
UC Davis
UC Davis Electronic Theses and Dissertations

Title
LEARNING PROGRAM EMBEDDING FROM UNLABELED SOURCE CODE

Permalink
https://escholarship.org/uc/item/92s294t8

Author
Ahmed, Toufique

Publication Date
2023

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/92s294t8
https://escholarship.org
http://www.cdlib.org/

LEARNING PROGRAM EMBEDDING FROM UNLABELED SOURCE CODE

By

TOUFIQUE AHMED
DISSERTATION

Submitted in partial satisfaction of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

in the

OFFICE OF GRADUATE STUDIES

of the

UNIVERSITY OF CALIFORNIA

DAVIS

Approved:

Premkumar Devanbu, Chair

Vladimir Filkov

Kenji Sagae

Committee in Charge

2023

i

Contents

Abstract iv

Acknowledgments vi

Chapter 1. Introduction 1

1.1. Recovering Usages of Library Function 4

1.2. Fixing Student Program 6

1.3. Multilingual Training 7

1.4. Towards Understanding What Code Language Models Learned 9

1.5. Automatic Semantic Augmentation of Language Model Prompts 10

Chapter 2. Learning to Find Usages of Library Functions in Optimized Binaries 12

2.1. Background 12

2.2. Approach/Methodology 17

2.3. Creating Funcre 26

2.4. Empirical Results 32

2.5. Threats to Validity 39

2.6. Contributions 40

Chapter 3. SynShine: improved fixing of Syntax Errors 42

3.1. Background & Motivation 42

3.2. Methodology 44

3.3. Evaluation & Results 56

3.4. Related Work 65

3.5. Conclusion 66

Chapter 4. Multilingual Training for Software Engineering 68

ii

4.1. Background & Motivation 68

4.2. Benchmark Datasets and Tasks 76

4.3. Results 80

4.4. Interpreting results, and Threats 85

4.5. Related work 87

4.6. Conclusion 89

Chapter 5. Towards Understanding What Code Language Models Learned 93

5.1. Related Work 93

5.2. Methodology 95

5.3. Experiments and Results 99

5.4. Limitations 108

5.5. Conclusion 108

Chapter 6. Automatic Semantic Augmentation of Language Model Prompts

(for Code Summarization) 109

6.1. Background & Motivation 110

6.2. Dataset & Methodology 113

6.3. Results 119

6.4. Discussion 126

6.5. Related work 128

6.6. Threats & Limitations 130

6.7. Conclusion 130

Chapter 7. Conclusion & Future Research Direction 132

7.1. Pre-trained language model: where to go from here? 132

7.2. Emergence of LLMs and its Implications 133

7.3. AI Safety and Use Cases 134

Bibliography 135

iii

Abstract

Machine-learning models can reach very high performance with supervised training, where they

learn from labeled data. However, supervised training requires annotating data with desired output

labels, which can be a difficult and time-consuming task. Meanwhile, advancements in deep learning

models and technology have made it possible to train very large models, which was not feasible

a few years ago. Although training such big models requires a substantial amount of supervised

data, models can overcome this limitation by first learning from un-labeled data. Pre-trained

language models enable us to achieve state-of-the-art performance from large-scale models with

limited supervised data. During the pre-training stage, models are exposed to unlabeled data,

and their weights can be adjusted using self-supervised tasks such as filling masks or spans, de-

noising artificially induced noises, or simple auto-regressive token generation. These tasks help the

model learn token distributions and the context of the programming language. After acquiring this

knowledge, the model can be easily fine-tuned or used even without any fine-tuning for a specific

task.

This thesis began with work on foundation models, which are pre-trained on simple tasks like

mask-filling and de-noising, and then are fine-tuned for task-specific applications. We show how

to effectively apply pre-trained language models in SE tasks, including traditional ones such as

code correction and novel ones such as decompiling binaries. We also investigate the effectiveness

of multilingual training and demonstrate how knowledge can be transferred from one language to

another, thereby improving the model’s performance on three tasks: code summarization, code

search, and method name prediction. We also investigated what foundation models learn during

the pre-training stage. It is evident that learning syntactical distribution is relatively easier and

can be done using tasks such as MLM. However, it is unclear whether the model learns semantic

distribution and is robust with respect to meaning-preserving transformations. In our work, we

found that the model learns semantics and is robust to meaning-preserving transformations.

More recently, Large language models (LLMs), with a few billion to 540 billion parameters,

trained on billions of tokens, have become available. They are proficient at few-shot learning, where

just a few examples provided at the time of querying are sufficient. These models have largely

eliminated the need for a fine-tuning stage and can perform even with a few training samples

iv

or none at all. It’s worth noting that during zero-shot and few-shot learning, we don’t change

the parameters of the model; we just use the prompt to divert the model to condition its text

generation in a more desirable manner. However, the model’s performance heavily relies on the

prompt, and prompt engineering for different tasks has become a focus of attention for numerous

researchers. In this work, we demonstrate how to automatically semantically augment prompts for

code summarization, achieving state-of-the-art performance on this task.

v

Acknowledgments

To begin with, I would like to express my gratitude to my advisor, Professor Premkumar

Devanbu, for his invaluable guidance and mentorship that have played a significant role in shaping

me as a researcher. Throughout my PhD journey, he introduced me to various research domains,

and his unwavering support has motivated me to explore different topics over the past five years.

Besides his profound intellect, Prem possesses exceptional qualities of compassion, humility, and

kindness that make working with him a privilege. Choosing to pursue my academic journey at

Davis under his mentorship has undoubtedly been one of the best decisions I have ever made.

At the beginning of my PhD journey, I was fortunate to have Vincent Hellendoorn and Casey

Casalnuovo as my lab mates. Their invaluable support and plethora of ideas helped me tremen-

dously. I owe Vincent a special thanks for his guidance in familiarizing myself with deep learning

models and enabling me to contribute to the research community at an early stage. Furthermore,

I would like to express my gratitude to my other lab mates, including Kevin, David, Claudio, and

others, who came later and kept me inspired with their ideas. I would also like to acknowledge

Anand Sawant, a postdoc in our lab, whose collaboration was one of the best experiences of my

research career. Few people have the remarkable understanding and competence that Vincent and

Anand possess when it comes to working with complex systems. Their expertise and insights have

been immensely valuable to me.

Thanks Prem for introducing me to and connecting me with so many talented researchers in our

community. I would also like to extend my appreciation to my collaborators and mentors, including

Vladimir Filkov, Tom Zimmermann, Baishakhi Ray, Christian Bird, Earl Barr, Kenji Sagae, Bogdan

Vasilescu, Arie van Dreusen, Saikat Chakraborty, Emily Morgan and many others. Their constant

inspiration, valuable ideas, unwavering support, and kind words have been instrumental in my

research journey, and I am honored to have known them during my PhD.

Lastly, I want to express my gratitude to my parents, elder sister, and my wife for their relentless

support. Without their encouragement and backing, I would never have been able to accomplish

my PhD.

vi

CHAPTER 1

Introduction

The introduction of Large Language Models (LLMs) has revolutionized pre-trained language

models. LLMs are decoder-only models that have been trained using an autoregressive next token

prediction task. These models have an enormous capacity (ranging from a few billion to 540

billion parameters) and are trained with significantly more data than prior pre-trained models.

The combination of their capacity and extensive training has made LLMs incredibly powerful, to

the point where they no longer require fine-tuning. LLMs, such as GPT-3 [37, 43], are few-shot

learners, and various prompt engineering techniques can significantly boost their performance.

LLMs however, are the latest development in a long history of using language models. In the

early days, n-gram models were the SOTA in language modeling. With neural networks becoming

available, the earliest models for deep were Recursive Neural Networks; these were augmented to

include attention [18] and memory [82]; but these architectures were limited because of the need

for “back propagation through time” which limited efficiency and paralellizability Transformer

networks solved this problem, introducing multi-layer, multi-head attention, which afforded much

higher levels of parallelization, and an unprecedented level of scalability: as GPUs became faster

(and cheaper to operate), and VRAM capacities increased, transformer models provide an as-

yet unbounded capacity to scale up in parameter count and performance. With this apparently

unlimited level of architectural- and device-afforded scalability, the the research community then

shifted its attention to better methods of training, starting with 2-stage training in foundation

models, then to prompt-engineering in large language models, and then more sophisticated methods

such as reinforcement-learning with human feedback. The work in this thesis began in the early

days of transformer models, and has introduced a range of innovations (and innovative applications)

in software engineering, tracking the capabilities of neural models.

1

One of the early development was foundation models, which we begin with. Foundation models

(e.g.,BERT [56], GPT [161], CodeBERT [64], GraphCodeBERT [69]) are currently achieving best-

in-class performance for a wide range of tasks in both natural language and code [32]. The models

work in 2 stages, first “pre-training” to learn statistics of language (or code) construction from

very large-scale corpora in a self-supervised fashion, and then using smaller labeled datasets to

“fine-tune” for specific tasks. Training a high-capacity deep learning model is challenging because

it requires a vast amount of data. Having sufficient labeled data required for traditional supervised

learning is nearly impossible for big models. Foundation models provide a way of training such

models with the unlabeled data in a self-supervised way in the pre-training stage. It is worth

noting that the term LLM gained popularity following the emergence of GPT-3 models. While

some publications include pre-trained models such as BERT under the LLM umbrella, for the

purposes of this dissertation, we will only refer to generative models with billions of parameters as

LLM.

Though foundation models generally perform quite well, it is not trivial to apply them in

Software Engineering. Firstly, in Chapter 2, getting data for pre-training and fine-tuning can

sometimes be challenging. For example, recovering library function usage in optimized binaries

requires building many C projects, which is cumbersome. We present a pipeline to build a significant

number of C projects and generate data from them for both pre-training and fine-tuning. We show

that pre-training can help achieve best-in-class performance in recovering library function usage in

optimized binaries. This work was published in IEEE Transactions on Software Engineering [7].

Secondly, code sequences are longer than NLP sequences in most cases. For example, a simple

java program can be more than 400 tokens. Prior works [71,171] apply Neural Machine Translation

(NMT) model to fix student program. NMT models are designed to handle much shorter sequences

in NLP. Therefore, applying a single NMT model can not fix a program with more than 400-500

tokens. In Chapter 3, we propose a pipeline consisting of 3 deep-learning models that can fix very

long programs and achieve state-of-the-art performance. This work was also published in IEEE

Transactions on Software Engineering [9].

2

There are several models pre-trained, especially for programming languages. These models are

pre-trained with a multilingual dataset like CodeSearchNet [89], which consists of six program-

ming languages (i.e., Ruby, JS, Java, Go, PHP, and Python). Though multilingual pre-training

is a well-accepted idea in Software Engineering, multilingual fine-tuning has not been investigated

yet. Researchers in the NLP area have reported that multilingual training is beneficial for low-

resource languages [53,72,165,186]. Several papers show that multilingual-trained models show

better performance [117,185] and are more practical to deploy [17]. For some programming lan-

guages (e.g., Ruby) labeled data is less abundant; in others (e.g., JavaScript), the available data

may be more focused on some application domains and thus less diverse. We find evidence that

multilingual training data (across different languages) can be used to amplify performance. We

study this for three different tasks: code summarization, code retrieval, and function naming. We

note that this data-augmenting approach is broadly compatible with different tasks, languages,

and machine-learning models in Chapter 4. In the following sections, we briefly introduce the

ideas and contributions we discuss in the dissertation.This work was accepted at 44th International

Conference on Software Engineering [4].

Although foundation models are achieving high-levels of performance in many tasks, it is still

unclear what type of knowledge these models gather during pre-training. Do they learn semantics,

or just the syntax of the program? Understanding the model’s capabilities can guide us to create

more robust and better models. With this aim, we conducted several meaning-preserving transfor-

mations and observed how the model reacted. Note that semantic inconsistency is hard to resolve

with just syntactical proficiency. We found that these models can respond to queries that involve

semantic understanding, even if the model is not explicitly trained to do so. In Chapter 5, we will

present our detailed results and observations. A submission is being prepared for CACM.

In this dissertation, we also applied LLMs to the code summarization task and discovered that

combining BM25 retrieved samples with semantic augmentation of prompts can help improve the

model’s performance. In the following sections, we introduce automatic semantic augmentation of

prompt in LLM. In Chapter 6, we will discuss this in more detail. A submission is being prepared

for the 46th International Conference on Software Engineering [10].

3

In the following sections, we provide an overview of each of the main thrusts in each of the

chapters of the dissertation, beginning with our work reverse engineering library function usage

from binaries (without source code, of course).

1.1. Recovering Usages of Library Function

In their seminal work, Chikofsky and Cross [46], define Software Reverse Engineering as “the

process of analyzing a subject system to (1) identify the system’s components and their interre-

lationships and (2) create representations of the system in another form or at a higher level of

abstraction”. Understanding the behavior of software binaries generated by potentially untrusted

parties have many motivations: such binaries may incorporate e.g., stolen intellectual property

(such as patented or protected algorithms or data), unauthorized access to system resources, or

malicious behavior of various sorts. The ability to reverse engineer binaries would make it more

difficult to conceal potential bad behavior, and thus act as a deterrent, and this would enhance

public confidence in, and overall free exchange of, software technology.

Reverse engineering of an optimized binary is quite challenging, since compilers substantially

transform source code structures to create the binary. This is done primarily to improve run-time

performance; however, some compilers support deliberate obfuscation of source code details, to

protect IP, or for security reasons. The resulting binary could be stripped of all information such

as variable names, code comments, and user-defined types. Binaries compiled using gcc can be

optimized in the interest of run-time performance benefits, (even if compilation per se takes longer).

Optimizations include function inlining, array vectorization, and loop unrolling. This dramatically

alters the code at the assembly level, making it substantially more challenging to decompile the

binary successfully.

Two tools are industry standard for reverse engineering: Hexrays IDA Pro [25] and Ghidra [147].

These tools incorporate two distinct functionalities: a disassembler (convert binary to assembly

code), and a decompiler (convert assembly code to a higher-order representation, similar to C

code), and a variety of data flow analysis tools. Both tools can handle binaries that have been

compiled on a variety of architectures (such as x86/64 or ARM64).

4

undefined4 * component_name_wrap (char * param_1)
{
 size_t sVar1 ;
 undefined4 * __dest;
 sVar1 = strlen(param_1);
 __dest = (undefined4 *) malloc_or_quit((long) ((int) sVar1 + 0x1e));
 * __dest = 0x6d676d2f ;
 *(undefined2 *) (__dest + 1) = 0x2f74;
 *(undefined *) ((long) __dest + 6) = 0;
 strcat ((char *) __dest, param_1);
 return __dest;
}

static char * component_name_wrap (const char * name)
{
 int len = strlen(name) + 30;
 char * wrap = malloc_or_quit(len);
 strcpy(wrap, "/mgmt/");
 strcat(wrap, name);
 return wrap;
}

Funcre recovers
missing inlined

strcpy

Figure 1.1. Finding inline functions in real-world1decompiled version of original
C source code

In the field of security, quite a bit of work has focused on understanding the behavior of malicious

applications by examining their library API calls [90,140,173,188,199,217,218,219,220]. The

intuition behind this is that calls made to library APIs (such as Windows DLLs) can capture the

important underlying semantics of the malware’s attacking behaviour [216]. However, uncovering

API calls is particularly hard as the compiler might have mangled the inlined body of the called

function together with the code at the calling site in complex ways. Both Ghidra and Hexrays have

specially engineered functionality for recovering calls to library functions . These recovery functions

are considered very important by the developers of these tools and are explicitly documented and

advertised.

Ghidra and Hexrays use a pattern-based approach to recover library calls. They rely on a

pattern database, which must be manually maintained to include a pattern (or patterns) for each

possible inlined function, each possible optimization level, compiler type, platform, etc. We adopt

a more scalable, data-driven approach and propose to learn to identify those functions that are

most often used in the data. To that end, we develop our tool, Funcre, which finds inlined

library function invocations even in binaries compiled with higher optimization levels. As an

illustration, in Figure 1.1, we present a sample of original source code (from GitHub) and its

Ghidra output for compilation with Os. From the decompiled version, it’s evident that recovering

strlen, malloc or quit and, strcat is possible for Ghidra, but the strcpy gets inlined with

copying of pointers to stack addresses after optimization. The pattern-database approach used by

Ghidra works well for the three of the four functions; but Ghidra fails to recover the latter, (strcpy),

because the more complex pattern required is not available in its database. The precision of Ghidra

is 1.0 for this example, but the recall is lower (0.75). We note that our tool, Funcre, starts with,

5

and builds upon the output of Ghidra decompiler. It works on top of Ghidra-decompiled source

code output; it tries to recover only those functions missed by Ghidra, and effectively improves

upon it, and outperforms all existing approaches. Details are presented in chapter 2.

