
Monotonic Recurrent Bounded Derivative

Neural Network

Alexey Minin1 and Bernhard Lang1 ∗

1- Siemens OOO Fault Analysis and Prevention
191186, St. Petersburg, Volinskiy lane 3, Russia.

Abstract. Neural networks applied in control loops and safety-critical
domains have to meet hard requirements. First of all, a small approxi-
mation error is required, then, the smoothness and the monotonicity of
selected input-output relations have to be taken into account and finally,
for some processes, time dependencies in time series should be induced
into the model. If not then the stability of the control laws can be lost. In
the following paper authors present new Monotonic Recurrent Bounded
Derivative Network (RBDN) on the basis of the Bounded Derivative Net-
work (BDN) [1]. Authors compared invented network with other known
networks, investigated the influence of the back connection in recurrent
network, stability and monotonicity of the new recurrent network. This
paper is also an attempt to incorporate Input/Output monotonicity into
the recurrent network nodes (weights).

1 Bounded Derivative Neural Network

Following the work [1] consider multi layer perceptron. This class of networks
consists of multiple layers of computational units, usually interconnected in a
feed-forward way. Each neuron in one layer has directed connections to the
neurons of the subsequent layer. In many applications the units of these networks
apply a hyper tangent function as an activation function (see Eq.1): General
equation of the MLP is given in Eq.(1).

Y =
nh4∑
k=1

w4,6
k tanh

(
nh2∑
l=1

w2,4
k,l tanh

(
ni∑

i=1

w0,2
i Xi + w1

i

)
+ w3

l

)
+ w5 (1)

where upper index of the w shows layer number and lower index shows node
number inside the layer, i stands for input number, l is the node number in 2nd

layer. The Bounded Derivative Network (BDN) is the analytical integral of a

∗Some datasets used in the paper were downloaded from: Asun-
cion, A. and Newman, D.J. (2007). UCI Machine Learning Repository
[http://www.ics.uci.edu/ mlearn/MLRepository.html]. Irvine, CA: University of California,
School of Information and Computer Science.

ESANN'2009 proceedings, European Symposium on Artificial Neural Networks - Advances in Computational
Intelligence and Learning. Bruges (Belgium), 22-24 April 2009, d-side publi., ISBN 2-930307-09-9.

multi layer perceptron (2 hidden layers) neural network (see Eq.3).

Y = w6,1
1,1 +

ni∑
i=1

w6,2
1,i w2,0

i,i Xi +
nh∑
j=1

w6,5
1,j w5,4

j,j ×

×
[
log

(
cosh

(
w3,1

j,1 +
ni∑

i=1

w3,2
j,i w2,0

i,i Xi

))
+ (2)

+w5,3
j,j

(
w3,1

j,1 +
ni∑

i=1

w3,2
j,i w2,0

i,i Xi

)]

For graphical visualization see Fig.1 below.

Fig. 1: Bounded derivative network is shown at the figure. Here ”Input(t)”
are inputs at time moment t, W are weights between layers, Y are outputs.
Connections between nodes are presented with the lines

Note that interconnection is performed only between layers 2 and 3 (see
Eq. 3). BDN is an ”interesting” network since according to [1] it incorporates
monotonicity rules by its structure. Under monotonicity authors understand the
following rules: if A increases then B will increase as well can be transferred to a
monotonicity constraint dB/dA > 0. The derivative of the BDN activation func-
tion (see Eq.3 and Fig.2) is limited due to the limitation of hyperbolic tangent
function. The derivative is presented at the Eq.3:

∂Y

∂Xk
= w2,0

k,k ×

×
⎛
⎝w6,2

1,k +
nh∑
j=1

w6,5
1,j w3,2

j,k

(
w5,3

j,j + w5,4
j,j tanh

[
w3,1

j,1 +
ni∑

i=1

w3,2
j,i w2,0

i,i Xi

])⎞⎠ (3)

From the Fig.2 it is clear that BDN has constrained derivative and uncon-
strained monotone activation function. In case BDN one can see that extrapola-

ESANN'2009 proceedings, European Symposium on Artificial Neural Networks - Advances in Computational
Intelligence and Learning. Bruges (Belgium), 22-24 April 2009, d-side publi., ISBN 2-930307-09-9.

