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Abstract

A majority of cortical areas are connected via feedforward and feed-
back fiber projections. The computational role of the descending
feedback pathways at different processing stages remains largely un-
known. We suggest a new computational model in which normalized
activities of orientation selective contrast cells are fed forward to
the next higher processing stage. The arrangement of input activa-
tion is matched against local patterns of curvature shape to generate
activities which are subsequently fed back to the previous stage. In-
itial measurements that are consistent with the top-down generated
context-dependent responses are locally enhanced. In all, we pre-
sent a computational theory for recurrent processing in visual cortex
in which the significance of measurements is evaluated on the basis
of priors that are represented as contour code patterns. The model
handles a variety of perceptual phenomena, such as e.g. bar texture
stimuli, illusory contours, and grouping of fragmented shape outline.

1 Motivation

The brain is steadily confronted with a massive information flow that arrives via several
sensory channels. In vision, pattern arrangements that signal coherent surface quantities
must somehow reliably be detected and grouped into significant items. Such a grouping
enables the segregation of figural components from cluttered background as well as
the adaptive focussing of processing capacities while suppressing unimportant parts of
the scene (e.g. Grossberg, 1980). A characteristic feature of the cortical architecture
is that the majority of (visual) cortical areas are linked bidirectionally by feedforward
and feedback fiber projections. So far, the precise computational role of the descending
feedback pathways at different stages of processing remains largely unknown. Recent
empirical evidence supports the view that top-down projections primarily serve as a
modulation mechanism to control the responsiveness of cells in primary visual cortex
(Lamme, 1995; Salin & Bullier, 1995).

Based on these findings our model proposes abstract computational principles of feed-
forward and feedback interaction between a pair of cortical areas. Along the bottom-up
stream localized features are detected and subsequently integrated by matching them
against coarse model shape outline. In the top-down stream activations are fed back to
selectively enhance elements of salient contour arrangements via a gain control mecha-
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Figure 1: Model components. Left: Feeding input is generated by responses of localized
oriented receptive fields which are normalized by a shunting competition in a local
neighborhoodN (compare with Heeger et al., 1996); Center: Model V2 cells resembling
‘curvature templates’ integrate V1 activations from elongated branches. Feedback
enhances those activated V1 contrast cells of matching orientation; Right: Recurrent
network interaction selectively enhances colinear arrangements of items to pop out.

nism. As such, recurrent interaction provides a key mechanism for the segmentation
of surface layout and figure-ground segregation. The model links physiology and psy-
chophysics, incorporating empirical data from both research directions, and provides a
common framework for distinct perceptual phenomena.

2 Computational Model

Functionality and Computational Mechanisms. We suggest that a variety of empirical
findings can be explained on the basis of a set of underlying computational mechanisms.
In the ascending processing stream local contrast orientation is initially measured by
cells with oriented receptive fields (RF), such as cortical simple and complex cells. Thus,
for a pair of bidirectionally connected cortical areas (V1 and V2 in our case) the “lower”
area serves as a stage of feature measurement and signal detection. This activity from
local measurement is normalized by a mechanism of divisive inhibition (see Heeger
et al. (1996) for a summary of findings and a model). Figure 1 (left) sketches the
basic mechanisms involved. The resulting activations are fed forward to the “higher”
area where they are integrated by oriented cells utilizing long-range RF (Grossberg &
Mingolla, 1985). Due to their increased RF size such an integration along an oriented
path enables to bridge gaps including those corresponding to perceived illusory contours.
The strength of contribution to the integration is based on stimulus features, such as
spatial position and local orientation. Arrangements of items support an individual
contrast element at a target location in a graded fashion. The spatial weights of V2
cell RF represent “models” of visual entities that frequently occur. The support from
activities in a space-orientation neighborhood thus encodes the probabilityof occurrence
of stimulus shape segments. The “higher” area thus locally matches expected “model
templates” (or priors; see Mumford, 1994) of visual structure against the incoming data
carried by the ascending pathway.