1.2. Fixing Student Program

Syntax errors are easy to make, and will cause compiles to fail. Novices find syntax er-

rors challenging [182]. Studies have documented the challenges faced by novices in various lan-

guages [93,116,141]. Novices make a wide range of syntax mistakes [93], some of which are quite

subtle; time that might otherwise be spent on useful pedagogy on problem-solving and logic is spent

helping students deal with such errors. Unfortunately the error messages provided by compilers are

often not helpful; novices struggle to interpret the messages, and sometimes even experts do! [114].

Consider for example, the real program example in figure 1.2, where a novice student just replaced

a “*” with an “x” on line 8. None of the big 3 IDEs (VSCode, IntelliJ, or Eclipse) provide a direct

diagnostic for this very understandable error. A lot of time can be spent on such errors [55], and

researchers have called out for more attention to help novices [114] deal with errors, specifically

syntax errors. While semantic errors (bug-patching) have received quite some attention, syntax

errors have attracted less interest.
1 import java.util.Scanner;

2 public class Multiplication

3 {

4 public static void main(String[] args){

5 Scanner sc = new Scanner(System.in);

6 int a = sc.nextInt();

7 int b = sc.nextInt();

8 int res = a x b;

9 System.out.println("The result is: " + res);

10 }

11 }

Figure 1.2. Incorrect student code sample

Existing approaches have struggle to deal with programs longer than 2-300 tokens, and often

fail to make good use of language-specific compiler errors [5, 71, 214] In addition they have not

adequately exploited the tremendous capacity of current DL models to learn (in a self-supervised

fashion) the statistics of very large amounts of unlabeled sequential data. Modern pre-training

approaches such as RoBERTa can ingest vast corpora of sequential data (e.g., a billion tokens

from GitHub-hosted code) and learn the patterns of syntax, identifier usage patterns, arithmetic

6

expressions, method call patterns etc. These patterns are automatically learned and represented

as high-dimensional vector embeddings of tokens, without requiring any human effort to label the

data. These embeddings, however, have been shown to substantially improve performance when

used as pre-set embeddings in other networks that can be “fine-tuned” with smaller amounts of

human-labeled data.

In our research, by using the diagnostics from a compiler, and exploiting the ability to pre-

train embeddings with high capacity RoBERTa model, we build a tool, SynShine, which improves

substantially on the state-of-the-art in automated syntax repair in Java. Details are presented in

chapter 3.

1.3. Multilingual Training

To motivate multilingual training, we begin by introducing the code summarization task, which

we use to motivate multilingual training.

Developers often rely heavily on comments, to gain a quick (even if approximate) understanding

of the specification and design of code they are working on. An actual example of a comment is

shown in Figure 1.3. Such comments help a developer gain a quick mental preview of what the

proximate code does, and how it might go about it; this helps the developer know what to look for

in the code. Knowing that such comments are useful to others (or even later to oneself) incentivizes

developers to create comments that explain the code; however the resulting redundancy (viz., code

that does something, and some nearby English text that describes just what the code does), with

the same concept expressed in two languages results in a bit of extra work for the original coder.

This extra work, of creating aligned comments explaining the code, can be fruitfully viewed [67]

as a task related to natural language translation (NLT) (e.g., translating English to German). The

mature & powerful technology of NLT becomes applicable for comment synthesis; ML approaches

developed for the former can be used for the latter. An effective comment synthesizer could help

developers: by saving them the trouble of writing comments; and perhaps even be used on-demand

in the IDE to create descriptions of selected bits of code.

7

Comment synthesis is now an active research area, including many projects such as CodeNN [91],

DeepCom [83], Astattgru [122], CodeBERT [64], Rencos [223], SecNN [126], PLBART [1], Co-

TexT [154], ProphetNet-X [157], NCS [2], Code2seq [15], Re2Com [206], and many more [66,

76,77,84,85,120,121,124,138,139,197,200,202,205,213,221]. All these approaches rely on

datasets of aligned code-comment pairs. Typically, these datasets are then used to train complex

deep learning models to model a probabilistic distribution of the form p(comments | code); one can

sample from these (usually generative) models to create candidate comments for a given a piece of

code. Given a dataset of code-comment pairs in a specific language, e.g., Java, or Python, or PHP,

or Ruby, one can train models to translate code in that language to comments. The quality of the

translation will depend largely upon the inductive power of the model, and quality and diversity

of the code-comment dataset.

1 //Returns the t ext content o f

2 // t h i s node and i t s descendants .

3 pub l i c S t r ing getTextContent () {
4 St r i ngBu i l d e r sb=new St r i ngBu i l d e r (getChildNodesCount ()+1) ;

5 appendTextContent (sb) ;

6 r e turn sb . t oS t r i ng () ;

7 }

Figure 1.3. Example for code comment generation task

Of late, given the power of GPUs, and the capacity of the models, the limitations largely arise

from dataset quality and diversity, especially in languages for which limited, or rather specialized

data is available. For instance, CodeXGLUE [134] dataset consists of six languages (i.e., Ruby,

Java, JavaScript, Go, Php, Python). Most languages have well over 100,000 training examples,

covering a wide set of application domains. Some languages, particularly Ruby and Javascript,

have far fewer examples, and cover a narrower range of application domains. As a result, state-

of-the-art models perform less well for these two languages. This is a well-known problem for

natural language translation: while training data for language pairs like English ↔ French is

abundant, resources may be lacking for less-used languages like Quechua or Badaga. In such cases,

a common technique is adapt ML models to learn useful statistics from abundant data in other,

perhaps related languages [144]. This works well when languages often have similar grammars,

and share common word etymologies.

8

We propose an analogous approach to improve the diversity and quality of training data for

software-engineering tasks, exploiting an interesting property of source code that human beings

write. It’s generally agreed that variable names help code comprehension [118]. Developers know

this, and typically choose descriptive variable names (reflective of code logic and purpose) regard-

less of the language they are coding in. Thus, one could expect that developers coding the same

functionality, using similar algorithms, even in different languages, will use similar variable names.

This suggests that machine-learning approaches could sometimes leverage corpora in different pro-

gramming languages. This work a) shows that this expectation actually has a sound empirical

basis, and then b) demonstrates that this approach in fact works not just for code summarization,

but also for several other tasks. Technical details are presented in full in a later, in chapter 4.

1.4. Towards Understanding What Code Language Models Learned

Pre-trained language models (PLMs) such as BERT [56], GPT-3 [36], and PaLM [47] are

powerful processors of natural language, exhibiting prowess at various tasks, such as question

answering and joke explanations [36, 47, 56]. Their skill is amplified with just a few examples

(in a few shot setting, or even natural language instructions without labeled data [148]). PLMs

also appear to be surprisingly adept at transfer learning, despite relatively simple pre-training

objectives. Previous research aimed at understanding the linguistic capabilities of PLMs shows

that they encode syntactic, semantic, and world knowledge [168]. However, while some authors

suggest that PLMs understand language and learn meaning, others have argued that they do not

in fact understand the meaning of natural language [27].

This question (concerning semantics captured by PLMs for code) arises, because, as with natural

language tasks, neural code language models perform quite well on code-related tasks: code sum-

marization, code retrieval, code generation, defect detection, and others [43,64,68,102]. Indeed,

these models achieved state-of-the-art in most software-engineering related tasks [133] and some

are incorporated into the most widely-used programming tools such as Github CoPilot2. Given

their impressive performance, it’s natural to wonder how much PLMs understand about code. We

2https://github.blog/2022-03-29-github-copilot-now-available-for-visual-studio-2022/

9

https://github.blog/2022-03-29-github-copilot-now-available-for-visual-studio-2022/

examine specifically whether a PLM’s apparent “understanding” of code is just capturing distribu-

tions of lexical and syntactic token frequencies and co-occurrence patterns, or if PLMs are actually

capturing distributions at a deeper level, viz., of the computational semantics of code: thus in some

sense they “know” the meaning of the code, not just superficial form. Our results provide some

evidence suggesting that they are. This is somewhat surprising, especially considering some recent

results suggesting that language models respond to “knowledge probes” in ways very sensitive to

changes in form [226].

Our approach is largely automated, inspired by concepts Metamorphic Testing. Most of the

current PLMs are pre-trained to reconstruct partially-obscured programs, in the “original, natural”

forms that humans wrote them. However, because of the formal semantics of programs, there are

different syntactic forms of the very same computational meaning. If PLMs are robustly learning

distributions over computational semantics, rather than lexical or syntactic patterns, then they

should also be able to correctly reconstruct other forms of programs that have the same meaning.

Details are presented in Chapter 5.

1.5. Automatic Semantic Augmentation of Language Model Prompts

Large language models (LLMs) often outperform smaller, custom-trained models on several

tasks, especially when prompted with a few shots or examples. LLMs are pre-trained on a masking

or de-noising task whereby a vast amount of labeled data naturally exists. LLMs exhibit surprising

emergent behaviour as their training data and number of parameters are scaled up. They do well

at many important tasks; so well that it is unclear whether sufficient task-specific data can be

gathered to train a customized model to achieve the few shot (or even zero-shot) performance of

modern LLMs. LLMs are ushering in a new era, where prompt engineering, to carefully condition

the input to an LLM to tailor its massive, but generic capacity, to specific tasks, will become a new

style of programming, placing new demands on software engineers.

We propose Automatic Semantic Augmentation of Prompts (ASAP), a new methodology for

constructing prompts for software engineering tasks. ASAP methodology rests on an analogy: an

effective prompt an LLM for a task is similar to what a developer thinks about when manually

performing that task. In other words, we posit that prompting an LLM with the questions a

10

developer asks about the code or the syntactic and semantic facts they hold in mind when manually

performing a task will increase the LLM’s performance on that task. We illustrate this methodology

on code summarization. This task takes code, usually a function, and summarizes it using natural

language; such summaries can support code understanding to facilitate requirements traceability

and maintenance. ASAP aims to augment prompts using semantic analysis. Motivated by the

observation that developers make use of properties of code such as parameter names, local variable

names, methods called, and data-flow, we propose augmenting the prompt with semantic facts

automatically extracted from the source code. These facts are added to the few-shots in the prompt,

along with the desired comment output, thus providing the language model with some selected —

via BM25 [166] — relevant, illustrations of how these extracted facts might help construct a good

summary. Finally, the model is provided with the target code and facts extracted therefrom, and

asked to emit a summary. Concretely, these facts include the fully qualified name of function, the

parameter names, and its data flow graph. These facts are presented to the LLM as separate,

identified, fields within the few-shot examples. We evaluated the benefits of this approach on the

high-quality (carefully de-duplicated, multi-project) CodeSearchNet dataset. Details are presented

in chapter 6.

Finally, Chapter 7 concludes the dissertation with some future directions.

11

CHAPTER 2

Learning to Find Usages of Library Functions in Optimized

Binaries

Much software, whether beneficent or malevolent, is distributed only as binaries, sans source

code. Absent source code, understanding binaries’ behavior can be quite challenging, especially

when compiled under higher levels of compiler optimization. These optimizations can transform

comprehensible, “natural” source constructions into something entirely unrecognizable. Reverse

engineering binaries, especially those suspected of being malevolent or guilty of intellectual prop-

erty theft, are important and time-consuming tasks. There is a great deal of interest in tools to

“decompile” binaries back into more natural source code to aid reverse engineering. Decompila-

tion involves several desirable steps, including recreating source-language constructions, variable

names, and perhaps even comments. One central step in creating binaries is optimizing function

calls, using steps such as inlining. Recovering these (possibly inlined) function calls from optimized

binaries is an essential task that most state-of-the-art decompiler tools try to do but do not perform

very well. In this chapter, we evaluate a supervised learning approach to the problem of recovering

optimized function calls. We leverage open-source software and develop an automated labeling

scheme to generate a reasonably large dataset of binaries labeled with actual function usages. We

augment this large but limited labeled dataset with a pre-training step, which learns the decompiled

code statistics from a much larger unlabeled dataset. Thus augmented, our learned labeling model

can be combined with an existing decompilation tool, Ghidra, to achieve substantially improved

performance in function call recovery, especially at higher levels of optimization.

2.1. Background

2.1.1. Importance of Function Calls in Binary Comprehension. Eisenbarth et al. [60]

and Schultz et al. [173] argue that identifying library function calls made within a binary are key

12

to comprehending its behavior. Substantial prior research in the field of binary analysis has focused

on this problem.

Much of the effort to understand binaries is to identify malware. Schultz et al. [173] use the

calls made to Windows system APIs to understand if a binary has malicious intentions. Ye et

al. [220] found that reverse engineers can identify malware in a binary based on the co-occurrence

of six calls made to a specific kernel API.

A barrier to static analysis techniques is that sometimes binaries can be optimized and/or

obfuscated. To overcome this, researchers have used dynamic analysis to understand the APIs

being accessed by a binary. Hunt and Brubacher [88] and Willems et al. [210] attempt to detect

calls made to Windows system APIs by instrumenting the system libraries. Bayer et al. [23] and

Song et al. [181] emulate the Windows runtime and recover the Windows system API calls. In

comparison to static analysis, dynamic analysis is limited by test set coverage, as well as by dynamic

cloaking (malware could disguise its behavior when it knows it being surveilled, e.g., in a VM).

Given how important library/API calls are to reverse engineers’ understanding of the semantics

of a binary, it is pivotal that these calls are recovered by disassembler and decompiler. However,

optimizing compilers can inline many library calls, thereby making them hard to recover, even by

state-of-the-art tooling; improving library function recovery is an important problem.

2.1.2. Disassembler vs Decompiler. Binaries are created in two stages: (1) source code is

pre-processed and compiled into machine code and (2) the machine code is linked with all supporting

code such as libraries and system calls to create the executable binary. Similarly, the process of

reverse engineering of a binary comprises of two stages: (1) the binary is “disassembled” into

assembler code and (2) the assembler code is converted into a higher-order representation which is

close to the original source code.

Disassemblers such as Ghidra, Binary Ninja, IDA Pro, and gdb perform the first stage of reverse

engineering. Since the machine instructions in a binary generally have a one-to-one mapping with

the assembly instructions for most platforms, disassembly per se is relatively straightforward.

Next, decompilers such as Ghidra, Hex-rays, and Snowman transform the machine code pro-

duced by the disassembler into a more legible representation referred to as pseudo-C code. De-

compilers produce code that is ostensibly more compact and readable than that produced by a

13

disassembler. They also often recover the original function boundaries (i.e., where function bodies

start and end), control flow structure, and primitive type information. This makes decompilers a

better tool for a reverse engineer as the effort and knowledge required to understand pseudo-C code

is less than that of reading assembler code.

2.1.3. Library Function Recovery. Given its importance, we focus on the recovery of func-

tion calls from binaries. The two main reverse engineering tools - Hex-rays IDA Pro (commercially

available with a license cost of approximately $10,0001) and Ghidra (open source and maintained

by the National Security Agency) - have dedicated solutions targeted just for recovering function

calls. The developers of Hexrays acknowledge the importance of function recovery by stating that:

“Sometimes, the knowledge of the class of a library function can considerably ease the analysis of

a program. This knowledge might be extremely helpful in discarding useless information.” [24]

Both tools can identify function calls. They maintain a database of function signatures at

the byte level (assembler code). They recover the function by checking each sequence or block of

operations in the disassembled code against the signatures in the database.

We observe that majority of the previous research work in this field is based on call graph

matching which has been designed to be robust to statement interleaving due to compiled opti-

mization. These approaches are static in nature and try to go beyond the offerings of Ghidra and

Hex-rays.

Qiu et al. [159, 160] implement a static approach to recover inlined library functions by ex-

tracting execution dependence graphs for a library function and then matching this in decompiled

code to recover. This work reports deal with inlined functions in optimized binaries, however, the

evaluation lacks a performance breakdown by optimization level. Furthermore, only precision num-

bers are reported on a small subset of inlined string library functions, and the overall performance

is not compared to Ghidra or Hex-Rays.