−4 −2 0 2 4
−1

0

1

2

3

4

5

6

Pattern value

A
ct

iv
at

io
n

fu
nc

tio
n

ou
tp

ut
Activation function of the BDN t+log(cosh(t))

−4 −2 0 2 4
0

0.5

1

1.5

2

Pattern value

D
er

iv
at

iv
e

of
 th

e
ou

tp
ut

Derivative of the BDN 1+tanh(t)

Fig. 2: BDN activation function and its derivative

tion (activation function) is linear in its major part and has very small nonlinear
domain [1]. Thus having such type of activation function monotonicity is guar-
anteed.

2 Recurrent Bounded Derivative Neural Network

Taking into account [4], namely ability of neural networks to provide monotonic
behavior for input-output relations, and inability to extract time structure of
the training patterns [5], authors decided to create monotonic recurrent neural
network, which should incorporate monotonicity. For this purpose RBDN was
created. To make BDN of recurrent type (to provide the ability for time structure
extraction out of the training patterns) one should provide back connection [5]
for the 3rd layer (see fig. 1). The resulting architecture is presented at the Fig.3
and the resulting equation is presented at the eq.4. Here Layer 3(t-1) contains
previous state for the 3rd layer (Layer3(t)). Layer3(t-2) contains state of the
Layer3 at the time moment (t-2) etc till Layer3(t-n).

Y = w6,1
1,1 +

ni∑
i=1

w6,2
1,i w2,0

i,i Xi +
nh∑
j=1

w6,5
1,j ×

×
[
w5,4

j,j log
(
cosh

(
w3,1

j,1 + T
))

+ w5,3
j,j

(
w3,1

j,1 + T
)]

(4)

In the Eq.4 T stands for the follwoing term:

T =
ni∑

i=1

tanh
(
w3,2

j,i w2,0
i,i Xi (t − 1)

)
+ w3,2

j,i w2,0
i,i Xi (t)

ESANN'2009 proceedings, European Symposium on Artificial Neural Networks - Advances in Computational
Intelligence and Learning. Bruges (Belgium), 22-24 April 2009, d-side publi., ISBN 2-930307-09-9.

Fig. 3: Recurrent Bounded Derivative Network. Here ”Input (t)” is input at
time moment t, W are weights between layers, Y are outputs. Connections
between nodes are presented with the lines. Dotted line shows back connection.

Note that interconnection is performed only between layers 2 and 3 (see Eq. 4).
The derivative of the RBDN activation function (see Eq.5 and Fig.4) is limited
due to the superposition of the hyperbolic tangent function and derivative for
the hyperbolic tangent function (see Eq.5). The derivative of the RBDN consists
of the derivative for the Eq.1 (feed forward perceptron) and also consists of the
derivative for the BDN (see Eq.5).

∂Y

∂Xk
= w6,5

1,j

((
w5,3

j,j + T
) ∂T

∂Xk
+ w5,4

j,j tanh
(
w3,1

j,1 + T
) ∂T

∂Xk
+ w6,2

1,kw2,0
k,k

)
(5)

where

∂T

∂Xk
= w2,0

k,kw3,2
j,k

⎡
⎣ 1

cosh2
(
w2,0

k,kw3,2
j,k

) + 1

⎤
⎦

Activation function and its derivative are presented at the figure 4 below. As
one can see from the figure 4 activation function of the RBDN is very similar to
the BDN (see fig. 2). Hyper tangent activation function is used in order to limit
the output of recurrent layer; otherwise it can lead to the unlimited growth of
the output. One should note that hyper tangent function and its derivative are

ESANN'2009 proceedings, European Symposium on Artificial Neural Networks - Advances in Computational
Intelligence and Learning. Bruges (Belgium), 22-24 April 2009, d-side publi., ISBN 2-930307-09-9.

−3 −2 −1 0 1 2 3
−2

0

2

4

6

8

Pattern value

A
ct

iv
at

io
n

fu
nc

tio
n

ou
tp

ut

Activation function of the RBDN t+log(cosh(t))+tanh(t)

−3 −2 −1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Pattern value

D
er

iv
at

iv
e

of
 th

e
ou

tp
ut

Derivative of the RBDN 1/cosh2(t)(1+tanh(t))+1

Fig. 4: Activation function and its derivative for the RBDN

limited. RBDN derivative is still limited and activation function is linear in its
major part and is monotonic.

