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Abstract. A large body of experimental and theoretical work has investigated the 
role of the cerebellum in adaptive motor control, movement coordination, and 
Pavlovian conditioning. Recent experimental findings have also begun to unravel 
the implication of the cerebellum in high-level functions such as spatial cognition. 
We focus on behavioural genetic data suggesting that cerebellar long-term 
plasticity may mediate the procedural component of spatial learning. We present a 
spiking neural network model of the cerebellar microcomplex that reproduces 
these experimental findings. The model brings forth a prediction on the interaction 
between the neural substrates of procedural and declarative spatial learning.  

1 Introduction 

Complementing the extensive research on declarative spatial memory (which 
concerns the ability to learn abstract contextual representations), another class of 
works has investigated the procedural component of spatial cognition, which involves 
the acquisition of adaptive sensorimotor couplings relevant to optimal goal-directed 
behaviour [1]. Declarative spatial learning is likely to be mediated by the anatomo-
functional interaction between hippocampal and neocortical (mainly parietal and 
prefrontal) areas [2]. Procedural mnemonic processes permitting the fine tuning of 
navigation trajectories seem to involve the interaction between subcortical structures 
and the cerebellum [3]. We study procedural spatial learning via a computational 
neuroscience approach. The work presented here focuses on the behavioural genetic 
findings reported by Burguière et al. (2005) [3] suggesting that cerebellar long-term 
plasticity plays a significant role in learning efficient goal-directed trajectories. 
 We model the main information processing components of the cerebellar 
microcomplex (Fig. 1). Afferent information enters the cerebellum via two neural 
pathways: (i) mossy fibres (MFs) convey multimodal sensorimotor signals and 
project excitatory efferents to both the granular layer of the cerebellar cortex and the 
subcortical deep cerebellar nuclei; (ii) climbing fibres, which originate in the inferior 
olivary (IO) nucleus, are likely to transmit error-related information to the cerebellum 
by projecting strong excitatory connections to Purkinje cells (PCs) [4]. PCs receive 
also excitatory projections via the parallel fibres (PFs), which are the axons of the 
granule cells (GCs). PFs are believed to transmit to PCs an optimal account, in terms 
of information content, of the multimodal signals conveyed by the MFs [5]. 
Therefore, optimal sensorimotor representations and error-related signals converge 
onto the PC synapses, whose long-term modifications (i.e., long -term potentiation, 
LTP, and depression, LTD) constitute a suitable cellular mechanism for learning

ESANN'2009 proceedings, European Symposium on Artificial Neural Networks - Advances in Computational 
Intelligence and Learning.  Bruges (Belgium), 22-24 April 2009, d-side publi., ISBN 2-930307-09-9.



 
Figure 1. The model cerebellar microcomplex circuit. Arrows and filled circles are excitatory 

and inhibitory synapses, respectively. The dashed circle denotes the main learning site. 
 

adaptive input/output associations. LTD between the PFs and PCs is thought to be the 
main synaptic mechanism enabling this mnemonic process [5]. PCs send inhibitory 
connections to the deep cerebellar nuclei, which form the main output of the 
cerebellar microcomplex.  
 Burguière et al. (2005) [3] employed L7-PKCI transgenic mice, which present 
an LTD inactivation at the PF – PC synapses. The learning performances of L7-PKCI 
mice were compared with those of control mice in two spatial tasks: the Morris water 
maze (MWM) [6] and the Starmaze task [7] (Fig. 2). In both setups mice had to swim 
from random departure locations toward a platform hidden below the surface of 
opaque water. Both tasks required the declarative capability of building a spatial 
representation of the environment. Yet, in contrast to the MWM task, the Starmaze 
alleys guided mice movements, which eventually reduced the procedural demand of 
the task. Thus, the use of these two tasks made it possible to dissociate the relative 
importance of the declarative and procedural components of navigation [3]. 
Compared to their control littermates, L7-PCKI mice were impaired to learn efficient 
goal-directed trajectories (see Methods for the measured parameters), which made the 
authors claim that cerebellar LTD may be relevant to the procedural component of 
spatial cognition [3].  
 We simulated the experimental protocols employed by Burguière et al. (2005), 
and we used our model to emulate the lack of LTD plasticity at PF – PC synapses of 
L7-PKCI mice. The following sections provide first a brief account of the simulated 
behavioural tasks and modelling methods, then present our results, and finally discuss 
them in relation to the experimental findings. 