The matching process generates an activity pattern in the higher area that is propagated
backwards via the descending feedback pathway. By way of the feedback pathway those
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activities that match position and orientation of V2 contour cells are enhanced, those
that do not are inhibited. Thus, the action of feedback provides a confidence measure
on the basis of the stimulus-defined context to selectively enhance those signal patterns
that are consistent with the model expectations and to inhibit those that do not (Fig. 1,
center). A gain control mechanism, that is accompanied by competitive interactions,
realizes a “soft gating” mechanism that filters activities corresponding to salient input
arrangements while suppressing spurious signals that are inconsistent with the top-down
priors or shape templates. Figure 1 (right) illustrates the V2 integration stage and the
enhancement of an arrangement of local V1 measurements through feedback activation
and local competition.

Description of Mechanisms. We have implemented a version of the above sketched
model. All network levels are modeled as consisting of single compartment cells with
gradual saturation-type first-order activation dynamics.

The initial measurement stage consists of processing the input luminance stimulus by
masks of local contrast sensitivity, such as simple and complex cells. Responses for
different orientations are synthesized by interpolation of outputs from two mutually
orthogonal filters utilizing a steerability equation. Outputs of pooled opposite contrast
directions, ci" (with location i and orientation "), are fed to a sequence of competitive
interactions in model area V1, the first stage of which combines output of oriented
contrast detection with feedback activation generated by V2 ‘curvature template’ cells.
This recurrent interaction generates activities l(1)
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The constants �1; �1; 
1 and �1 define the activity decay, �1, and the magnitudes of
excitatory and inhibitory saturation levels, 
1=�1 and �1, respectively. The constant C
represents the gain factor of top-down excitatory contour template activation. Positio-
nally invariant weighting of activities is denoted by a convolution (?) utilizing space
and orientation kernels, � and  . Excitatory and inhibitory interactions are indicated by
‘+’ and ‘�’. Activities h(2)

i" denote feedback activations along the ascending pathway.

The enhancement via feedback activation is only effective at those positions with non-
zero V1 contrast activity. The multiplicative excitation is similar to the linking mecha-
nism proposed by Eckhorn et al. (1990). In contrast to approaches, such as the BCS of
Grossberg & Mingolla (1985), in our model no activity spreading or completion occurs
for locations between inducing elements of a salient perceptual contour arrangement. In
the BCS, for example, the action of feedback recurrency acts to complete an otherwise
fragmented representation of boundary activity. In the model presented here, activity
in the higher area is used to assess the validity and significance of measurements at
the lower area. Thus, here the computational competence of feedforward and feedback
interaction is the context-sensitive selection and enhancement of early measurements.

The top-down gated activities subsequently undergo a second stage of shunting ON-
center/OFF-surround competition between activities in a space-orientation neighborhood
to contrast enhance and normalize activations through divisive inhibition (compare
Heeger et al., 1996). In all, both competitive processing stages in model V1 implement
a soft-gating mechanism: V1 activities that are selectively enhanced by matching V2
contour template activation in turn provide more inhibitory energy in the normalization
stage. Thus, salient contrast arrangements will be enhanced while at the same time
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Figure 2: Processing of a noisy fragmented shape outline. Left: Input image; Center:
Equilibrated normalized model V1 cell responses; Right: Equilibrated model V2 cell
responses utilizing ‘curvature templates’. Saturation after four cycles of iteration.

spurious and perceptually irrelevant responses will we suppressed by way of inhibition.