BinShape by Shirani et al. [179] also uses graph features for function identification. However,

they do not assess the efficacy of their approach against inlined functions. “impact of inlined

1Estimate based on the cost of base IDA Pro disassembler license and the cost adding three platform-specific Hexrays
decompilers

14

(a) Original C code

undefined8 main(void){
 long lVar1;
 undefined8 *puVar2;
 long in_FS_OFFSET;
 undefined8 local_78;
 undefined4 local_70;
 undefined2 local_6c;
 long local_10;
 lVar1 = 0xc;
 local_10 = *(long*)(in_FS_OFFSET + 0x28);
 puVar2 = &local_78;
 while (lVar1 != 0) {
 lVar1 = lVar1 + -1;
 *puVar2 = 0;
 puVar2 = puVar2 + 1;
 }
 local_78[0] = 0x2073692073696854;
 local_78[2] = 0x2e796164206c7566;
 (undefined4)puVar2 = 0;
 local_78[1] = 0x6974756165622061;
 __printf_chk(0x20736920736968541,"Final copied string : %s\n");
 if (local_10 == *(long*)(in_FS_OFFSET + 0x28)) {
 return 0;
 }
 /* WARNING: Subroutine does not return */
 __stack_chk_fail();
}

int main(){
 char src[40];
 char dest[100];
 memset(dest, '\0', sizeof(dest));
 strcpy(src, "This is 2020");
 strcpy(dest, src);
 printf("Final copied string : %s\n", dest);
 return 0;
}

undefined8 main(void){
 long in_FS_OFFSET;
 undefined8 local_a8;
 undefined4 local_a0;
 undefined2 local_98;
 undefined2 local_90;
 char local_78 [104];
 long local_10;
 local_10 = *(long*)(in_FS_OFFSET + 0x28);
 memset(local_78, 0, 100);
 local_a8 = 0x2073692073696854;
 local_a0 = 0x6974756165622061;
 local_98 = 0x2e796164206c7566;
 local_90 = 0;
 strcpy(local_78, (char*) &local_a8);
 printf("Final copied string : %s\n", local_78);
 if (local_10 != *(long*)(in_FS_OFFSET + 0x28)) {
 /* WARNING: Subroutine does not return */
 __stack_chk_fail();
 }
 return 0;
}

(b) Compiled with O0 and decompiled with Ghidra

memset

strcpy

(c) Compiled with O2 and decompiled with Ghidra

Figure 2.1. Comparison between original source code (a), Ghidra output for com-
pilation with O0 (b) and Ghidra output for compilation with O2 (c)

functions” were not scrutinized. We are the first to attempt this task with a neural model and

compare this to the SOTA tools such as Ghidra and HexRays.

There have been a couple of neural approaches to recovering function names but not inlined

functions. He et al. [78] present a tool called Debin that is based on a combination of a decision-tree-

based classification algorithm and a probabilistic graph model that attempts to recover function

invocations and other symbols in obfuscated code. David et al. [54] encode the control flow graphs

of invocation sites and try to recover the correct invocation name using LSTM’s and Transformers.

Neither approach explicitly deals with inlined library functions nor present any results broken down

by optimization level.

The function recovery in these tools has a major flaw: they aren’t good at recovering functions

from binaries that have been compiled with optimizations. In C and C++, there are six optimization

levels (in increasing order of complexity: O0, O1, Os, O2, O3, and, Of). Code compiled with O0

is the most basic: compilation is fast, and no optimization is done. Starting from O1, more and

more optimizations are introduced, and the code structure changes substantially. At Of, the most

optimized level, the compiler does not even guarantee correctness. Hex-rays IDA Pro and Ghidra

work better with code that has been compiled using the O0 or O1 optimization levels, since the

code structure is largely preserved.

15

In the toy example seen in Figure 2.1(a), we see that the source code of a file is written in C. The

function depicted invokes memset and then strcpy (twice). When we compile this file with no

optimizations (the O0 flag) and then decompile it using Ghidra (output seen in Figure 2.1(b)), we

see that the decompiler can recover called functions and can create a generally good representation

of the original C code. Note, however, that it “fuses” the chained string copy invocations. When

we compile with a higher optimization level such as O2 and then decompile the file, we see the

result in Figure 2.1(c). The performance of the decompiler degrades, as the binary gets more

optimized: some library function uses are no longer recovered. In the figure, we highlight the parts

of the function relating to the library function calls, whose implementation has been inlined. In

this example, we do see that three other function calls are recovered, however, this could be due

to the fact that they were never inlined or that Ghidra does a good job of recovering them even if

they were inlined.

We want to clarify that like [20,152,178,198] we do not target the function boundary iden-

tification task. Ghidra & Hexrays already do this at 90%+ accuracy. They do much worse at

the recovery of inlined library functions; This task is a challenge for the heuristic method used by

Ghidra & Hexrays, especially at higher optimization levels, as acknowledged by the developers [25];

by leveraging powerful neural models (explained in Section 2.3), Funcre can improve these tools.

A decompiler can recover most of the semantics of the original code, however, it has a hard

time recovering variable names, struct types, exact data flow, code comments, and inlined library

functions. Most of this information is lost in the compilation - decompilation loop, e.g., in Figure 2.1

the decompiler adds a lot of new local variables each with an ambiguous name.

State-of-the-art approaches to improving decompilation employ machine learning (ML) tech-

niques. Katz et al. [111] propose to decompile disassembled code by using a Neural Machine

Translation (NMT) model. Their approach currently works at the statement level and seeks to

recover natural C code for each block of disassembled code. Lacomis et al. [115] use an encoder-

decoder model to recover variable names. Their approach only targets code compiled with O0 and

not on higher optimizations.

16

We see that ML approaches to improving decompilation are limited. We hypothesize that an

ML-based approach will work well for the task of library function recovery because ML can detect

patterns in highly unstructured data.

2.2. Approach/Methodology

2.2.1. Research Questions. Our approach to improving library function recovery builds on

top of the pseudo-C code produced by the Ghidra decompiler. Using large volumes of source-

available projects and some careful, automated instrumentation, we develop a supervised learning

approach to find library functions that other tools are unable to find. Our first RQ considers the

effectiveness of our approach i.e., how effective is Funcre at recovering library function invocations

not recovered by Ghidra.

RQ1a: How effective is our supervised learning-based approach in recovering library function us-

age?

In Natural Language Processing (NLP), it is now well-established that pre-training a high-

capacity model using self-supervision for an artificial task (e.g., predicting a deleted token, or the

following sentence) improves performance on practical tasks like question-answering. Pre-training

forces the layers of the model to learn position-dependent embeddings of tokens that efficiently

capture the statistics of token co-occurrence in very large corpora. These embeddings are a very

useful, transferable representation of a token and its context [56,129] which substantially improves

performance on other tasks. By using them as an initial embedding within a (possibly different)

task-specific network and “fine-tuning” using data labeled specifically for that task, much higher

performance can be achieved, even if the task-specific labeled data is limited. The benefits of

this approach have also been reported for code [64, 103]. We examine whether pre-training over

large corpora of decompiled pseudo-C can be helpful for our task of recovering library function

invocations not recovered by Ghidra.

RQ1b: How much does pre-training with RoBERTa help with library function usage recovery?

C and C++ binaries can be compiled with a variety of optimizations (see Section 2.1.3). Most

disassemblers and decompilers can handle code with no optimizations. In line with that, past

research that uses a deep learning (DL) model also targets code compiled with no optimizations.

17

? ?
1 2

3

4

5

6

9

8

9

12

7 11

10

Figure 2.2. Training data pipeline. We mine projects from GitHub (1); after
filtering (2) the ones enabled for Travis, and certain Operating systems, the projects
are gathered in a source dataset (4). We then adapt the publicly available BugSwarm
toolset (3) to mine Docker containers (8) for building. We indelibly instrument (6)
the library function invocations in the source to get marked source code (7). The raw
(5) and marked (7) sources are built using the Docker containers (8); we then use
Ghidra (9) to decompile matched pairs (10,11) of marked and unmarked decompiled
sources, which are gathered into our labeled dataset (12).

However, in our work, we target higher optimization levels as well. We assess the performance of

our model on five optimization levels:

RQ2: How does optimization level affect the performance of Funcre?

With machine-learning approaches, the training data can strongly influence the test results.

The model might perform better on library functions more prevalent in training data.

RQ3: How does the popularity of library methods influence test results?

Finally, we assess whether our model outperforms current tools when it comes to retrieving

library functions in decompiled code:

RQ4: How does Funcre perform in relation to state-of-the-art approaches?

A key requirement for using supervised machine learning for library function recovery is the

creation of a curated, labeled dataset where the occurrence of in-lined functions within decompiled

binaries is labeled. There is currently no such dataset of labeled decompiled C/C++ binaries, and

we have had to create our own. This presented several challenges.

18

(1) Large scale, diverse data. We need a broadly representative, large dataset that captures

relevant statistics of current coding styles, library/API usages, compiler settings, and

platforms.

(2) Reproducible Builds. To create binaries with labeled inlined library functions we need to

suitably instrument the source to insert labels, and then reproduce the build procedures of

a large, diverse set of projects. Build procedures are notoriously brittle, with many tricky

dependencies, and so challenging to reproduce [189].

(3) Indelible labels. Because optimizing compilers make substantial changes to the logic of the

code, our approach to creating binaries where the original inlined library functions could

be labeled in a way that endures after optimization & decompilation is a tricky business.

We employ a multi-stage project selection and build process to meet these challenges (an

overview of which can be seen in Figure 2.2) as elucidated below:

Large-scale, Diverse data: The focus of this work is to recover library functions from C-based

binaries. Since modern deep-learning models are “data-hungry”, we need the largest possible

corpus of built binaries aligned with its original C source code. We sourced data from GitHub.

Our selection criteria for projects is as follows:

(1) Projects under active development. We determine a project’s activity by checking for

commits in the previous six months (as of April 2020). This helps ensure that selected

projects are representative of current coding styles and API usages.

(2) Projects using Travis as their CI build platform. We select those with public build histories

and logs (hosted on travis.org) so that we can replicate the builds.

(3) Projects with available Build Containers. We filter out projects that declare in their

Travis configuration (.travis.yml file) that their platform requirement is either Mac OS/X

or Linux version 12.04. Travis does not provide open-source Docker containers for either

build platform, thus making a build irreproducible.

Our initial selection comprised 10,000 actively developed C-based projects. After filtering for

Travis-based projects and then on their build distribution, we are left with 2,634 projects.

19

travis.org

Reproducible Builds: Successfully re-building projects at scale requires the downloading of each

project’s dependencies and ensuring that the correct build platform is used. This is a frustrat-

ing, failure-prone process under the best of circumstances. These problems are exacerbated when

building C projects as there is no standard dependency management system comparable to those

in languages such as Java (Maven or Gradle), Python (pip) and, C# (NuGet).

All 2,634 projects in our filtered set of GitHub-based C projects use Travis for continuous

integration and require one of three Linux distributions: Trusty (14.04), Xenial (16.04), or Bionic

(18.04). Travis CI builds each project in a clean docker container: it first installs all required

dependencies and then invokes build and test scripts. We aim to recreate this process.

Fortunately, we were able to leverage the open-source BugSwarm [189] infrastructure. BugSwarm

was originally developed to reproduce buildable pairs of buggy and fixed versions of large, real-world

systems. To ensure reliable builds and reproducible failures, the BugSwarm pipeline builds pairs

of commits and tests them five times. For our purposes, we do not need pairs; we just need re-

producible, test-passing (not failing), singleton builds. BugSwarm is able to identify the right

Docker container that a project uses, download the project into the container, install dependen-

cies and build the project using its scripts and the Travis configuration of the project. We only

need this part of the pipeline that can build just the latest commit of the code. We downloaded

the source-available BugSwarm [38] project and adapted it for our purposes. First, BugSwarm

currently does not support Travis builds for languages other than Java and Python. We augment

BugSwarm’s capability to deal with C-based projects. Second, we refactored the BugSwarm code

to retain only a single, buildable version from the latest version of active projects. This adapted

version of BugSwarm called “BuildSwarm ” (which we will make available upon publication of

this work [31]) works as follows.

(1) For each project, we use the Travis API, to download a list of public Travis builds; along

with each build, we also download its details, such as build configuration, date of the build,

and associated jobs for the build.

(2) From this list of builds, we select the latest passing build. Each build might have more

than one job associated with it [58] For this build, we select the first job that suits our

criteria (1) the job fits our OS criteria (see above), (2) the job does not require Docker as

20

a service (some projects require child Docker containers for testing, a scenario we cannot

reproduce) to build the project and (3) the job needs either a gcc or clang compiler.

(3) For the selected job, we create the Travis build script that can replicate the entire build

procedure, using the Travis build utility [48].

(4) From the downloaded log for the job, we parse the Docker image that was used by Travis.

Travis releases most of their docker images on docker hub [49]. We use the same image as

our base image to build the project and add the build script to it by composing a docker

image.

(5) Once this docker image is built, we run the docker build script (generated earlier) on the

project inside a docker container. This build script downloads the dependencies builds the

code to produce binaries.

(6) If the project builds successfully in the container, we release the docker image to Docker-

hub [30], and retain that image tag so that the image can be reused; we also collect the

pair of the C source file and its object file.

Disassembling and decompiling a binary For each project that we can re-build, we need to decom-

pile its binary i.e., convert the executable into a form of pseudo-C code. Section 2.1.2 explains the

process of disassembling and decompiling the binary to recover the pseudo-C code.

The two main tools for disassembling and decompiling a binary are Ghidra and Hexrays IDA

Pro. We select Ghidra as our base tool, as it is open source and is freely available; however, we

also baseline an evaluation set against both tools, for the specific task of identifying inlined library

functions.

Ghidra can disassemble and decompile an executable (.exe file). This entails separating the

executable into smaller object files (.o files). Each of these object files is then disassembled by

delinking the libraries that they depend on, and then the resulting assembler code is decompiled.

In our case, we directly operate on the object files and not on the full executable. This is because

we have a one-to-one mapping between the object file and its corresponding C source file. This

results in us creating a dataset with source code, binary code, and decompiled code triplets.

Indelible Labels: Our machine-learner must learn to associate patterns within the decompiled

code with specific inlined library functions. To provide a supervisory signal for the learner, we must

21

identify and locate a in-lined functions within the Pseudo C code produced by the decompiler; this

is non-trivial. It’s difficult to align the original C source code with the decompiled Pseudo C,

since optimization, followed by the decompilation process, can mangle the original code beyond

recognition. Thus, recovering a one-to-one mapping between the original code and the decompiled

code is virtually impossible (especially when compiled using higher optimization levels).

To create our dataset of decompiled code with labeled locations for inlined library functions,

we need to inject some form of robust label into the original C source, that would survive despite

optimization transformations and be inserted into the binary; this could then be recovered by a

decompiler. We refer to this system of annotating inlined library functions in the binary as indelible

labeling, or “marking” for short.

The process of marking starts by injecting a marker header in each function in a C project and

each function from the libraries used by the project. For our purposes, we wish to train a learner to

learn to identify just those functions not identified by current decompilers. To find these, we first

compile and then decompile source files. For those inlined library functions which are not recovered

by the decompiler, we must insert a marker that indicates the name of the function and its location

within the decompiled Pseudo C code. The marking process must meet several requirements:

the injected marker must not interfere with the compilation and decompilation process (no errors

should be triggered). Second, there must be no inadvertent changes to the final compiled binary

that would differentiate the marked binary from the unmarked: if the resulting decompiled marked

Pseudo C differs too much from the original Pseudo C, the training signal for our learner would be

confused, and the marked inline library function would not be reliably recoverable by the learner.

Third, the injected marker must be resistant to change or removal by the compiler’s optimization

process. For example, if we were to insert a marker, as a code fragment, whose results were not

used elsewhere in the code, for example, something naive like:

char *marker1 = "function inlined: printf()";

then the compiler might, for example, find that marker1 is not used elsewhere, and just simply

remove the marking statement, thus robbing us of a data label. We tried several approaches to this

problem:

22

(1) printf: Injecting a statement that prints the name of the function being inlined. We

found that a printf statement could at times change the structure of the Ghidra output.

For lower optimization levels, the code does not change much; however, for higher opti-

mization levels, the nature of control structures can change e.g., a while loop is replaced

with a do while loop.

(2) puts: Similar to printf the puts can print details about the inlined function. While

the distortion of the decompiled binary is less than that of printf, we do notice that the

ordering of statements can be changed, especially for longer function bodies.

(3) Global array marker: We can inject a global character pointer array (String array)

in a source code file and assign it to the array for each function call. Since the array is

global, the compiler will not discard it since modifying or discarding such an assignment

may change the program semantics.

bVar12 = 0;
lVar9 = 0x12;
local_30 = *(ulong*) (in_FS_OFFSET + 0x28);
marker21._11 = "function inlined: memset";
psVarl0 = (sigset_t*) (&local_1f8 + 8);
while (lVar9 !=) {
 lVar9 = lVar9 + -1;
 psVar10->_val[0] = 0;
 psVar10 = (sigset_t *)(psVar10 > _val + 1);
}

(a) Without marker

bVar12 = 0;
lVar9 = 0x12;
local_30 = *(ulong*) (in_FS_OFFSET + 0x28);

psVarl0 = (sigset_t*) (&local_1f8 + 8);
while (lVar9 !=) {
 lVar9 = lVar9 + -1;
 psVar10->_val[0] = 0;
 psVar10 = (sigset_t *)(psVar10 > _val + 1);
}

(b) With marker

Figure 2.3. Marker survives -O2 optimization level without inducing any change
in the code

Of these approaches, we chose global arrays to inject markers (Figure 2.3 depicts one example

of an injected marker in decompiled code) in the source code. In comparison to the printf and

puts approaches, the decompiled code obtained from Ghidra is not distorted. This might be due to

Ghidra having a harder time in recovering library function calls in the correct position as opposed

to array assignment. Furthermore, this tactic ensures that the compiler does not optimize the array

access by vectorizing it, which would be the case for linear assignment. The global array we inject

is a constant character pointer array of size 2000. We declare a global array and assign each marker

23

to a different position of the array. We note that the actual value in the array is not important for

labeling; it’s the assignment statement itself that constitutes the label.

