AS1C and AS2C exhibited the
strongest binding to the metal, followed by BSA, BC, BLAC,
and ALAC, which displayed weaker adsorption. We also found
similar protein abundances in the corona for the two metals
demonstrated by KMC simulation results. AS1C dominates the
adsorption as the most abundant protein on aluminum surfaces,
with BSA being the least abundant. We found a small differ-
ence in the predicted corona content between the two metals:
BC and BLAC prefer Al(100) and Al(110) to iron, while AS1C
prefers Fe(100) and Fe(110) over aluminum.

Although the adsorption energy regulates the interaction
strength between proteins and surfaces, the mass concentration
of proteins in the solution has a major effect on the amount of
protein adsorbed onto the surface. Expanding the milk model by
adding lactose into the mix did not alter the ranking of protein
abundance in the corona. Despite the high concentration in the
milk, lactose does not exceed the mass abundance of specific
proteins such as AS1C due to its small size. In our model, it
essentially forms a thin monolayer on the surface.

Overall, our freely accessible multiscale computational model
[26] allows us to make predictions of the binding strength,
preferred orientations, and relative abundance of the specified
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molecules on the specified material surfaces or NPs and, thus,
gives an insight into the mechanisms of bionano interaction. We
can compare different materials in terms of the protein binding
affinity and corona content and optimize the processes in food
and chemical industry. The presented methodology can be
easily extended to other molecules, materials, and contexts in-
volving the bionano interface such as environmental safety,
health, medical devices, or toxicology.
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