The arrangement of V1 (model stage 2) activities, l(2)
i" , is fed forward to orientation

selective cells in model area V2. The effective weighting function of a V2 cell RF
can be considered as a (static) filter that represents templates of typical shape outline
patterns with varying curvature (Mumford, 1994) to be matched against the structure of
input measurement. The matching is realized by utilizing collinearly aligned pairs of
oriented one-sided weighting functions (lobes) which sample a segment of the spatial
neighborhood. In order to combine matching input from opposite half-spaces a sub-
sequent non-linear accumulation stage integrates the activities from a collinear pair of
lobes (Grossberg & Mingolla, 1985; Peterhans & von der Heydt, 1989). Activation of
such a cell requires input activation from both branches. This is consistent with findings
about the non-linearities in V2 contrast cell responses (e.g. Peterhans & von der Heydt,
1989). Our V2 RF model is based on the bipole concept of long-range interaction first
suggested by Grossberg & Mingolla (1985). However, in our model the corresponding
h
(1)
i" -activity is generated by mechanisms of self-inhibition of individual lobes and disin-

hibitionof activation among both sub-field branches, denoted by lLi" and lR
i", respectively

(compare Fig. 1, right). This guarantees that the target cell generates a response only
when both branches get activated simultaneously. Furthermore, the weighting function
consists of ON- and OFF-subfield components. The net effect of a lumped representation
of cell response results in a multiplicative, or gating-like, combination of activity from
both branches

h
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i" / lLi"l

R
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�
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R
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�
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where �3 determines the shape of the compressive non-linear transfer function.

Similar to model V1 the h(1)
i" activation generated by the stage of long-range contrast

integration undergoes a shunting center-surround interaction in the space-orientation
domain for contrast enhancement and normalization of activities. The resulting h(2)

i" -
activation is fed back via the descending pathway to enhance the activities of initial
measurements by V1 oriented contrast cells via non-linear on-center/off-surround inter-
action (see Eqn. 1).
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Figure 3: Predictions for illusory contour strength after grouping (model V2 cell re-
sponses, h(2)) for Kanizsa (left) and Varin figures (right). See text.
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Figure 4: Results for a texture stimulus composed of oriented bars. See text.

3 Simulation Results

Simulation results and model predictions are consistent with a broad range of experimen-
tal data. Both local processes and the bidirectional interaction between layers (model
areas) achieve adaptive behaviors of V1 cells such as the generation of sharp orientation
selectivities of cells, the context-sensitivity of cell tuning, and the enhancement of line
endings. Model V2 generates the grouping of fragmented perceptually salient contour
segments (see Fig. 2). The initial estimates of local contrast orientation in model area V1
are selectively sharpened. In Fig. 3 we show the strength of model V2 illusory contour
responses generated for Kanizsa (left) and Varin figures (right). For the Kanizsa figures
the strength is a function of the ratio between inducer radius and total contour length.
In the Varin figures strength is a function of the density of evenly spaced circular arcs.
In both cases data from psychophysical measurements by Shipley & Kellman (1992)
and Lesher & Mingolla (1993) are displayed for comparison. Figure 4 demonstrates the
context dependency of responses utilizing texture bar patterns that have been used for
physiological investigations by Kapadia et al. (1995). Relative responses for a target
item have been investigated utilizing stimulus patterns with an isolated bar (not shown),
the bar embedded in a texture with random oriented bars, and a texture in which the
central bar is supplied by oriented and aligned bars (Fig. 4, left & center). Individual
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responses based on local measurements should appear different in varying contexts of
visual stimulation (see Mumford, 1994). The computational experiment shows a drop
in V1 cell response as a bar item appears as part of a random texture arrangement. The
response raises even beyond the level of the reference if the target bar item is flanked by
an arrangement of aligned bars with colinear orientation (columns in Fig. 4 (right) show
results for different values of the gain control factor C = 5 (black), C = 10 (grey)).

4 Summary

We have suggested a computational theory for the bidirectional interaction between
pairs of areas in the visual pathway. Within such a pair the “lower area” is viewed as
a stage of signal measurement whereas the “higher area” evaluates the significance of
arrangements of local activity patterns on the basis of local context information. This
more global, or coarse-scale, activation pattern is in turn used to selectively enhance
those initial measurements that are consistent with the broader context.
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