In each file, we inject a uniquely identified global array, and this helps avoid a compilation

conflict. This is necessary because, during compilation, the compiler merges different files (e.g.,

header files merged into the declaring C file), which might result inadvertently inserting multiple

declarations of the same array in one file. For each function call, we assign a marker to a unique

position of the array with the name of the function as seen in Figure 2.3.

If we mark all function calls, we might mark some recovered by Ghidra. Since the learner

does not need to recover these, we don’t mark them in the code. To remove these markers, for

each function definition in the decompiled code, we compare the decompiled function definition

bodies with their respective function definition in the original C code. In some cases, function calls

from the original C code that are inlined during compilation might be found by the decompiler

and indicated as such in the decompiled code. For those function calls that Ghidra recognizes,

we remove the marker from the decompiled code; for the rest, we leave the marker as they are an

indication of which function call has been inlined and where it has been inlined.

Identifying target functions: For this research, we would like to design an approach that is

global i.e., that works on every function that has been inlined. However, for a deep learning-based

approach to work, the model has to see one or more examples of an inlined function at training

time, allowing it to learn an appropriate representation of each inlined function.

Using our dataset of C projects, we select a set of library functions that could be inlined in the

code. We determine the most popular library function calls made by parsing all function calls from

the entire dataset of 10,000 projects. To understand which function has been called in a file, we

use SrcML [51] to build and resolve the AST and recover the exact function binding.

After parsing all 10,000 projects, we obtain a list of the top 1,000 popularly invoked library

functions that we can potentially target. From this 1,000, we filter out those that are never invoked

in the 2,634 Travis-based projects, resulting in 724 potential target functions.

2.2.2. Final Dataset Details. We build and obtain binaries from 1,185 (out of 2,634) projects.

Many (1,449) projects would not build. For others (726), we cannot find an exact alignment be-

tween the source code and the object files. This is because the compiler merges several source

24

files into a single object file, thus confusing file boundaries. In such cases, it is difficult to find the

alignment between decompiled pseudo-C, and the original source code, to allow the labeling of the

pseudo-C with the requisite inlined functions. However, this decompiled code is still valuable, and

we keep it in our dataset for (RoBERTa) pre-training purposes (as described in the next section).

(a) Cross-file train-test file distribution

OPT-Level Train Set Validation Set Test Set
O1 9 0 29
Os 2851 88 197
O2 2710 74 196
O3 2591 94 144
Of 482 14 150
Overall 8643 270 716

(b) Cross-project train-test file distribution

OPT-Level Train Set Validation Set Test Set
O1 37 2 NA
Os 2840 92 195
O2 2686 91 207
O3 2517 96 215
Of 627 19 NA
Overall 8707 300 617

Table 2.1. File-level distribution of the dataset used to train and test Funcre

For the other 459 projects, we split the files into training, validation, and test sets in two

different settings (file level breakdown presented in Table 2.1): (1) cross-file where files from the

same project can be present in the train, test or validation set and (2) cross-project where all the

files from a single project are in one of the train, validation or test sets. In the cross-project setting

we do not have enough projects and files for the test set for O1 and Of and thus all evaluation

in this setting is done on just three settings. In the cross-file setting, our training set consists of

the bodies of 391,967 function definitions spanning 8,643 files and in the cross-project setting we

have 401,923 function definitions and 8,707 files. These function bodies are labeled with markers

indicating any inlined functions not recovered by Ghidra and used to construct pairs as indicated

in Figure 2.2 in our dataset.

25

Funcre

static char * component_name_wrap (const
char * name)
{
 int len = strlen(name) + 30;
 char * wrap = malloc_or_quit(len);
 strcpy(wrap, "/mgmt/");
 strcat(wrap, name);
 return wrap;
}

Source code Compiler

01110000011011000110010101100
00101110011011001010010000001
10000101100011011000110110010
10111000001110100001000000111
01000110100001101001011100110
01000000111000001100001011100
00011001010111001000100001

Binary Decompiler

_component_name_wrap:
 push ebp
 mov ebp, esp
 mov r15, r13
 add r14, r13
 call #0x4556
 ret

Assembly code

undefined4 * component_name_wrap (char * param_1)
{
 size_t sVar1 ;
 undefined4 * __dest;
 sVar1 = strlen(param_1);
 __dest = (undefined4 *) malloc_or_quit((long)
((int) sVar1 + 0x1e));
 * __dest = 0x6d676d2f ;
 *(undefined2 *) (__dest + 1) = 0x2f74;
 *(undefined *) ((long) __dest + 6) = 0;
 strcat ((char *) __dest, param_1);
 return __dest;
}

Decompiled code

undefined4 * component_name_wrap (char * param_1)
{
 size_t sVar1 ;
 undefined4 * __dest;
 sVar1 = strlen(param_1);
 __dest = (undefined4 *) malloc_or_quit((long)
((int) sVar1 + 0x1e));
 * __dest = 0x6d676d2f ;
 *(undefined2 *) (__dest + 1) = 0x2f74;
 *(undefined *) ((long) __dest + 6) = 0;
 strcat ((char *) __dest, param_1);
 return __dest;
}

Recover inlined function

strcpy

Real world starting point

Figure 2.4. Working of Funcre. Funcre works on the decompiled output from
Ghidra. In a real-world scenario, we start with an external binary. For training and
testing purposes we create our own binaries using real-world source code obtained
from GitHub.

2.3. Creating Funcre

The expected use-case scenario of Funcre is shown in Figure 2.4. To get Funcre working,

we made several engineering decisions concerning the use of machine-learning techniques. First, we

had to select a suitable deep-learning approach. Second, we had to develop an approach to train

our models. Finally, we had to design an evaluation methodology to gauge the value added by

Funcre.

2.3.1. Model Selection. We claim that the task of recovering library function invocations

from decompiled pseudo C code resembles text classification in Natural Language Processing (NLP).

This intuition’s essence: function invocations, especially if inlined, can span multiple lines in de-

compiled pseudo-C code; some of these lines may contain some pattern that indicates the presence

of an invoked library function. We hypothesize that such patterns of pseudo-C code, reflecting the

presence of library function invocations, can be learned by a machine learning model given sufficient

data and model capacity. In addition, our goal is to build on top of the available tools that already

recover atleast some function invocations, thus providing greater value to reverse engineers.

Potential approaches: We consider two approaches which are the current state of the art in NLP:

Transformers, and Masked Language models with fine-tuning.

26

Transformers. The Transformer [193] model has proven to be very effective for NLP tasks. It

is a sequence-to-sequence architecture (i.e., it transforms a given input sequence into another

sequence) consisting of an encoder and decoder. The encoder reduces an input sequence into a

high dimensional vector, which is fed to the decoder, which outputs another sequence. Older

sequence-to-sequence models use a RNN (Recurrent Neural Network) for the encoder and the

decoder. Rather than recurrence, Transformers use a multi-head attention architecture along with

feed-forward layers. Attention is a mechanism whereby for each token in an input sequence, a model

chooses another token therein to “attend to”, viz, weight in its decision making. A transformer can

attend to many tokens in the input sequence, to produce an embedding of an input sequence, using

“multi-head” attention, which improves capacity and parallelism beyond RNN (including LSTM

and GRU) approaches [193].

Masked Language Model with fine-tuning. BERT-based (Bidirectional Encoder Representations from

Transformers) [56] masked language models (MLM) leverage self-supervised “pre-training”. BERT

learns a representation for an input sequence. A BERT model is pre-trained on large unlabeled

corpora, using self-supervision, and then fine-tuned for a specific task using standard supervision

(viz., explicitly labeled data). This set-up has been shown to outperform traditional Transformer

based approaches in NLP. For pre-training, two self-supervised tasks are used: first, it learns to

predict masked tokens in the input sequence (typically 15% of the tokens are masked), and second,

learning to predict the next sentence following an input sentence (NSP). This pre-trained model is

then fine-tuned for a downstream supervised task such as sequence tagging. Currently, it is more

common to use RoBERTa (A Robustly Optimized BERT Pretraining Approach) [129] to train a

MLM. RoBERTa differs from BERT, with a few changes such as dynamic masking and not doing

NSP, but achieves better performance. This setup of pre-training and fine-tuning achieves SOTA

results for downstream SE tasks such as variable misuse detection and function-comment mismatch

detection [64,103]. We reuse Huggingface’s open-source implementation of RoBERTa [87].

In our setting, labeled training data (for the fine-tuning stage) is somewhat limited, because:

(1) we limit the task of function-invocation recovery to only a select set of library functions (see

Section 2.2.1), (2) the number of markers that we are successfully able to insert in the code and

recover after the compilation - decompilation loop (see Section 2.2.1) is limited, (3) only projects

27

that are compiled with a higher optimization level (O2, O3, Os, Of and in rare cases O1) can

contain a function invocation that is not already recovered by Ghidra (see Section 2.1.3). At lower

optimization levels, the function calls are not inlined and are more easily found by Ghidra and

Hexrays; we don’t need to learn patterns for the invocations that are recovered already. As a result

of these restrictions, we have a labeled dataset that is smaller than ideal for these powerful data-

hungry transformer models. Thus, the fine-tuning approach (pre-training MLM using RoBERTa

and then fine-tuning on our downstream task using the labeled dataset) is well-suited.

For pre-training, we have available a dataset with 1.2B tokens of Pseudo-C files produced by

Ghidra, sans any markers. We omit markers here to preclude any chances of inadvertent “leaking”

knowledge relevant to the final task. Pre-training does learn robust, well-generalized representations

of the statistics of decompiled pseudo-C, which enables Funcre to quickly patterns that reflect

library function invocations, from a few labeled examples. We use the standard pre-training config-

uration, viz., “RoBERTa base”. This configuration has 12 attention layers, 768 hidden dimensions,

and 12 self-attention heads in each layer resulting in a model of 125M parameters. We tokenize

the code by using a Byte Level BPE (Byte Pair Encoding) Tokenizer. We limit the vocabulary

size to 25,000 and keep tokens with a minimum frequency of 20. We train the MLM model on

two NVIDIA Titan RTX GPUs for 2.5 epochs with a batch size of 40 sequences. This pre-training

process takes three days and achieved a final perplexity of 1.22 when predicting masked tokens.

This corresponds to a rather low cross-entropy loss of around 0.36 bits.

This suggests that the BERT model is learning a very powerful model of token co-occurrence

statistics in the Pseudo-C using the enormous (1.2B token) pretraining data. For comparison,

the original RoBERTa paper (for natural language) reported a pre-training final perplexity as low

as 3.68 (cross-entropy about 1.8 bits); the significantly higher perplexity for natural language is

consistent with prior studies [40].

We end the pre-training once both the training and evaluation loss stops declining further.

Choosing a Context Window Size Before finalizing our model, we needed to address two design

issues. (1) We need to determine whether the pre-trained RoBERTa model provides any advantage

over simply training a state-of-the-art transformer model directly on task. (2) We need to select

a context window-size (in terms of the number of lines the model needs to look at it) that can

28

Context Length

Models

RoBERTa-base Transformer

Top 1
Acc. in %

Top 5
Acc. in %

Top 10
Acc. in %

Top 1
Acc. in %

Top 5
Acc. in %

Top 10
Acc. in %

±3 75.73 88.33 91.44 64.93 84.56 89.28
±5 80.38 91.64 95.02 71.71 90.12 94.14
+10 78.28 91.25 93.45 71.92 89.20 93.38
−10 56.43 76.64 83.17 49.00 73.17 81.38
±10 80.41 92.56 95.21 69.37 89.41 93.13

Table 2.2. Performance of RoBERTa and Transformer models on development set
at different context size

capture the signature of an in-lined method. Inlined library functions may span multiple lines. If

this context window is too narrow, then a pattern capturing a library function invocation (especially

if inlined) may not fit in entirely. If it is too big, then it will compromise our ability to locate the

method more precisely. Our marking approach indicates the start of the function; however, it does

not indicate how many lines it spans. We need to determine what the size of the context window

(relative to the start position) must be for a model to effectively learn the representation of a

function.

Finalizing our Design: We evaluated our design choices on our validation set, using a straw-man

task. We train a vanilla Transformer model end-to-end on the labeled training dataset. For the

RoBERTa-based model, we reuse the pre-trained MLM mentioned earlier and then fine-tune it on

our labeled dataset. We train the models by feeding them input sequences where the function

invocation marker is in the middle surrounded by a context window (in terms of the number of

lines) of varying sizes. This form of training does not parallel a real-world setting where the location

of function invocation is typically unknown; however, to choose a model architecture, this approach

is reasonable.

In Table 2.2 we see the performance of both the RoBERTa model and the Transformer model

on five different context window sizes. We observe that the window size ±10 works best in the case

of RoBERTa. We also notice that the context window sizes +10 and −10 do not work as well as a

context window that spans both sides of a marker. This implies that the model requires both the

preceding and succeeding lines of code to learn the representation of a function invocation. Both

29

RoBERTa and the Transformer model learn a fairly good representation of the invocations. With

the Top 1 accuracy for RoBERTa reaching 80% and the Top 5 accuracy being 92.5% (both in the

case of context window size ±10). Furthermore, we see that in Table 2.2 the RoBERTa model

outperforms the Transformer model in every setting. This implies that by pre-training a MLM and

then fine-tuning it on the task, we can achieve better performance.

We, therefore, chose the MLM architecture, and ±10 context window size, for our more realistic

training/evaluation regime.

2.3.2. Final Training & Evaluation. Using the pre-trained MLM, now we fine-tune the

MLM using the labeled dataset to create Funcre. In the earlier straw-man approach, which was

used model selection, we assumed that the model would know the location of the library function

invocation. In a real-world setting, the model must recover the invocation from the entirety of the

decompiled code for a function definition, without knowledge of the specific location. Because of

optimizations such as inlining and code movement, it’s often not possible to know exactly where in

the pseudo-C the function invocation should be located; we therefore relax the problem to locating

the calling function body in which the invocation occurs. A correct recovery for us would therefore

amount to recovering the correct invoked method, and the correct function body in which that

method is invoked. Our recovery works by scanning a window over the a function body and looking

for invocations within each window.

Scanning the Window: Based on the indication from the straw-man evaluation above, we employ

a context window of ±10 size to both train and test our model. For function bodies that are over 20

lines long, we slide a context window forwards, one line at a time. In both training and test, each

sliding window is labeled with the marker that occurs in that window. When there are multiple

markers in a window, we simplify the labeling for the block by marking it with the first marker

in lexical order. This line-by-line scanning does present a problem. Consider an inlined library

function invocation (say atoi) that occurs at line 8 of a 30-line function. The corresponding marker

will occur around line 8 in the first 20-line scanning window (starting at line 1 of the function)

and repeat eight or more times as the 20-line scanning window moves forward, a line at a time.

The learner may find an invoked function’s signature in even more than eight successive windows.

30

Consequently, we adopt a sequential filtering heuristic to coalesce these repeating sequential labels,

as described next.

Coalescing Sequential Labels: We use a simple, noise-tolerant run-length encoding heuristic to

coalesce sequential blocks. This heuristic was tuned on the validation set without examining the

test set.

(1) Given a sequence of predicted labels in long function, we remove sequentially inconsistent

predictions, viz, labels that disagree with the five preceding and succeeding labels. This

works well since in-lining is rare in shorter functions.

(2) We use run-length encoding on the sequence. Run-lengths are incremented leniently; our

heuristic will treat up to 3 successive unlabeled windows as being the same as preceding

label and succeeding label (if both preceding label and succeeding label are same). Thus if

a, b, c are method labels and x is a “no method” label, the label sequence aaxxaabbbbbxcxxxxcdc

is encoded as a6b5c1c3. The second two x after the first two a are treated as a, so we get

a total run length of 6 a; after the 5 b, the c is accepted, although it is inconsistent with

the preceding b because it agrees with a following c; the d within the run of 2 c at the end

is erased for being inconsistent.

(3) Next, we only retain function labels with a run-length of at least four as a true label. The

above example then collapse to just a6b5. Finally, we divide the run-length by 20 and take

the ceiling. This leaves us with just two labels, a and a following b. We collect the markers

from the Ghidra output and compare the result. Finally, we add the result to the result

achieved by Ghidra.

We note again that this heuristic was tuned exclusively on the validation set, to scrupulously

avoid overfitting to the test set.

Data Imbalance: After dividing both the training and validation sets into windows containing

20 lines of code shifted by one line, we observe that our dataset is imbalanced: the unlabeled

windows dominate. Since we have a pre-trained RoBERTa model that has learned the statistics

of the unlabeled window, we re-balance the data by discarding some 65% of these blocks with no

label. Even so, the no-label windows are about 80% of our training and development set. For the

31

fine-tuning stage, we employ the same tokenizer that was used for pre-training. We fine-tune our

model over three epochs on six NVIDIA Titan RTX GPUs, taking a total of three hours.

