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Abstract. Our objective is to present an hybrid algorithm for predic-
tion applications. It relies both on classical matrix techniques and on
emerging neural network techniques. We focus our study on RBF (Ra-
dial Basis Function) networks and on the SVD and QR-cp factorization
procedures to automatically determine an optimal network configuration
that incorporates desirable properties for prediction applications. The
significance of this work is evident in the context of small to medium-
sized companies that depend on decision-making policies that are not
only reliable, but also computationally fast.

1 Introduction and Scope

The work in this paper is derived from the consideration of the problem of time
series prediction. This kind of problem appears in numerous practical appli-
cations of scientific and economic interest, in fields such as finance, inventory
control and production planning (e.g. [Kan95]). In general, what is required is
an estimate (or prediction) of the future value (¢t + ¢5,) of a variable or process
x, where t;, > 0 refers to the ’time horizon’ (that is, the time period covered
by the prediction). For relatively large values of ¢, we talk of long-range or
long-horizon prediction. In any case, information for endogenous prediction is
computed from the actual and past values z(t),z(t — 2),... up to a 'window
size’” W (that is, up to z(t — W + 1)) available at time instant ¢, giving an
estimate Z(t + ¢5,) of the future value the process or series is assumed to take.

The structure of the paper is as follows: first, we define the general time se-
ries prediction problem and highlight its relevance for a wide range of practical,
real-life situations. The mathematical definitions of the Radial Basis Function
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(RBF) network paradigm are then reviewed, after which the main matricial de-
composition schemes used in the paper are described in an operational sense.
Based on the matrix decompositions approach, we propose a new means of
creating optimal RBF neural architectures for time series prediction applica-
tions, one that solves most of the problems observed in previously described
algorithms.

2 Time series prediction problems and RBFNNSs
In our algorithm (thoroughly described also in [SOPPO01]) matrices of size 2W x

W (where W is the prediction window size) are set up, in each time instant ¢,
from past values using consecutive past windows as follows:

z(t—-3W+2) z(t-3W+3) --- z{t-2W+1)

ot —3W +3) z(t—3W+4) .- z(t—2W +2)
AW(m()at): : : : . ’

zt-W+1) zt-W+2) - x(t)

that is, 3W — 1 past values are used (including the actual value in t) to predict
the value in ¢ + 75,. This matrix can be used, e.g., for determining the relevant
“lags” (time indexes) for prediction, yielding a reduced input model for (in
this case) a neural model, although this input selection technique could be
applied to any reasonable model. Matrices set up in this way can be useful
for determining the relevant input nodes to the neural network; that is, the
relevant lags for time series prediction, since the inputs to the RBF network
are precisely lagged values of the same series we want to predict. A similar
scenario holds for the neural nodes (RBF) activation values, over input vectors
presented to the network. We are assuming that z(¢) € R for all ¢ € N. The
multivariate case of x(t) € R™ can be approached with an intuitive generalized
setting of our discussion.

As is well known, neural nets perform usually better with respect to classi-
cal statistical methodologies because they do not necessarily depend on large-
sample theory assumptions as do classical statistical hypothesis testing, con-
fidence intervals or (in the case of time series problems) stochastic processes
theory approaches. The large-sample approaches are widely applied and power-
ful when their assumptions are met, which is not usually the case for some kinds
of problems; for these, a methodology based on ANNs seems of more use to the
decision-maker. Considerable work has yet to be done to make ANN behaviour
more ’explainable’ and to create deeper foundations, in the formal mathemat-
ical sense. Attempts are currently being made to formalize NN theory, but
even while this is being done, we can usefully rely on ANNs as ’black-box’ de-
vices that behave as function approximators or prediction models, at least for
practical purposes.