2 Methods 

2.1 Simulated behavioural tasks 

Figs. 2a,b display the simulated MWM and Starmaze paradigms, respectively. Similar 
to the experimental protocol used by Burguière et al. (2005), we let two groups of 
simulated mice (n=10 controls and mutants) undertake 40 training trials (i.e., 10 
training days with 4 trials/day) for each of the two tasks. At the beginning of each 
trial the simulated animal was placed at a starting location randomly drawn from a set 
of four possible locations. Each trial ended when the subject had reached the hidden 
platform (small grey circles in Figs. 2a,b).  
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Figure 2: The MWM (a) and Starmaze (b) tasks simulated within the Webots 3D-environment. 

Inset: simulated mice. (c) Sample of desired (dashed grey line) and actual (black line) 
navigation trajectories in the MWM from a starting point (S) to the platform (G). 

 
Five parameters were measured [3]: (i) the mean “escape latency” (i.e., the  average 
time to reach the platform); (ii) the mean speed; (iii) the mean angular deviation 
between the optimal direction to the target and the actual motion direction of the 
animal (i.e., heading); (iv) the ratio between the time spent in the target quadrant and 
the trial duration; (v) the mean distance swum by the animal. These measurements 
were averaged over all the trials performed in one day by all the subjects of the same 
group. An ANOVA analysis was performed to assess the statistical significance of the 
results (significant threshold =10−2, i.e. 0.01 was considered significant). 
 In order to isolate the procedural component of spatial navigation, we endowed 
control and mutant simulated mice with identical and effective declarative spatial 
learning. A set of goal-directed trajectories was algorithmically pre-computed and 
unimpaired declarative capabilities were emulated by generating more directed 
trajectories as training proceeded. At each trial, the cerebellar model was given a 
sequence of motor commands forming a global desired trajectory (assumed to be 
planned upstream the cerebellum). Local errors in the execution of these motor 
commands were simulated to account for unpredictable drifts during swimming 
locomotion (Fig. 2c). The procedural adaptation process accomplished by the 
cerebellar model aimed at minimising these local execution errors online. 

2.2 Cerebellar model 

The microcomplex circuit of Fig. 1 was modelled as a network of populations of 
formal spiking neurons [8]. MFs were implemented as axons of a population of 103 

leaky integrate-and-fire neurones [8]. Their input currents were determined by using 
radial basis functions spanning the motor command input space (target position and 
velocity) uniformly. MFs activated a population of 106 GCs, whose activity was 
regulated algorithmically to produce a sparse representation of the input state. This 
process provided an optimal encoding of the input signal [5]. MFs excited a 
population of 100 neurones in the deep cerebellar nuclei (DCN) layer of the model. 
Each GC drove on average a subset of 20 cells of a population of 200 PCs which send 
inhibitory projections onto the DCN neurones. In the model, GCs, PCs, and DCN 
neurones were modelled as conductance-based spiking neurones [9]. Finally, a 
population of 200 IO neurones was simulated to produce the climbing fibre 
projections targeting PCs (1 to 1 connections). The irregular firing of IO neurones 
was simulated by means of a Poisson spike-train generation model. Also, IO activity 
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was modulated to encode a teaching signal computed as a function of the ongoing 
angular and linear deviation of the actual path from the desired trajectory.  
 The firing of DCN neurons provided the motor correction output of the model. 
The firing rate of DCN units was mainly determined by the inhibitory action of PCs, 
which in turn were principally driven by PF activity. Therefore, modifying the 
strength of the synapses between PFs and PCs resulted in changes of the input-output 
relation characterising the cerebellar system. Bidirectional long-term plasticity (i.e., 
LTP and LTD) was modelled at the level of PF – PC synapses. LTP was implemented 
as a non-associative mechanism [10], such that every incoming PF spike triggered a 
synaptic efficacy increase. LTD was implemented as an associative mechanism, such 
that synapses were depressed following conjunctive inputs to the PCs from PFs and 
climbing fibres [4]. In our simulation, L7-PKCI mutant mice were emulated by 
inactivating the LTD between PF and PC synapses. 