2.4. Empirical Results

Our goal is to improve the performance of Ghidra in recovering inlined library functions. Ghidra

already recovers some library functions; the combination of Ghidra with our model should improve

performance. We begin with our evaluation metric and then dive into our results.

Evaluation Metric:

We remind the reader (as described in Section 2.3.2) a correct recovery for us is a library

function invocation, together with the function body in which this invocation occurs. Thus a single

test instance is a specific library function invocation, together with the containing function; this is

our target for recovery. This task is performed by scanning candidate function bodies in 20-line

blocks; we explain above Section 2.3.2 how the model decides if and what function invocations occur

in these blocks. In the following we explain our evaluation criteria as it applies to the problem of

recovering library function invocations within function bodies, viz. how we decide if a test instance

results in a TP, FP, TN, FN, etc

• Model predicts empty (i.e., no invoked function) and true label is empty: this function

body contains no library function invocations we mark this as a true negative (TN). These

are of limited value to the RE and extremely numerous! So we ignore these in our calcu-

lations (note that we do not report “accuracy”, and do not count these in our precision

calculation).

• Model predicts ‘Func1’ and true label is ‘Func1’: we count it as a true positive (TP). These

are helpful to the RE.

• Model predicts label ‘Func1’, and true label is empty: we count a false positive (FP). In

this case, our model is confused, and finds a library function invocation in the body of

another function, where there isn’t any such invocation. These create needless work for

the RE.

32

• Model predicts empty, and true label is ‘Func1’ we count a false negative (FN). Our model

failed to recover a library function invocation that did occur within a function body. These

cases fail to provide useful information to the RE.

• Model predicts label ‘Func1’ and true label ‘Func2: we score this as a false negative, FN,

(for missing ‘Func2’), and also a FP (for predicting ‘Func1’). Our model not only failed

to recover a function invocation, it also reported incorrectly that a different function was

used than the actual one! These cases fail to report important information, and create

needless work, and so is doubly penalized.

As can be seen from the above, TP+FN is the count of actual function invocations that could

be recovered. Based on these counts for FP, FN, TP, and TN, we calculate the precision, recall,

and F-score that our model achieves on the test set. Note again that we ignore the correctly labeled

empties despite this being an instance of our model performing well (this lowers our precision from

∼0.90 to ∼0.60) since it is of limited value to the RE. All the evaluations are given below use these

criteria.

(a) Cross-file train-test split

OPT-Level TP FP FN Prec. Recall F-score
O1 135 86 130 0.61 0.51 0.56
Os 752 366 867 0.67 0.46 0.55
O2 647 403 760 0.62 0.46 0.53
O3 736 437 955 0.63 0.44 0.51
Of 898 429 998 0.67 0.47 0.56
Overall 3168 1721 3710 0.64 0.46 0.54

(b) Cross-project train-test split

OPT-Level TP FP FN Prec. Recall F-score
O2 1004 417 923 0.70 0.52 0.60
O3 743 1192 1222 0.38 0.38 0.38
Os 927 641 919 0.59 0.50 0.52
Overrall 2674 2250 3064 0.54 0.46 0.50

Table 2.3. Performance of Funcre at various optimization levels

2.4.1. RQ1: Effectiveness of Funcre. Now, we start with the results for Funcre on the

task of recovering library function invocations not recovered by Ghidra (we evaluate the recovery of

all function invocations later). Our evaluation is based on two different dataset splits as elucidated

33

in Section 2.2.2. Table 2.3a presents our model’s performance on the test set that has been split

at file level. Overall test instances, Funcre achieves a precision of 0.64 and a recall of 0.46. We

have more FNs than FPs, suggesting that the model errs on the side of caution i.e., instead of

inaccurately predicting the presence of a function, the model predicts that there is no function in

place.

In Table 2.3b we present our results on a test that has been split at project level. With this test

split we only have sufficient training and test data for three optimization levels - O2, O3, Os as for

O1 and Of the data originates from a few projects thus rendering a project level split impossible.

We observe that with this cross project split, the precision and recall at O2 increases in comparison

with the cross-file split. We see that for Os we lose some precision but improve the recall and

overall the F-score is slightly lower. However, for O3 we see a degradation in both precision and

recall.

 char * local_28 ;
 long local_20 ;
 local_20 = * (long *) (in_FS_OFFSET + 0x28);
 local_28 = (char *) 0x0;
 if ((*param_1 == '-') && (param_1 [1] == '\0')){
 uVar4 = esl_buffer_OpenStream(stdin, param_3);
 goto LAB_0010192f;
 }
 iVar2 = esl_FileExists(param_1);
 if (iVar2 == 0) {
 uVar3 = esl_FileEnvOpen(param_1, param_2, 0, &local_28);
 uVar4 = (ulong) uVar3;

 uVar5 = 0xffffffff;
 } else {
 local_30 = 0;
 local_38 = 0;
 __memcpy_chk((long) &local_38 + 4, *phVar2 ->
 h_addr_list, (long) phVar2->h_length, 0xc);
 local_38 = CONCAT62 (CONCAT42(local_38._4_4_,
 param_2 >> 8 | param_2 << 8), 2);
 iVar1 = connect(__fd, (sockaddr*) &local_38, 0x10);
 if (iVar1 < 0) {
 rl_fprintf(stderr, "ERROR connect");
 piVar3 = __errno_location();
 pcVar4 = strerror(*piVar3);

 uint __fd;
 int iVar1;
 uint* puVar2;
 char* pcVar3;
 char* __format;
 FILE* __stream;
 __fd = kqueue();
 if ((int) __fd < 0) {
 __stream = *ppFRam0000000000100301;
 puVar2 = (uint*) __errno_location();
 pcVar3 = strerror (*puVar2);
 __fd = *puVar2;
 __format = "%s(): kqueue(): %s (%i)\n";
 } else {
 _test_no_kevents((ulong) __fd, "/home/travis/build
 test/main.c", 0x97);

(a) Inlined function: strcmp (b) Inlined function: memset (c) Inlined function: die

Figure 2.5. Example code snippet from decompiled code containing an inlined
library function

Since the data in our cross-file dataset is so imbalanced, we check if our model performs better

than a random model or coin toss. We made several runs of a simulated model that uses only prior

probability to predict invoked function. Not surprisingly, Funcre vastly outperforms a simulated

model that guesses labels just based on priors: the f-score never rises above 0.003 despite hundreds

of simulated runs.

Figure 2.5 shows three code snippets from our test set which contain the functions memset,

strcmp, and die respectively. Despite the lack of obvious signs in the decompiled code of these

invoked functions, our model can identify the functions correctly. This suggests that our model is

learning a useful representation of the decompiled code and can recover (even inlined) function calls.

34

Table 2.4 presents a sample list of library functions recovered by Funcre. Several of these represent

vulnerabilities, and/or malicious behavior; in general, labeling unidentified library function calls

correctly, in decompiled code, represents useful information that is simply not otherwise available

to the reverse engineer.

memset, fprintf, check, setjmp, match, snprintf, free,

fopen, wifexited, closesocket, xmalloc, htons, calloc,

testnext, malloc, open, localtime, wifsignaled, impossible,

fail, unlock, xstrdup, pixgetdata, verbose, validate, typeof,

getpid, strcasecmp, warnx, waitforsingleobject, getgid,

system, entercriticalsection, createevent, setsockopt, raise

crc32, leavecriticalsection, perror, chmod, report

Table 2.4. Functions recovered by Funcre.

Finding 1. Overall, the code representation learned by Funcre is powerful enough to recover 46% of library

function calls, and errs on the side of caution (more FN than FP)

2.4.2. RQ2: Effect of Optimization Level. We look at the effect of optimization level on

Funcre in only the cross-file setting as the cross-project setting has not been evaluated on two

optimization levels. In Table 2.3a we examine model performance at varying optimization levels:

higher optimization levels make the task harder. For the O1 level, we have reduced training data

due to the low rate of function inlining that occurs; thus we see the poorest performance. Likewise,

we have reduced training data for Of; however, we see that model’s precision is higher in this case.

This despite Of being the most complex optimization; we hypothesize that is because of inductive

transference from the O3, O2, and Os, classes, where many similar optimizations may occur.

For Os, O2, and O3, the F-score ranges between 0.55 and 0.51. Additionally, in all three cases,

the precision is higher than 0.60. As the optimization level increases, the precision drops slightly.

However, the recall remains almost constant. This relatively stable performance suggests that the

model can deal with the challenges posed by higher optimizations, where the decompiler typically

struggles to create a helpful representation.

Finding 2. The performance of Funcre does not deteriorate significantly with the increasing complexity of

compiler optimization.

35

0.00

0.25

0.50

0.75

1.00

1e+01 1e+03 1e+05
frequency

pr
ec

is
io

n

0.00

0.25

0.50

0.75

1.00

1e+01 1e+03 1e+05
frequency

re
ca

ll
0.00

0.25

0.50

0.75

1.00

1e+01 1e+03 1e+05
frequency

fs
co

re

Figure 2.6. Does training set frequency affect model performance?

2.4.3. RQ3: Impact of the Popularity of Methods. How does performance vary with

training sample frequency? Figure 2.6 plots the method frequency in the training set against

precision, recall, and F-score in the cross-file setting (we omit the cross project setting here due

to the relative lack of diversity of the test set). We can see that for methods that occur less than

roughly 50 times in the training dataset, performance is generally quite low. These methods include

strtoi (frequency is 1), vprintf (frequency is 20) and rand (frequency is 30). At intermediate

frequencies, between 50 and 1500, performance is quite variable. There are some popular methods

such as offsetof (frequency is 917) and max (frequency is 1,220) for whom the F-score remains

quite low, near 0. However Funcre can perform well on functions such as lseek (frequency

is 90) and strndup (frequency is 72) where the F-score is higher than 0.8. We conjecture that

performance depends on other factors, e.g., how varied the invocation (or inlined) code looks for

each function.

At much higher frequencies, performance more reliably improves; methods such as sscanf

(frequency is 2,186), printf (frequency is 14,437) and assert (frequency is 40,520) all show good

performance. Funcre is also able to perform well on rares functions such as lseek (frequency is

90) and strndup (frequency is 72) where the F-score is higher than 0.8.

36

The overall Pearson correlation values of the frequency with precision is 0.14, with recall 0.16,

and with F-score 0.17.

Finding 3. The performance of Funcre has a weak correlation with call frequency. The weak correlation arises

from 3 distinct regions of performance: consistently poor performance at low frequencies, very variable in mid-

ranges, and more reliably higher at higher frequencies.

(a) Cross-file train-test split

OPT.

level

File

Count

Total

Functions
Tool TP FP FN Prec. Recall F-score

Unique

Function

Recovered

O1 29 867

Hex-Rays 456 103 407 0.81 0.53 0.64 50

Ghidra 460 67 404 0.87 0.53 0.66 51

Ghidra+Funcre 595 153 400 0.80 0.59 0.68 54

Os 197 2932

Hex-Rays 1796 1819 2665 0.50 0.40 0.44 100

Ghidra 1632 1399 2983 0.54 0.36 0.43 89

Ghidra+Funcre 2384 1765 3144 0.57 0.43 0.49 108

O2 196 1686

Hex-Rays 2234 1325 2764 0.62 0.44 0.52 131

Ghidra 2012 934 3129 0.68 0.39 0.50 126

Ghidra+Funcre 2659 1337 3256 0.67 0.45 0.54 160

O3 144 1747

Hex-Rays 2499 3330 3279 0.43 0.43 0.43 104

Ghidra 2334 2191 3699 0.52 0.39 0.44 98

Ghidra+Funcre 3070 2628 3950 0.53 0.43 0.48 126

Of 150 1579

Hex-Rays 1111 489 2840 0.69 0.28 0.40 78

Ghidra 893 656 3282 0.58 0.21 0.31 75

Ghidra+Funcre 1791 1085 3411 0.62 0.34 0.44 89

(b) Cross-project train-test split

OPT.

level

File

Count

Total

Functions
Tool TP FP FN Prec. Recall F-score

Unique

Function

Recovered

O2 207 1250

IDA 2028 2028 3917 0.34 0.27 0.30 110

Ghidra 1864 1593 3664 0.53 0.33 0.41 105

Ghidra+Us 2868 2010 3633 0.58 0.44 0.50 123

O3 215 2496

IDA 1784 5031 5323 0.26 0.25 0.26 115

Ghidra 1623 2030 3771 0.44 0.30 0.36 110

Ghidra+Us 2366 3222 4346 0.42 0.35 0.39 134

Os 195 2687

IDA 2498 3967 5362 0.39 0.32 0.35 102

Ghidra 2363 1280 3115 0.64 0.43 0.52 98

Ghidra+Us 3290 1921 3242 0.63 0.50 0.56 113

Table 2.5. Comparison of Ghidra + Funcre, Ghidra and Hexrays

37

2.4.4. RQ4: Comparison to Existing Tools. Next, we compare our overall performance to

the state-of-the-art, Ghidra, and Hex-rays. In this evaluation, we consider recovery of all function

invocations. How well do the available tools identify function invocations, whether inlined or not?

Since Funcre works on top of Ghidra, we augment Ghidra’s results with ours to measure if (and

how much) the function recovery of Ghidra is improved.

To assess the TP and FP rates for function recovery with Ghidra and Hex-rays, we compare the

decompiled code against the original source code to see how many functions are recovered correctly.

We run this analysis on our test set in both the cross-file and cross-project setting. Compared to

Table 2.3a, we are missing the results for Hex-rays on 14 files in our test set, because the version

of Hex-rays at our disposal cannot process 32-bit binaries2, so we just omitted them from this

comparison, to be generous to Hex-rays.

In Table 2.5a we see that Ghidra + Funcre has the best f-score for all optimizations (precision

declines somewhat for O1 and Of, and marginally for O2). Our tool does not degrade the recall or

F-score for Ghidra; instead, it enhances it enough to outperform Hex-rays. We also see that Ghidra

+ Funcre recovers the most library function calls, and in all cases, also the most unique functions:

e.g., at the O2 level, Ghidra + Funcre recovers 29 more unique functions than Hex-rays, while

achieving also getting the highest F-score.

All outputs of Funcre, Hex-ray, and Ghidra are multisets. If one EnterCriticalSection

and 3 sprintf are actually inlined, Ghidra may recover partially (e.g, one sprintf is recovered),

and we combine those with our output. To combine outputs, we take a multiset union (which

could boost both TP and FP, and reduce FN; note that both function name and count matter to

measure Recall/Precision/F1). Table 2.3a reports on JUST the MARKED functions (we evaluate

on the recovery of 2 sprintf and 1 EnterCriticalSection) recovered per optimization level by Funcre

ALONE.

We repeat the same analysis in our cross project setting as well and present the results in

Table 2.5b. We see that in contrast to the cross file setting, the precision and recall is down in

all three scenarios across all three optimization levels. Despite this downturn, Ghidra + Funcre

outperforms plain Ghidra and Hex Rays in terms of F-score in all the cases. We do notice that the

2A commercial license for the 32 bit version of Hexrays is available for additional purchase

38

precision and recall for O2 and O3 are lower than in the cross file setting, however, for Os there

is an increase. Overall, in the cross project setting we see a drop in performance in comparison to

the cross file setting, but even in this setting Funcre shows that it outperforms the competition.

We find it noteworthy that the Hex-ray’s FP count is this high given that the Hex-rays devel-

opers explicitly designed their FLIRT signature system to be cautious and never introduced a false

positive (see Section 2.1.3).

To investigate further, we examine a random subset of 10 function definitions containing one

or more FP library calls for each of the three tools. We observe that in the majority (seven for

Hex-rays, seven for Ghidra, and five out of ten for Ghidra + Funcre) of the cases, the FP are

correctly marked as FP i.e., the tool incorrectly recovers the wrong function based on a comparison

with the original source. In the remaining cases, we find that the function call is transitively inlined

from a function definition or macro from another file and due to the limitation in our detection

strategy (these cases are near impossible to detect due to the absence of a system-level call graph)

are marked as FP.

Out of 724 popularly used library functions present in the projects we target , only 365 are

inlined depending on optimization level (O1 has minimal inlining). Only 168 occur in our test set,

and Funcre recovers 93. Significantly, we improve 19% over Ghidra and 10% over Hex-rays; for

the challenging case of O2, we improve by 22% over Hex-rays (second highest in Table 2.5a). Note

that we correctly recover more inlined-functions; our recall improves over Hex-rays e.g., for Of by

over 20%, finding 680 more instances of inlined-functions. While improving recall, Funcre leaves

precision about the same or improved (Table 2.5a). Our FP rate is not higher than current tooling.

Finding 4. Funcre enhances the performance of Ghidra to the extent that it outperforms Hex-rays.