ESANN'2002 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 24-26 April 2002, d-side publi., ISBN 2-930307-02-1, pp. 453-458

Radial Basis Funcion (RBF) networks

One of the simplest, but also most powerful, ANN models is the Radial Basis
Function (RBF) network model. This consists of locally-receptive activation
functions (or neurons) implemented by means of gaussian functions [MD89].
In mathematical terms, we have

:zNj zhexp{ ”X“’Z“} M)

where N denotes the number of nodes (RBFs) used; o;(x) gives the output
computed by the i-th RBF for the input vector x as an exponential trans-
formation over the norm that measures the distance between x and the RBF
centre c;, whereas o; denotes the radius that controls the locality degree of
the corresponding i-th gaussian response. The global output o(x) of the neural
network is, as can be seen, a linear aggregate or combination of the individual
outputs, weighted by the real coefficients h;.

In most RBF network applications, the usual methodology is to determine
the coefficients h; after setting up the location and radius for each of the N
nodes. The locations can be set, as in [MD89], by a clustering algorithm,
such as the K-means algorithm, and the radius is usually set after taking into
account considerations on RBFs close to the one being configured. Adjustment
of the linear expansion coefficients can be done using recursive methods for
linear least squares problems, so that the mean square deviation over a training
data set is minimized, and determined by the previously set parameter values.
The recursive formulation allows for real-time implementation of the training
algorithms for RBFs. These two steps configure the ’classical’ procedure for
training RBF networks, and it is clear that provision for some form of real-time
(or ’online’) adjustment also of the centre location and radius of each RBF can
yield improved accuracy in the modelling of the datasets. On the other hand,
a technique is sought that would allow also for input model reduction, that is
another critical issue in neural network research.

The following sections describe the fundamentals of a procedure to do this,
using matrix decompositions to achieve better network configurations for real-
time operation. In the particular context of the RBF networks introduced
above, the mapping of a time series prediction problem to the network is per-
formed as follows: inputs are set up to a subset of past values (consecutive ones,
in a first approximation) of the time series; the output is viewed as a prediction
for the future value that we want to estimate. The computed error between the
desired and network-estimated value is used to stochastically adjust the free
parameters of the RBF network (such as the setting of node centres and/or
widths, or the linear expansion coefficients that define the output).

3 Optimal Orthogonal RBF Prediction

We now consider our proposed method for optimal network determination,
which is based on the matrix decompositions SVD and QR-cp. As has been
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explained, our prediction algorithm will make use of matrices of time series or
neural activation data. Now, it may happen that the transformation defined
by a matrix A of size m X n is not ’optimal’, non-optimality being understood
in the sense that the vector subspace of R™ spanned by the n columns of
A could in fact be generated by another set of fewer than n vectors. This
corresponds to the case of algebraic rank less than n (rank (A) < n), but
also numerically we could have a full-rank matrix (rank(A) = n) but A being
very close (numerically) to a rank-deficient (rank strictly less than n) matrix.
"Closeness’ is understood here in reference to a norm defined in the vector space
Maxp(R) that we have defined. The numerical rank of A is defined (relative
to a given level of accuracy € > 0 and using the Euclidean, 2-norm) as [Bj696]:

Nrank, (A) & min {rank (B) : [|A — B> < ¢} , 2)

where B is any matrix of the same dimensions as A.

The problem of (numerically) solving a linear system of equations (that
arises in the context of prediction by linear autoregressive methods, or in the
neural network solution of time series problems [SOPPO1]) is discontinuous
in the sense that small changes to the matrices formed by the time series
or neural data can lead to relatively large distorsions in the corresponding
solution parameters. Roundings and other numerical errors can make a rank-
deficient (rank less than n) matrix A appear as a full-rank (rank n) matrix
A’. The algorithms for solving the associated system (say, a linear matrix
equation directly from an autoregressive model, or the linear matrix equation
resulting from the output layer equation of an RBF neural network) could
offer bad results if they failed to identify such a circumstance. In other words,
algorithms must take into account the numerical rather than the algebraic rank
of A, so as to be able to detect the case of algebraic full-rank in the matrix
argument A’ but rank-deficiency of the same matrix in the numerical sense
(Nrank.(A') < n for a pre-established small €), which would indicate that the
'real’ abstract matrix A with which we are operating is, in fact, algebraically
rank-deficient.