3 Stability and training issues

To optimize weights of the RBDN Sequential Quadratic Programming, namely
SQP was used. In order to calculate the constraints of the model one should
consider the Eq.5 more precise. Since tanh(x) ∈ (−1; 1) and 1/cosh2(x) ∈ (0; 1]
one can rewrite Eq.5 in the following way (see Eq. 6):

∂Y

∂Xk
= w2,0

k,k ×
⎛
⎝w6,2

1,k +
nh∑
j=1

w3,2
j,kw6,5

1,j

(
w5,3

j,j + w5,4
j,j

)⎞⎠ ≥ 0 (6)

To train RBDN back propagation algorithm was used. During the training the
error decay of the RBDN is robust. SQP iterations converge to the optima in case
feasible starting point (initial nodes values). Calculation of the feasible starting
point is easy to do and is described in [1]. To give the impression about the
speed of the RBDN training (feasible starting point) note that to train RBDN
for the Abalone dataset one will need 5 min at 2GHz CPU with 2 GB of RAM
(1 recurrent layer with 5 hidden nodes, 1200 training patterns).

4 Results and outlook

RBDN was tested together with BDN onto different examples. Several dataset
were time series and some were not. For the results see table 1. For each dataset
1 step forecast (for the whole test set) was provided. To estimate the modelling
quality R2, the so called determination coefficient, was used. Number of nodes
in the table 1 stands for the amount of hidden nodes the 3rd layer (see fig. 3).

The main advantage of the RBDN is that it implies different models in
one(linear regression, recurrent networks).The good property is that RBDN

ESANN'2009 proceedings, European Symposium on Artificial Neural Networks - Advances in Computational
Intelligence and Learning. Bruges (Belgium), 22-24 April 2009, d-side publi., ISBN 2-930307-09-9.

RMS RMS R2 R2

Dataset node(s) BDN RBDN BDN RBDN
Abalone 5 2.10 2.20 0.10 0.12

See [2], 1200TP 10 1.90 2.34 0.30 0.44
Dow Jones, 1 14.10 14.10 0.64 0.64

3000TP, 5 14.10 14.00 0.65 0.64
TS 10 14.10 14.00 0.64 0.65

EEG, 2000TP,TS 5 0.53 0.34 0.99 0.99
Ball Bearings, 1 9.6e-3 9.7e-3 0.74 0.74

see [3],3000TP,TS 5 9.7e-3 9.9e-3 0.74 0.72

Table 1: Summary for RBDN and BDN. Time series are marked in the table in
the filed ”Dataset”. TP stands to show number of training patterns. Number of
nodes is presented for the 3rd layer (see fig. 3). TS stands to show time series
datasets.

needs less patterns for the training then BDN. Convergence of the SQP solver
for the RBDN is stable. In case process model is unknown it is better to have the
architecture like RBDN which implies different models in one in order to have
some guaranteed output quality. For the non time series (or non cause-and-
effect relations data) recurrent layer is some kind of noise layer and sometimes
it allows SQP solver not to stack in local optimum (random perturbation of
weights). Therefore RBDN can be considered as a universal architecture which
can be used for big variety of problems.

References

[1] P. Turner, J. Guiver,L.: Brian, Introducing The State Space Bounded Derivative Network
For Commercial Transition Control, Proceedings of the American Control Conference,
Denver, Colorado June 4-6 (2003)

[2] A. Minin, B. Lang: Comparison of Neural Networks Incorporating Partial monotonicity
by Structure, International Conference on Artificial Neural Networks 2008, Springer,
vol.2, pp. 597-607, 2008

[3] I. Mokhov, A. Minin: Advanced forecasting and classification technique for condition
monitoring of rotating machinery, Proceedings of the 8th International Conference On
Intelligent Data Engineering and Automated Learning (IDEAL’07), Birmingham, UK,
December 16-19, 2007, Springer, pp. 37-46

[4] Lang, B.: Monotonic Multi-layer Perceptron Networks as Universal Approximators. For-
mal Models and Their Applications,International Conference on Artificial Neural Net-
works, Springer (2005), vol. 3697, pp. 31-37

[5] Boden, M. A guide to recurrent neural networks and backpropagation, in The DALLAS
project. Report from the NUTEK-supported project AIS-8: Application of Data Analysis
with Learning Systems, 1999-2001. Holst, A. (ed.), SICS Technical Report T2002:03,
SICS, Kista, Sweden, 2002.

ESANN'2009 proceedings, European Symposium on Artificial Neural Networks - Advances in Computational
Intelligence and Learning. Bruges (Belgium), 22-24 April 2009, d-side publi., ISBN 2-930307-09-9.