2.5. Threats to Validity

Generalizability. We collect code and build binaries from GitHub projects; these may not yield

binaries that are typically reverse-engineered. Furthermore, we only target binaries built against

three versions of Linux on an x86 architecture; performance on other platforms may vary.

39

Internal Validity. We mark predictions as true only when exactly matched with the expected

label. However, in some cases, the decompilers recover functions such as printf_chk and

assert_fail rather than printf and assert. One could argue that the prediction is cor-

rect in such cases, but we still mark it as incorrect. This impacts measured scores equally for all

tools (Funcre, Ghidra, and Hex-rays). This is a non-trivial issue with no easy resolution: e.g.,

not requiring an exact match also risks biases & errors.

Certain false positives in the function recovery for all three tools also originate from the fact

that function definitions or macros from the same project might have been inlined into the function

that we analyze. Inlined calls transitively inlined in the function under consideration might be

recovered by all three tools; however, we have no way of knowing whether the recovery is a true

positive. We do look at this transitive inlining for one step i.e., for the first function declaration

inside the same file that is inlined. However, we do not construct a system-level call graph which

might adversely impact the false positive rate reported for all three tools.

Practical Applicability. When both Ghidra and Hex-rays recover a function call, they can place

it in the function definition body as an actual function call and not a collection of statements.

Funcre can only recover the list of inlined functions per function declaration body. However, as

seen in Section 2.4.4 we observe that both Ghidra and Hex-rays have false positives when it comes

to function recovery, furthermore, the evaluation strategy employed in this work does not know

whether the location where the function is recovered is correct or whether the parameters that are

passed to the function call are correct. We do recover some functions that current tools cannot;

still, marking the exact position of the inlined is function is much harder because the compilation-

decompilation loop can move the location of a marker. Knowing exactly which lines correspond to

an inlined function is also non-trivial without a more advanced representation of the code.

2.6. Contributions

We have described an approach to improve inlined library function recovery in comparison with

state-of-the-art tools (Ghidra and Hex-rays IDA Pro). Our main contributions are:

(1) We created a technique to build C-based projects on a large scale. Using this pipeline, we

build and release the Docker containers for 1,185 C projects. We also created an annotated

40

set of real projects (first of its kind), which indicates functions inlined by compilers. Our

data & tooling will be released.

(2) We show that MLM pre-training, on 1.2 billion tokens of decompiled code improves task-

performance for inlined library function recovery. We will release the trained MLM for

reuse in other RE tasks, such as name recovery.

(3) We improve upon Ghidra and Hex-rays on library function recovery, both in terms of f-score

and unique functions recovered. This suggests that modern machine-learning methods

have value for this task.

(4) There has been less attention in prior research work (on binary analysis) towards highly

optimized binaries. Our work considers all optimization settings, including the highest

(Of). This suggests that our research has greater relevance in broader settings than prior

work.

41

CHAPTER 3

SynShine: improved fixing of Syntax Errors

Beginning programmers struggle with the complex grammar of modern programming languages

like Java, and make lot of syntax errors. The diagnostic syntax error messages from compilers and

IDEs are sometimes useful, but often the messages are cryptic and puzzling. Students could be

helped, and instructors’ time saved, by automated repair suggestions when dealing with syntax

errors. Large samples of student errors and fixes are now available, offering the possibility of data-

driven machine-learning approaches to help students fix syntax errors. Current machine-learning

approaches do a reasonable job fixing syntax errors in shorter programs, but don’t work as well

even for moderately longer programs. We introduce SynShine, a machine-learning based tool that

substantially improves on the state-of-the-art, by learning to use compiler diagnostics, employing

a very large neural model that leverages unsupervised pre-training, and relying on multi-label

classification rather than autoregressive synthesis to generate the (repaired) output. We describe

SynShine’s architecture in detail, and provide a detailed evaluation. We have built SynShine into

a free, open-source version of Visual Studio Code; we make all our source code and models freely

available.

3.1. Background & Motivation

Problem-solving, motivation & engagement, and difficulties in learning the syntax of program-

ming language are three fundamental challenges in introductory programming courses [142]. The

dropout and failure rates are still high in introductory programming courses even after applying

advanced methods and tools [28, 204]. Helping novices with programming syntax can prevent

novices to get demotivated [142] at the beginning of the learning process. In this paper, we aim

to help novice programmers by automatically suggesting repairs for syntax errors. Consider the

program in Fig. 3.1, which is an actual example our dataset of novice programs with errors [35].

42

Note the use of “x” instead of “*” on line 8. Many school maths texts use “x” for multiply, so this

an understandable error.

In an introductory programming course, a novice may make this error by force of habit, and

then find it quite challenging to fix the problem. Most popular IDEs (Eclipse, IntelliJ, Visual Studio

Code) have trouble fixing this; however, our approach, which feeds a Javac-based error diagnostic,

into a multi-stage repair engine that combines unsupervised pre-training, with fine-tuning, can

resolve this.
1 import java.util.Scanner;

2 public class Multiplication

3 {

4 public static void main(String[] args){

5 Scanner sc = new Scanner(System.in);

6 int a = sc.nextInt();

7 int b = sc.nextInt();

8 int res = a x b;

9 System.out.println("The result is: " + res);

10 }

11 }

Figure 3.1. Incorrect novice code sample

Researchers have been interested in compiler diagnostics or syntax error messages for over half

a century [26]. Barik et al. reported [22] that the difficulties programmers face while reading or

understanding error messages are comparable to the difficulty of reading source code. Understand-

ing Java error messages is quite challenging for two reasons; i) the same error produces different

diagnostics depending on the context, and ii) the compiler may produce the same diagnostic for

different errors [22]. Though prior works [107, 172] addressed fixing errors in novice programs,

DeepFix [71] was the first to apply deep learning to fix errors. DeepFix considers code repair as

Neural Machine Translation (NMT) and uses an encoder-decoder based deep learning model to fix

errors in C programs. Though initially aimed at semantic bugs, the approach also works for syntax

errors. This approach was limited by the use of RNN (recursive neural network) seq2seq models—

the RNN architecture is challenged by longer inputs, and outputs; also since the back-propagation

through time (for the recursive elements) is not easily parallelized, it’s challenging to exploit larger

datasets and additional processors. These became nagging problems in NLP; initial efforts with

basic attention mechanisms [135] were supplanted by powerful multilayer models with multiple

attention heads to avoid recursive elements altogether [193], yielding high-capacity, eminently par-

allelizable transformer models. Certain errors, such as the ones relating to block nesting, statement

43

delimitation (with “;”) etc. involve long-range syntax dependencies, and require attending to very

long contexts, which transformers can do better; still, even these models fail when the dependencies

become much longer.

Ahmed et al. [5], developed BF+FF , using a multi-layer, multi-head transformer approach, to

address the limitations of traditional seq2seq models. In addition, BF+FF used a two-stage pipeline,

with the first stage addressing long-range block nesting errors, even ones beyond the range of trans-

formers (BlockFix) and the second stage addressing shorter-range errors (FragFix). Using the

Blackbox [35] dataset, they demonstrated that their approach substantially improved over prior

work on the same dataset [171] (which used language models). BF+FF had important limitations,

noted in their paper; it didn’t take advantage of error localization and diagnosis provided by com-

pilers; it also didn’t effectively address errors in identifiers. Indeed, none of the existing approaches

dealt effectively with identifiers, since they had to limit vocabulary. Deep learning models are chal-

lenged by large vocabularies, which require very large embedding and softmax layers. (See [108]

details). We use BPE [108] to address this issue.

By addressing these limitations, we were able to achieve very substantial improvements on the

state of the art for fixing Java programs. Ahmed et al.1 and Gupta et al.2 provided extensive

source-available replication packages which enabled us to provide a detailed comparison (See § 6.3).

3.2. Methodology

Previous work had various limitations: longer programs were difficult to repair; error messages

from compilers were not used; vocabulary limitations in DeepFix and design choices in BF+FF

limited the ability to address errors in identifier usage. SynShine directly addresses these issues,

and achieves substantial improvements. We use a multi-stage pipeline which incorporates the Java

programming language compiler (Javac), along with three learned DL neural networks (DNN). The

first DNN model is directly based on the BlockFix stage provided by BF+FF ; this resolves (the

potentially long-range dependent) nesting errors in the program. In the second stage, SynShine

departs from BF+FF . BF+FF uses the fixed nesting structure from BlockFix to split the program

into lines, and then just tries to fix every line; this leads to a lot of incorrect fixes. Deepfix and

1https://zenodo.org/record/4420845
2https://bitbucket.org/iiscseal/deepfix/src/master/

44

https://zenodo.org/record/4420845
https://bitbucket.org/iiscseal/deepfix/src/master/

Santos et al. also try to fix the entire program. The second stage (LineFix) in SynShine uses

the line-location of the error, as detected by the standard Javac compiler, together with the actual

error message, and generates relevant fixes for delimiters, operators, and keywords; it also flags

potential locations for errors in identifier usage; these locations are sent to the third & final stage,

UnkFix. The UnkFix DNN model uses a RoBERTa-MLM to correct any identifiers that flagged

as potentially wrong by LineFix.

2.	Block	Error	
Checker

4.	Javac	
Based	Error	
Locator

1.	IDE 5.	LineFix 7.	IDE
Suggestion	

6.	UnkFix3.	BlockFix

Code+
Diagnostic	Error

Code	W/O
Block	Error

Fixed
Code

Code	
w/Syntax	
Error

Figure 3.2. Overall architecture of the SynShine tool.

(a) Program with syntax error

(b) javac error message before fixing

(c) javac error message after fixing

Figure 3.3. Locating erroneous line using Javac

3.2.1. Overall Architecture. Fig. 3.2 shows the architecture of our approach. When the

IDE flags an error (step 1) we first pass the program through a block-nesting error checker (2),

which is a simple pushdown automaton, that checks the program’s nesting structure. If block-

related issue is found, it’s sent from (2) to BlockFix (3) a transformer model (as provided in the

open-source BF+FF implementation [5]) for repair. In either case, the code, hopefully now free

of block-nesting errors, is sent to step 4, where we try to locate the erroneous line using Javac.

45

We identify the line that Javac associates with the syntax error, and pass it on to LineFix (step

5) with the error message. In some cases, LineFix can fix it directly; in others, it passes a token

position to UnkFix (6), primarily to fix errors in identifier usage. Finally, the fixed code is returned

as a suggestion to the IDE (7).

We separate the line-level repairs into LineFix and UnkFix to eke out more functions out

of deep-learning model capacity. LineFix outputs one of 154 possible editing commands, to in-

sert/delete/substitute delimiters, keywords, operators, or identifiers. We limit its output vocabu-

lary to 154; the full list is made available in supplementary materials. This limitation improves

performance, but results in more “unknown” fixes, as described further below (§ 3.2.4). These

unknowns are resolved by the final DNN model, UnkFix. UnkFix uses a high-capacity masked-

language model to suggest a fix (usually an identifier being renamed or inserted) given a location.

In combination, these elements allow us to substantially surpass the state-of-the-art.

3.2.2. javac Errors: Promises and Perils. While novices often find compiler error mes-

sages unhelpful [114], our own experience suggests that they do help experienced developers! This

suggests that with sufficient training data, machine-learning models could learn something about

how to fix syntax errors, from compiler syntax-error diagnostics. Older machine-learning-based

approaches had not leveraged these diagnostics [5, 71, 171]. Recently, DrRepair [214] uses these

diagnostics for fixing C programs; SynShine also uses them.

Javac flags syntactically incorrect programs with diagnostic errors; though the messages are

not precise, they are sometimes useful. Fig. 3.3 (a) presents an actual novice program with two

syntactic errors (missing “main” and unwanted operator “+”). The Javac compiler reports those

two errors for the given program 3.3 (b). Although these error messages are unhelpful, Javac does

in this case finger the actual lines with errors. Line-level syntax error localization can be helpful,

if the program is long. DeepFix, for example, can not fix longer programs; it relies on seq2seq

translation methods, and so has trouble with inputs longer than a few 100’s of tokens. BF+FF

resolves this problem by trying to fix every line in the program using its FragFix second stage;

this approach does induce a fair number of false positives. Javac promises more accurate location,

which could reduce this risk.

46

There is a potential issue with using Javac, arising mainly from the constraints of our novice

error Blackbox dataset. Javac generates some error categories which cannot be fixed by editing

the program directly. These errors arise for example, from file-naming conventions and incomplete

typing environments. For example, class name & filename mismatch errors, and missing class

definition errors are shown in Fig. 3.3 (c). The Blackbox dataset (also used by Santos et al. [171]

and Ahmed et al. [5]) only includes programs with errors and their associated fix; it does not include

the complete programming environment. SynShine only deals with errors that can be fixed by

directly editing the Java source; we ignore the others. This is a decision also made by all the other

papers that deal with syntax error correction [5, 71, 171]; we do, however, make use of compiler

diagnostics for Java, and do manage to fix a much larger portion of the errors in the Blackbox

dataset than prior work, as seen in Table 3.2. Therefore, to remove the errors we don’t consider

from our training set, we simply wrote a wrapper around Javac, to retain just those errors that

can be fixed by editing the source 3. However, it is important to note here that these “unfixable”

errors in our dataset are counted in the denominator when we report our final success rate; in

other words, these errors excluded from training are counted against SynShine and other tools as

failures, and are not ignored in our reported performance.

3.2.3. Recovering Block Structure: BlockFix. Errors involving imbalanced curly braces

are prevalent in novice programs, and are hard to resolve because of the long distance between

the pair of braces. Ahmed et al. [5] report that block nesting errors consist of around 20-25% of

all syntactic errors in novice programs [5]. They incorporate a component, BlockFix, for fixing

block-nesting errors. BlockFix uses a transformer-based machine-translation model to locate &

fix block-nesting errors; the translation model is trained on synthetic data with artificially generated

nesting errors, and the corresponding fix. It works with an abstracted version of the code without

statements, identifiers, and types to fix errors in nesting structure. In SynShine, we simply adopt

the BlockFix component from the implementation made available by Ahmed et al.’s replication

package.

Ahmed et al. abstracted out all the identifiers, constants, expressions, and delimiters, retraining

just the curly braces and keywords (see Fig. 3.4). They then introduce structure-related syntax

3Most common ignored errors relate to “file and class name mismatch” and “undeclared identifiers”.

47

corruptions, by adding or dropping the curly braces at randomly chosen positions; and then teaching

the model to recover the original abstracted version from the corrupted model. BlockFix model

learns to fix such errors by training on many such abstracted, corrupted pairs. After fixing the

nesting error, the abstracted tokens are replaced with the original ones, and the program is passed

to the following stages for further processing.

(a) Original function

(b) Abstracted version

Figure 3.4. Abstracting source code for recovering block Structure.

We found that Javac works quite well in localizing the error (at least the buggy line and finding

the line is sufficient for our approach) if the program is free of nesting errors. This is why we apply

BlockFix, before running Javac to localize and diagnose the error.

3.2.4. Fixing Line Error: LineFix. LineFix uses a RoBERTa based pre-training + fine-

tuning approach. RoBERTa derives from BERT, which uses unlabeled text data to pre-train deep

bidirectional representations of text by jointly conditioning on both left and right context in all

layers of a deep transformer model [56] to perform simple, self-supervised tasks like filling in masked

tokens. This model and training method effectively captures the statistics of token co-occurrences

in very large corpora within the layers of the transformer model. This pre-trained model learns

excellent vector representations of code patterns in the higher layers of the transformer; these

learned vector representations can be “fine-tuned” with just one additional output layer for specific

tasks, and achieves state-of-the-art performance. For pre-training, BERT uses two tasks: fill in

masked out tokens using the context (also known as Masked language modeling, or “MLM”) and

predict the next sentence given the previous one (the “NSP” task). Liu et al.’s RoBERTa (Robustly

48

Optimized BERT Pretraining Approach) dominates BERT’s performance [129]. Liu et al. drop

the NSP objective but dynamically change the masking pattern used in the MLM of BERT models.

Pre-training + fine-tuning also works very well indeed for code. One can gather millions of

unlabeled code tokens from open-source projects, conduct pre-training, and then fine-tune the

model with a limited amount of labeled data to achieve state-of-the-art performance in different

software engineering applications [29, 64, 104, 225] (albeit not yet for code syntax repair). Since

we are working on novice code correction and our objective does not involve any relation between

two programs, such as Question Answering (QA) and Natural Language Inference (NLI), training

on NSP is not beneficial. Furthermore, using a dynamic masking pattern to the training data

helps the model achieve better performance in downstream tasks. Therefore, We use RoBERTa for

pre-training and fine-tuning of the model.