3 Results 

Figs. 3a-d present our simulation results in the MWM. It is shown (Fig. 3a) that the 
mean escape latency of simulated L7-PKCI mice was significantly larger (ANOVA 
F1,18 = 148.66, P<0.001) compared to control subjects over the entire training period 
(days 1 to 10). Fig. 3b shows that, on average, simulated mutants were significantly 
impaired (ANOVA F1,18 = 19.277, P<0.001) in reducing the deviation between their 
locomotion orientation and the optimal direction to the platform. These results are 
consistent with experimental data [3], and they point towards a learning deficit of the 
simulated mutants in executing optimal goal-oriented behaviour. As also shown in the 
experimental study, we found that the difference of performance between the two 
groups of simulated animals was not due to a difference of swimming speed (Fig 3c, 
ANOVA F1,18 = 9.4714, P>0.05). 
 It is worth recalling that we artificially provided both groups of subjects with 
identical declarative capabilities, which is reflected in the overall performance 
improvement of both mutant and control navigation behaviour. The significant 
learning differences observed in the MWM simulations were solely due to a 
procedural impairment of mutant subjects (i.e., they were prominently caused by the 
accumulation of local motor errors over time). Under this pure procedural scenario we 
did not observe any significant difference between the goal-searching behaviour of 
mutants and controls. Fig. 3d shows that the ratio R between the time spent within the 
platform quadrant and the duration of the trial increased over training for both 
simulated groups without any significant inter-group difference (ANOVA F1,18 = 
0.1150, P>0.5). This result is in contrast to the experimental data showing that 
controls increased the ratio R significantly faster than L7-PKCI mice over training 
[3]. The interpretation of this discrepancy between simulation and experimental 
results will be discussed in Sec. 4. Figs. 3e-g show the results of our Starmaze task 
simulations. Consistent with the experimental data, simulated mutants and controls 
exhibited comparable performances in this task.  No statistically significant difference 
was observed in the mean escape latencies of the two groups nor in the mean distance 
swum to reach the target (Fig. 3f, ANOVA F1,18 = 0.1177, P>0.5), and nor in the 
heading parameter (Fig. 3g, ANOVA F1,18 = 0.3381, P>0.5).  
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Figure 3. Simulation results for the MWM (top) and the Starmaze (bottom). 

4 Discussion 

Numerous computational models have been put forth to study the cerebellar role in 
adaptive motor learning (e.g., [11]). Although a large portion of these works called 
upon analogue firing-rate units, some of them proposed spiking neuronal models to 
investigate how timing information is processed within the cerebellum (e.g., [12]). 
Yet, to our knowledge, none of these works addressed the issue of the role of the 
cerebellum in high-level functions such as spatial cognition. We present a spiking 
neural network model of the cerebellar microcomplex that learns to optimise 
navigation trajectories, which is relevant to the procedural mnemonic component of 
spatial cognition. It is shown that the system can acquire closed-loop representations 
of the sensorimotor properties of a simulated mouse.  
 On the one hand, the model reproduces most of the experimental findings by 
Burguière et al. (2005) [3] on the spatial learning impairments of L7-PKCI mice 
(which have a LTD deficit at PF – PC synapses). Consequently, our results 
corroborate the interpretation drawn by Burguière et al. (2005) that cerebellar LTD 
plays a significant role in optimising goal-directed trajectories through a continuous 
adaptation process that minimises motor-command execution errors locally. Indeed, 
simulated L7-PKCI mice were impaired to acquire such a procedural capability, and 
their navigation trajectories were suboptimal due to cumulative motor execution 
errors over time. Thus, their learning performances in the MWM were significantly 
poorer than control subjects.  
 On the other hand, because our modelling approach permitted to isolate the 
procedural component of spatial cognition, we provide a slightly different 
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interpretation of a part of the experimental data. Since simulated controls and mutants 
were provided with the same desired navigation trajectories, we could verify the 
hypothesis that declarative spatial learning was unaffected in L7-PKCI subjects. In 
other words, we could challenge the hypothesis that the entire set of findings reported 
by Burguière et al. (2005) could be ascribed to a local procedural deficit only. Our 
preliminary findings may suggest that a purely procedural deficit cannot explain why 
real L7-PKCI mice exhibited coarser goal-searching behaviours than controls – i.e., 
they spent significantly less time within the target quadrant of the MWM, and showed 
larger searching zones during the entire training period. Could a more global spatial 
learning process (eventually taking place upstream the cerebellum) be responsible for 
such impairments? In order to corroborate or refute this hypothesis, a series of new 
simulations and new analyses of data from Burguière et al. (2005) are currently being 
performed. If these results were confirmed, this work would put forth the prediction 
that the lack of cerebellar LTD in L7-PKCI mice might also affect the declarative 
component of spatial cognition. A way to test this prediction experimentally would be 
for instance to perform electrophysiological recordings of pyramidal cells in the 
hippocampal formation (CA1-CA3 place cells and entorhinal grid cells) from L7-
PKCI mice.  
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