The most appropriate tool for our algorithm to be ‘aware’ of rank problems
in the matrices that arise foir is an orthogonal transformation. Here we consider
a special kind of orthogonal transformation called the SVD (Singular Value
Decomposition) of A [Bjo96]. Formally, an orthogonal transformation consists
of another matrix (denoted by S of size m x n whose rank is equal to the rank
of A:

rank (R) =rank (A) =k <n , (3)

along with two orthogonal matrices U and V of sizes m x m and n X n respec-
tively, such that A can be expressed as

A=U-s.-vl | (4)

where S is a diagonal matrix with elements in decreasing order (called the
singular values) of S); some of these elements may be zero, indicating that
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A is rank-deficient; indeed, the number of nonzero singular values equals the
(algebraic) range of matrix A.

Now, if we consider the above, taking into account the numerical issues
(as in the computer solution of time series problems), a truly rank-deficient
matrix will result in one or more negligible but non-zero singular values when
the SVD of the noisy, real-life data (a distorted matrix A’ of the assumed
real’ matrix) is computed. Algebraically, we could not claim A to be rank-
deficient and could not proceed to any column selection (or its equivalent, to
any data model reduction). A suitable strategy then could be to establish a
threshold of numerical significance so as to ascertain whether the numerical
matrix represents a real rank-deficient one. This is the essential idea behind
the optimal prediction algorithm outlined in this paper.

Optimal network determination

Using the above ideas, we have derived an algorithm based on RBF networks
that is very well suited for solving time series prediction problems. This algo-
rithm, thoroughly described in the specialized reference [SOPPO01], determines
the ’optimum’ number (in practical terms) of RBF neurons for computing the
real-time recursive prediction of complicated time series such as the Mackey-
Glass chaotic series [MGT77]. It does so by decomposing the succesive matrices
formed both from the past series input values, and from the neural activations
of the RBF nodes. The basic operation is described in what follows, along with
the experimental results.

4 Operation and Experimental Results

The results in what regards to the Mackey-Glass time series prediction, are
shown in the figures. Figure 1 indicates a substantial reduction to less than
half of the neural resources originally required to 'learn’ the prediction surface
on an on-line basis, when our method based on SVD and QR-cp was tested.
The basic procedure involves forming a matrix A in which successive rows
set up from neural activation a;(-) values as real-time input patterns x are
presented to the network. As the output layer is a linear expansion Y h; - a;(x)
of these activations, SVD enables the determination of the most relevant nodes
(RBFs) in the network, just by examining the singular values of the related
matrix. This is possible since the QR-cp phase transforms relevant singular
values o; into a permutation matrix P that indicates the neurons (columns)
responsible for most of the data ’energy’ [SOPP01]. The activation matrix is
set up every few iterations to allow for fast detection of dynamics changes in
the input time series [SOPPO1]. Therefore, a lot of matrix work is required for
meaningful real-time operation of our algorithm, and the accuracy obtained
must be balanced against this amount of computation. Parallelism can offer a
way of doing so without too great a sacrifice of the prediction precision obtained.
Thus, results such as those shown in Figure 1 can be attained efficiently in real-
time if we resort to parallel architectures for the SVD and/or QR-cp subtasks.
We must stress that the optimal lag configuration (0,6,12,18) determined by
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Figure 1: Left: comparison of the number of RBF's for on-line prediction of the
Mackey-Glass series (upper plot = usual (RAN) algorithm; lower plots = two
versions of the algorithm that use SVD and QR-~cp for model reduction). Right:
some real values of the series, along with the long-horizon values predicted using
SVD and QR-cp methods.

our SVD and QR-cp method over input matrices (as suggested in the previous
discussion) was the same proposed in the literature from ad-hoc, dynamical
system theory considerations (e.g. [Kan95]). So, our algorithm determines
adequate input models for prediction in an automated way.

5 Conclusions

It has been shown by experiments the fact (also claimed theoretically) that
orthogonal decompositions can be a useful aid in any neural network construc-
tion algorithm. Thus, there is considerable potential in the use of these matrix
formulations and associated theory, for the improvement of prediction systems
based on neural models.
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