Why pre-training? As explained in the papers on BERT [56] and RoBERTA [129], for natural

language, and the very recent, but rapidly growing body of literature using pre-training for code [1,

6,29,64,69,97,104,133,139,157,170,225], pre-training is a way to exploit enormous volumes of

data in a self-supervised fashion to learn the statistics of token sequences, and capture patterns in a

position-dependent vector notation. For our purposes, these pre-trained models are automatically

ingesting patterns of syntax and identifier usage from vast quantities of source code (around a

billion tokens) and bringing all this knowledge implicitly to bear to the task of fixing errors in

syntax and identifier usage.

RoBERTa
(12	Layer	Transformer)

Tok1<s> <\s>

Masked	LM

TokN----

Unlabeled	correct	programs	from	GitHub

(a)	Pre-Training

RoBERTa
12	Layer	Transformer,

Pretrained

Tok1<s> <\s>

Token	Position

TokN----

Incorrect	Programs	+	Compiler	Error

Fix

Position	Loss Fix	Loss+

Total	Loss

Cross	Entropy	Loss

Embeddings Embeddings

(b)	Fine-Tuning

Figure 3.5. Pre-training and fine-tuning using RoBERTa.

49

Pre-training To generate the dataset for pre-training, we collected 5000 most starred Java projects

from GitHub (since our end-goal is to correct Java syntax errors). We tokenized the files, yielding

1.2 billion tokens for the pre-training. For the MLM pre-training over code, we randomly select

15% of tokens, and replace with a unique token mask. The loss here is the cross-entropy of the

original masked token. Of the 15% selected tokens, 80% are replaced with a specific marker mask,

10% are left unchanged, and a randomly selected token replaces the remaining 10%. This training

method follows the standard RoBERTa protocol.

The architecture is as shown in Fig. 3.5. The main RoBERTa model is in the central grey

box, labeled “RoBERTa” in 3.5 (a) and 3.5 (b). The left side is the architecture when RoBERTA

is being pre-trained; the last layer on top is the MLM, implemented as a softmax layer taking

the RoBERTa embeddings as input, and produces an output token, The entire model is trained

using cross-entropy loss. Our RoBERTa architecture consists of 12 attention layers, 768 hidden

dimensions, and 12 self-attention heads in each layer. We applied Byte Level BPE (Byte Pair

Encoding) tokenizer [108] limiting the sub-token vocabulary size to 25K.

We trained the MLM model using cross-entropy loss on two NVIDIA Titan RTX GPUs for five

epochs with a batch size of 44 sequences and learning rate 5e−5. When pre-training completed, our

MLM model achieved a final loss corresponding to a perplexity of 1.46, (cross-entropy 0.546 bits)

which is rather low; RoBERTa for natural language yields final losses around 3.68-4.0 perplexity

(1.88 to 2 bits).

Fine-tuning The fine-tuning step here is to train LineFix, a model that accepts an incorrect input

line from a novice program, (the line flagged by Javac as containing a syntax error) together

with the text of the error itself, and then generates a set of locations and edit commands, using

multi-label classification layers, as explained below.

For fine-tuning and then for evaluation, we used realistic novice programs with syntax errors

and human-produced fixed versions. We used the exact dataset used by Santos et al. [171] and

Ahmed et al. [5] from the Blackbox [35] repository. This dataset contains 1.7M pairs, of erroneous

and fixed programs. Both Santos et al. and Ahmed et al. primarily report their performance on

programs with a single token error because a single edit can fix a large fraction of the programs

(around 57%). Therefore, for a fair comparison, we also initially focused our evaluation on single

50

token errors and broke down our performance by token-length, as done by Ahmed et al. We

selected a test set of 100K samples, with samples stratified by length, from the full dataset for the

evaluation. We divided the test dataset into ten token-length ranges (lengths of 1-100, 101-200, ...

, and 900-1000 tokens), with each range having around 10K examples. We prepare our fine-tuning

dataset from the remaining examples.

Since BlockFix handles long-range block-nesting errors, the LineFix stage is focused on those

errors unrelated to nesting. We discarded the programs with imbalanced curly braces from the

training set, and after tokenization, we found around 540K examples to train the model. We used

Javac (discussed in Section 3.2.2) to localize the error. The input to the model then is the buggy

line indicated by Javac, appended with a special separator token (denoted <SEP>) followed by

the error message from Javac. Altogether, the maximum input is 150 sub-tokens, which captures

virtually all the input lines flagged as erroneous in our dataset. From this, the pre-trained RoBERTa

model calculates positional embeddings for each subtoken; however, as with many RoBERTa-based

classification tasks, we use just the embedding of the first token.

The desired output is the matching edits required to create the fixed version, as explained next.

To make a complete fix, the model should produce one or more locations, and one or more “fix”,

viz edit commands. The fix has two parts: i) the type of fix (insertion, deletion, or substitute?) ii)

the content of the fix (is it a specific keyword, delimiter, or any other token?). When the type is

a deletion, there is no content required: if the model identifies the buggy token at position x and

recommends deletion, we just drop that token. For substitute operation, if the location is x and

the edit command is substitute→ y, we will replace the token at position x with the token y. For

insertion, if the command for position x is insert → y, we will add the suggested y token at the

x + 1 position. For insertion at the start of the line, we use a special token. For example, consider

the following buggy line from Fig. 3.3 (a).

public static void (String args[])

To fix this missing “main”, LineFix should output the location “3” and the fix “insert→ unk”

(“main” is an identifier). This “unk” will be coverted to “main” with another model. We will discuss

it in Section 3.2.5.

51

Our model’s final layer consists of two distinct multi-label classification output layers, one which

outputs one or more locations, another which outputs one or more fixes. The input to both these

output layers, as explained above, is the RoBERTa embedding of the first token of the input. From

this input, the two separate multi-label classification output layers calculate the position(s), and

fix(es). Since most (99%) of the erroneous lines are 100 tokens are less, we output one or more

positions (1-100) from the first output layer, and, from the second output layer we generate one

or more of 154 distinct possible fixes. We remind the reader that a multi-label classification task

involves generating an output vector of class probabilities, where the classes are non-exclusive. A

single input might generate one or more class labels. In our case, we take all class labels in the

output vector scoring above 0.5 as an assigned label. If none of the classes are assigned a probability

above 0.5, we just take the highest probability class label. In almost all cases, we have only one

fix per line, so one position and one edit command are expected; however, in rare cases, more than

one position and more than one edit command could be generated. In the former case, we just

apply the edit command at that position; in the latter case, which occurs very rarely, we try all

combinations and return the first edit combination that compiles. A somewhat more common case

(for example with multiple missing delimiters, like ”)”), we get one edit command like insert →)

and multiple locations, in which case, we just apply the same edit at all locations.

There are reasons for our choice of multi-label classification, rather than simply synthesizing

the fixed output. Prior approaches [5,71,171] used autoregressive4 code generation to synthesize

repairs. Given the sizeable vocabularies in code, many complex dependencies must be accounted

for when generating code tokens conditional on previous tokens, the original input tokens, and

the compiler error. We simplify the problem into a multi-label classification task here; all that is

required is to identify the token positions(s) of the error, and the applicable edit commands. In

the vast majority of cases, there is usually only a single change required per line). This allows

the model to learn, and rapidly reduce training loss and perform well under test. In addition, the

multi-labeling approach (rather than auto-regressive generation also allows us to handle repairs

that require multiple fixes on the same line (example below, Fig 3.6). It’s important to note that

a single line can contain several token locations with errors, and distinct edit commands at each

4Autoregressive generation conditions the generation of each token on previously generated tokens, and is used in
machine-translation approaches.

52

-System.out.println(*);
+System.out.println("*");

Figure 3.6. Example requiring two edits to fix

position. Limiting the size of the set of possible fixes to 154 will limit the ability to fix identifier

names; this is handled by including fix commands that insert and substitute to unk in the output

vocabulary of LineFix; these fixes are handled by a component is called UnkFix, which is described

in § 3.2.5. Note that dealing with multiple fixes on different lines is easily manageable. If there

are multiple positions, all with the same fix (like Fig. 3.6), one can just perform that fix at all the

positions. However, for multiple positions and multiple fixes one needs to try all combinations until

the Javac accepts with no errors. We did not incorporate that to our code, because:

(1) Trying all possible combinations will slow down the entire process.

(2) Two different errors in a line (even in a file) is very rare. In the Blackbox data repository,

for example, the majority of files contain just a single syntactical error.

The standard way to train multi-label classification layers is with binary cross-entropy loss

(with logits), which is what we use for our fine-tuning. Since both the output layers are closely

related to each other, we fine-tuned them simultaneously for 5 epochs. We collected the loss from

each layer and added them to define the batch’s final loss, and updated the model accordingly.

Note that the same pre-trained model parameters (from Fig. 3.5 (a)) are used to initialize these;

during fine-tuning, all parameters in all layers are modified (Fig. 3.5). We use the Huggingface

open-source implementation of RoBERTa [87] for both pre-training and fine-tuning.

Utilizing Compiler Diagnostics during Fine-tuning Apart from localizing the erroneous line, the

compiler warning can boost the performance of the fine-tuning model. As an input sequence to the

model, we tried two versions, i.e., with the warning, without warning. We observed a small but

significant improvement in line-level code fixing (detailed in Section 3.3.2). Consider the following

code snippet from the Blackbox dataset. The variable “bmr” is declared twice, and the second

declaration is invalid. Though the Javac localizes the error correctly, it is really hard for the model

to resolve this without any hint. Our model fails to fix this one when trained without the compiler

message. However, with the compiler error message, our RoBERTa-based fine-tuned model can

53

solve errors like this one by deleting the token “double”. This particular example is fixable with

a modern IDE; however, it serves as a good illustration of how our model can use error messages.

We remind the reader that in general we can handle numerous examples that IDEs cannot. Several

typical examples are included in the supplemental file https://bit.ly/3CMM0TP.

double bmr;

/* some additional irrelevant lines */

boolean isMale = male == ’M’;

if(isMale)

double bmr = ((9.5 * wgt) + (5.0 * hgt)

+ (6.7 * age) + 66.47);

Without Warning:

double bmr = ((9.5 * wgt) + (5.0 * hgt) + (6.7 * age) +

66.47);

With Warning:

double bmr = ((9.5 * wgt) + (5.0 * hgt) + (6.7 * age) +

66.47); <SEP> variable declaration not allowed here

LineFix works best with small sequences. Java is inherently verbose, and so sequence lengths

are often beyond the model’s capacity. Compiler diagnostics help us in two ways. Primarily, it

helps us localize the error, and secondly, the message (even if imprecise) helps deep learning models

fix the error. This claim is supported by a study (Yasunaga et al. [214]).

3.2.5. Recovering Unknown Tokens: UnkFix. Recall that LineFix output is restricted to

154 distinct fixes in the fine-tuning model. To deal with edits (inserts or substitutes of identifiers,

constants etc.) outside of the limited vocabulary of edits, have an “escape” mechanism. Out of these

154, we included two unique outputs insert→ unk and substitute→ unk to cover other changes.

To precisely identify these “unk” tokens, we use UnkFix, which reuses the masked-language model

(MLM) we obtained during pre-training. This masked language model can recover the unk tokens

if sufficient context is given. After getting the position information, we can collect sufficient tokens

from the previous and following lines to fill the input buffer, and ask the pre-trained model to

54

 https://bit.ly/3CMM0TP

unmask the unk. Applying this approach, we could fix several unk-related program errors like the

following ones where the LineFix predicts insert → unk and substitute → unk for “Item” and

“Integer”, and then the MLM is able to locate them correctly.

-public void takeItem (item) {

+public void takeItem (Item item) {

-float number = float.parseInt(text);

+float number = Integer.parseInt(text);

Note that though we designed UnkFix primarily for identifiers, it can potentially handle other

tokens, including values.

3.2.6. Integrating SYNSHINE into VSCode. To make SynShine more broadly accessi-

ble, we have made it available within a popular IDE. We have initially chosen VSCode since it’s

widely available, free for students5, and well-documented; in the future, we will incorporate Syn-

Shine into other IDEs. The source code for the integration is available in our replication package.

A demo video is viewable: https://youtu.be/AR1nd2PJczU.

In this VSCode integration, we desired fast response times, and wanted to avoid the requirement

for a GPU, since many novices may not have a GPU. So for the SynShine deep learning model,

we just used CPU floating point operations; to avoid having to reload the (very large) model for

each repair request, we wrapped the SynShine model within a “correction” server, which services

HTTP requests from the IDE.

The IDE triggers a request to SynShine when the user requests a fix suggestion. When Syn-

Shine is triggered, VSCode looks for the active text editor and extracts the (erroneous) code

content from there. After getting the content, VSCode sends an HTTP request to the code cor-

rection server. Models are pre-loaded in the correction server, so that it can immediately service

requests. In this server, the code goes through our proposed pipeline presented in Fig. 3.2, and the

code returns to the editor after finishing all the steps. Now we have two versions of the code, i.e.,

5https://visualstudio.microsoft.com/students/

55

https://youtu.be/AR1nd2PJczU
https://visualstudio.microsoft.com/students/

the buggy code and the corrected version. We highlight the difference and present both versions

to the user and allow them to accept or reject the solution.

Note that the demo presented on the link mentioned above was captured on a machine without

any GPU. We observe that SynShine can operate on a CPU and is quite fast at generating the

solution even though the models were trained on GPUs. Just to get a sense of the delay, we randomly

chose 200 erroneous programs of various lengths from our dataset, and measured the response time

(time from the “SynShine” button press to the time the fixed code is received back). The average

response time is 0.88 seconds (standard deviation 0.49s, maximum 2.2s). While this by no means

instantaneous, we can still provide a fix for a syntax error virtually always within a second or two,

potentially saving the novice and instructor’s time. Our approach to integrating SynShine into

VSCode thus arguably attenuates the need for expensive GPUs, and facilitates the use of the deep

learning model in CPU-only machines. The CPU we used for the experiment is “AMD Ryzen 7

2700X”. The code correction server occupies 1.765 GB of the memory.

SynShine’s response time is significantly lower than the time needed by a programmer to fix the

program. Brown and Altadmri divided the mistakes that occurred in the Blackbox repository into

18 different classes, where 11 of them are syntactical errors [34]. The programmers take 13-1000

seconds (median) to fix the mistakes [34]. Our model, on the other hand, takes less than a second

on average to process the files and suggest a fix.

3.3. Evaluation & Results

In our evaluation, we compare our work with several baselines: Santos et al., DeepFix , BF+FF ,

and SequenceR. The original DeepFix [71] used a GRU based RNN encoder-decoder translation

model, which takes an entire program (with syntax error) as input, and produces a fix. For

baselining their BF+FF tool, Ahmed et al. used two versions of DeepFix, one (“short”) trained

on error-fix pairs upto 400 tokens long and another (“long”) trained on error-fix pairs upto 800

tokens long. Another approach, SequenceR [45] has reported success in fixing semantic errors,

when provided with fault localization; it is also adaptable for syntax errors. SequenceR differs from

DeepFix in a few ways: it uses a separate fault localizer, and also incorporates a copy mechanism.

We describe the intricacies in full detail later. Ahmed et al.’s BF+FF program used a 2-stage

56

transformer-based lenient parser, as described above. Our approach combines several techniques:

pre-training, compiler-based reporting, and fine-tuning with novice data.

Below, we present summary top-1 accuracy results, evaluated over a random sample of 100,000

examples of length upto 1000 tokens, with single-token errors, taken from the Blackbox dataset.

The detailed result is presented in Table 3.2. We follow the lead of the first paper in the area [171]

in this table, reporting performance for single-token errors, which constitute 57% of the data in

Blackbox. We report the numbers for more complex errors below. As can be seen, SynShine

Santos
et al. [171]

DeepFix
(short)

DeepFix
(long)

SequenceR BF+FF SynShine

46.00% 63.25% 62.14% 56.89% 56.91% 74.89%

Table 3.1. Summary Results: Santos et al. performance is as reported by them; we

measured the others

achieves a substantial performance boost, over all the prior approaches, elevating the performance

further and providing us with the motivation to build it into a popular IDE to make it more

widely available. Here below, we evaluate the performance in more detail, comparing SynShine

with the closer competitors (we exclude Santos et al. from this comparison) and also examine

the contributions of our various stages to the significant overall improvement. We begin with an

evaluation of the effect of program length on performance, then we consider the effect of the various

components of SynShine. Finally, we breakdown the performance of SynShine in repairing various

categories of syntax errors.

3.3.1. Fixing shorter & longer programs. Table 3.2 baselines the relative performance

of SynShine against prior work, broken down by length, in categories. The rows are different

length ranges of programs. The second column is the fraction of the Blackbox programs falling

in this length range. The next several columns are are baselines from prior work: first two are

DeepFix (short) trained on shorter error-fix pairs (upto 400 tokens long), DeepFix (long) trained

on pairs up to 800 tokens long. The next two are SequenceR, trained on all pairs in the training

set, and BF+FF , trained exactly provided in Ahmed et al.’s scripts. Finally, on the last column we

have our results from SynShine; the 3 columns to the right of the SynShine column represent the

contributions of our 3 components. As can be seen our overall performance exceeds the performance

57

Token
Range

Percent of
Overall Data

DeepFix
(short)

DeepFix
(long)

SequenceR BF+FF
SynShine

By
BlockFix

By
LineFix

By
UnkFix

Total

1-100 31.01% 76.71% 73.72% 59.21% 65.16% 21.01% 58.86% 2.41% 82.28%
101-200 29.43% 69.98% 67.15% 57.21% 60.24% 17.53% 58.98% 1.96% 78.47%
201-300 15.25% 63.27% 60.29% 55.40% 54.47% 14.35% 56.00% 1.93% 72.28%
301-400 8.56% 53.71% 54.02% 54.64% 50.01% 10.18% 54.45% 1.89% 66.52%
401-500 5.51% 42.17% 45.47% 54.54% 46.19% 7.71% 54.00% 1.88% 63.59%
501-600 3.63% 32.84% 39.78% 54.47% 42.81% 5.95% 53.83% 2.19% 61.97%
601-700 2.17% 23.76% 33.02% 54.35% 38.07% 3.80% 53.62% 2.10% 59.52%
701-800 1.90% 17.10% 26.57% 53.78% 35.35% 3.04% 51.98% 2.65% 57.67%
801-900 1.34% 11.43% 22.88% 55.56% 32.24% 2.20% 52.84% 2.19% 57.23%
901-1000 1.19% 8.80% 17.94% 53.87% 29.62% 1.27% 51.63% 2.10% 55.00%
Overall 63.25% 62.14% 56.89% 56.91% 15.56% 57.22% 2.11% 74.89%

Table 3.2. Baselining SynShine against prior work on syntax error correction. Se-

quenceR was provided with Javac localization.

of all the others in every length category, and on the entire sample significantly improves on all of

them. Before we examine the numbers in detail, we first present some relevant details on how we

measured them.

All evaluations were done on a very large, randomly chosen, representative sample of 100,000

error-fix pairs from Blackbox that were not seen during training by any of the models. The per-

centages shown in the second column, and the overall performance numbers (all numbers are top-1

accuracy) are thus robust estimates of actual performance on programs up to 1000 tokens long,

which constitute around 95% of the Blackbox data. An additional evaluation on a random sample

of the entire dataset is reported below. DeepFix (short), DeepFix (long), and BF+FF were

all trained and evaluated using the scripts made available in the replication package of Ahmed et

al. [5] and Gupta et al. [71].

SequenceR [45] had to be retrained for syntax error correction: Chen et al. originally developed

SequenceR for fixing semantic bugs, viz., test failures. It uses the OpenNMT translation frame-

work [112] and thus had to be trained using bug-fix pairs. SequenceR assumes that the precise

location of the bug was known via fault-localization; the training pairs consisted of a) the buggy

region of code, bracketed within <start bug> . . . <end bug> markers, augmented with sufficient

context (preceding and succeeding tokens) to make up 1000 tokens of input b) and the correspond-

ing fix, which is the region including the changed code, upto a maximum of 100 tokens; longer

fix regions will fail (this almost never happens in our setting). They used an RNN sequence-to-

sequence encoder-decoder model that uses LSTM for the recurrent nodes, and incorporates a copy

58

mechanism to enable the model to generate specific local variables, etc. in fixes. We used the code

provided by Chen et al, and trained the model using Blackbox data; we used the Javac compiler

to find the error location, and created training/test pairs using the Javac indicated location (with

context), together with the corresponding novice fix. In our case, since most novices’ programs

are shorter than 1000 tokens, we provided the entire novice program as context. Once SequenceR

is trained, it can generate fixes, given the novice program with error, with location indicated as

above. However, SequenceR cannot insert or delete entire lines, so it cannot fix many nesting errors

(for example, by inserting or deleting a line with a single ”{” or ”}” delimiter).

Our overall accuracy ranges between 55% to 82%, and always outperforms DeepFix long (18%-

74%), and short (9%-77%), SequenceR (54%-59%) and BF+FF (29%-65%). Both SequenceR and

SynShine benefit from the error location provided by Javac. By improving on prior work at every

range, on the entire representative 100,000 sample, SynShine achieves significant gains in overall

performance (bottom line) over the state of the art. Two factors contribute to this improvement:

i) javac-based error localization and ii) robustness of LineFix and UnkFix. javac-based error

localization enables a more selective LineFix+UnkFix to the most likely errorful code, thus reducing

false positives; Ahmed et al.’s BF+FF attempts corrections throughout the program, resulting in

more mistaken corrections. The robustness of LineFix and UnkFix is really boosted by the

pre-training + Fine-tuning strategy; we explore the relative benefits of this step further below.

Table 3.2, in columns under the SynShine header, also shows relative contributions of the

components of SynShine. First stage is BlockFix borrowed from BF+FF . About 20%-25%

programs, regardless of length have nesting errors. BlockFix’s accuracy decreases with program

length, and we observe that the contribution of BlockFix is low after 700 tokens. However,

for the other 75% to 80% programs without nesting errors, LineFix & UnkFix perform pretty

consistently. Finally, we note that 1-1000 tokens cover about 95% of the overall data. To observe

the performance of SynShine on the overall distribution, including programs over 1000 tokens long,

we test it on 5000 random samples. We found that our model can repair 75.36% of the programs,

and as before, comfortably exceeds performance of prior tools. Note that if the BlockFix model

has already fixed the curly braces and there is no other error, Javac will not produce any error

message, and LineFix will not process that. Note that we always compare the end-to-end tokens

59

of the reference and the model’s proposed sequence; if needless “over” fixes are applied, that will be

counted as wrong. Moreover, none of the fixes are credited twice. If the model is fixed by UnkFix,

it alone receives credit; we did not count it in the LineFix column. Likewise, we credited a sample

in the LineFix column, if it is completely fixed by LineFix and does not receive any help from

UnkFix.

We also applied our model on files that required 2 and 3 edits to fix the program and observed

29.4% and 14.4% accuracy, which is much higher than the reported accuracy by Ahmed et al.

(19% and 9%). Finally, we note that Ahmed et al. report on a blended strategy where shorter

uncompilable programs could be sent to DeepFix and longer ones to BF+FF , thus obtaining bet-

ter performance than either at all lengths. A similar strategy could be employed here, blending

SynShine with other models, trying all the proposed solutions, and picking the ones that compile.

However we didn’t implement this approach: we just integrated SynShine into VSCode since it

performs quite well at all lengths on its own, and avoids the need to load and run many models,

and try repeated compiles.

3.3.2. LineFix: The Role of Compiler Errors. SynShine differs from both versions of

DeepFix, and SequenceR, because it’s multistage; it differs from BF+FF mainly because of the

two new components, LineFix and UnkFix. We simply reused the BlockFix component made

available by Ahmed et al. 6, and find performance very similar to that reported by them for this

component. The improvements reported in Table 3.2 clearly arise from our two new components.

We now focus in on LineFix and evaluate how it contributes to overall performance. LineFix’s task

is to take an input line flagged as a relevant syntax error (by Javac), together with the actual error,

and then output a position, and an editing hint (insert, substitute, delete). LineFix improves upon

the FragFix stage of BF+FF in two ways: first, it uses pretraining+finetuning, and second, it also

takes the syntax error message from Javac as an additional input. The value of pre-training has

been extensively documented for code-related tasks [1,6,29,64,69,97,104,133,139,157,170,225],

so we focus here on the effect of providing compiler errors. Note again that LineFix has two tasks:

Localize the token to be replaced, and and output an editing command with the correct Fix. We

evaluate the impact of compiler warnings using 10,000 randomly chosen erroneous lines, of various

6https://zenodo.org/record/4420845

60

lengths, each taken with and without the compiler syntax error messages. Since we’re evaluating

fixing capability on single erroneous lines, rather than entire programs, the numbers reported below

are higher than in Table 3.2.

With compiler error?
Localization Fix Complete Correction (Location+Fix)

F-Score F-Score Accuracy

No 90.75% 92.41% 86.71%

Yes 93.58% 93.18% 89.39%

Table 3.3. Impact of using compiler error

Table 3.3 presents the impact of using the syntax error message in our tool.

We gain around 2.7% improvement in overall accuracy using the compiler error message. We

also see improvements on both Localization and Fix f-scores by providing the compiler message

along with the the erroneous line (row 1 & 2). The improvement is more for the Localization

than for the Fix. We tested the statistical significance of all differences, using Binomial difference

of proportions test on a trial sample of 10,000; we then corrected the p-values using Benjamini-

Hochberg. The improvements observed when using compiler error message for overall accuracy and

fix location f-score are highly significant (p < 1e − 9); however, the f-score for the fix per se are

only significantly improved (0.01 < p < 0.05). This suggests that the compiler error message is of

highly significant help in providing our model with information required to locate the precise token

that needs to be edited, and somewhat less so to identify the precise edit that is required. It is very

important to note however, that the Javac compiler is of crucial help in locating the line where

the error is located. This above study also shows that the actual error message per se helps our

model locate the token within that line that needs to be edited.

We present an illustrative example of how compiler error messages help. Sometimes the compiler

warnings are very precise, e.g., when semicolons or other punctuations are to be inserted. In such

cases, it may appear that the task is quite simple, and the model is simply “translating” the error

into a fix. We sampled 50 programs and observed how many of them can be fixed just by reading

the comments. We observed that in roughly 60% cases, the Javac warning is not that helpful, and

61

the model learns to respond in fairly nuanced ways to address the error. Consider the following

repair that LineFix correctly achieves.

-return s == reverse (String s) ;

+return s == reverse (s) ;

Javac per se not helpful: it produces an error message suggesting to insert “)” after “String”.

LineFix learns to ignore such messages, and instead correctly omits the token “String”. Therefore,

the model is not just “translating” the message from Javac into a fix; The high capacity of the

model, enriched by pre-training and fine-tuning, is deployed to leverage the often incorrect, impre-

cise message from Javac into a good fix. Depending on the error, it can resolve a very imprecise

message from Javac. Indeed, quite often the same error message from Javac can lead the model

to provide very different (correct) fixes.

3.3.3. When SynShine Fails, and When it Works. We now examine in further detail the

cases where SynShine works correctly, and where it does not. To be conservative, we have defined

as a “failure” any fix not exactly the same as the one recorded in the Blackbox dataset; note that

a) the fix recorded in Blackbox is created by an actual human user, and also b) the recorded fixes

always compile without error. We start with an examination of the cases where SynShine fails to

produce a correct fix, as per our conservative definition, and then examine in detail the diversity

of fixes that it does provide.

Fix Failures Despite our over-conservative definition of “failure”, sometimes SynShine can generate

a solution that differs from the user-intended solution but is still compilable with our javac-based

compiler. In some cases, the solution is even semantically correct. As an illustration, in Table 3.6,

examples 1, 2 & 3 are fixes generated by SynShine that not only compile without error, but are

also semantically correct. By contrast, the last example in Table 3.6 is not semantically correct

but compilable. Ideally, we’d like to characterize how often SynShine finds fixes that are not only

compilable, but also semantically correct. The compilability of a fix that differs from the user’s fix

recorded in Blackbox can be determined automatically, and at scale (by just compiling!) and we

report it below; however, the semantic correctness of a fix that differs from a user’s fix requires

62

Length
Overall

Compilability
of fixes

Fixes
Exactly Matching

Blackbox

Compilability
for

non-matching cases
1-100 90.18% 82.28% 44.58%
101-200 86.13% 78.47% 35.58%
201-300 79.33% 72.28% 25.43%
301-400 73.35% 66.52% 20.40%
401-500 70.14% 63.59% 17.99%
501-600 67.83% 61.97% 15.41%
601-700 65.92% 59.52% 15.81%
701-800 64.00% 57.67% 14.96%
801-900 63.32% 57.23% 14.24%
901-1000 60.76% 55.00% 13.00%

Table 3.4. Compilability of SynShine

Category
Prevalence of

Error Category
Fix Accuracy

(in %)
Keyword 5.04% 70.64%
Operator 5.87% 77.73%
Delimiter 80.37% 81.60%
Other 8.72% 60.94%

Table 3.5. Performance of SynShine over diverse error categories

manual examination, and is not practical to do at a large scale. We try to characterize these to

some extent by examining a small sample.

Seq No Buggy Line Model Original Fixed
1 int i = ((int) (Math . random () * 3) ; int i = ((int) (Math . random () * 3)) ; int i = (int) (Math . random () * 3) ;
2 int userInt 1 , int userInt 2 ; int userInt 1 ; int userInt 2 ; int userInt 1 , userInt 2 ;
3 System . out . print ((” Hello, world. ”) ; System . out . print (” Hello, world. ”) ; System . out . print ((” Hello, world. ”)) ;
4 System . out . println (” sum = ” + (sum +)) ; System . out . println (” sum = ” + (sum)) ; System . out . println (” sum = ” + (sum + 5)) ;

Table 3.6. Examples showing the compilability of the model

Table 3.4 presents the overall compilability of the solutions. The second column is the overall

compilability of the generated fix. This is calculated as the fraction of the number of attempted

fixes, that actually results in a successful compilation. The third column is the proportion of fixes

that we deem correct, based on exact match with the fix recorded in Blackbox (the numbers will

63

match shown in the rightmost column of Table 3.2). As can be seen, we record many compilable

cases as incorrect. The last column in Table 3.4 shows the proportion of apparent failures that are

actually compilable: as an illustration, for programs up to 100 tokens long, about 45% of the cases

that we record as an incorrect fix, in fact compile correctly. Depending on length, between 13%

and 45% of the fixes we classify as failures are actually compilable. Table 3.6, examples 1,2,3,4 are

exactly such fixes.

Now what proportion of these “compilable failures” are actually semantically correct? To get

a (very) rough estimate of this, we did a small manual study. We randomly collect 50 cases where

the model generates a compilable fix, that fails to match the user fix recorded in Blackbox. We

found that about 18% of programs are semantically correct.

To summarize: even in our very conservative evaluation, SynShine produces the same fixes

as recorded by a human in a sizable fraction (roughly 75%) of errors in our novice dataset; an

examination of SynShine’s failures suggests that it could possibly be helpful in some additional

cases.

Fix Diversity What kinds of errors does SynShine fix? In our dataset, about 80% of the errors

are related to delimiters, and even solving only those would make a significant dent. However, the

novices make syntax errors in using keywords, operators, identifiers, and numbers; sometimes they

introduce illegal spaces, declarations, characters, etc. We examined how SynShine performs with

respect to different types of errors. For convenience, we divided the error into four major categories-

keywords (all Java keywords), delimiters (e.g., semicolon, comma, parentheses, braces, brackets),

operators (all Java operators), and others (identifiers, literals, and anything that falls outside the

first three categories). To do categorization, we followed two rules. Errors that required substitutes

or inserts belonged to the category of the substituted or inserted token; errors that required deletion

belonged to the category of the deleted token. Thus if an error required a semicolon to be inserted,

it was in the “delimiter” category; if an error required an extra “if” keyword to be deleted, it was

in the “keyword” category.

We randomly sampled a 5K test dataset, and determined the error category prevalence in this

dataset; see Table 3.5, first column, for the prevalence of errors in various categories. Delimiter

errors dominate, and thus our model learns to fix those best (81.6% accuracy); however, it performs

64

well in other categories (60%-78% accuracy). The take-away from this analysis is that SynShine

performs reasonably well at a wide range of syntax errors.

3.4. Related Work

The most closely related works are DeepFix [71], BF+FF [5], and Santos et al. [171] which we

have discussed above. We also discussed SequenceR [45]. We have compared SynShine to all of

these.

Gupta et al. [70] applied reinforcement learning to a very similar dataset like DeepFix [71]. It

utilizes total count of compiler errors as a part of the reward mechanism. However, RLAssist [70]

shows only a very minor improvement over DeepFix [71], and also it takes the whole program as

input. Therefore, we did not re-implement RLAssist [70]. Though RLAssist [70] looks into compiler

errors but it does not directly uses the error messages as we do. DeepDelta [143] is another

approach that fixes compiler errors but mostly identifier name-related errors, not syntax errors.

DeepDelta [143] was developed and tested on code from professional developers at Google. The

authors also assume that precise knowledge of the location will be given to the program. Yasunaga

et al. [214, 215] introduce two compiler-dependent approaches to fix C program: DrRepair that

utilizes C compiler warnings with a graph-based self-supervised approach, and BIFI that applies

two models “critic” and “fixer” to fix the programs. A tool for the C programming language,

Tracer, abstracts the code and uses a seq2seq model on the source code abstractions that are later

concretized [11].

All the DNN based Automatic Program Repair (APR) tasks have a fault localization step [45,

57,125,136,192], and these tools’ performance depends a lot on the fault-localizer. Semantic code

correction is an inherently difficult problem, and syntax correction can be considered as a subset

of semantic code correction problems. None of the previous syntax correction tools has compared

their work with these tools because previous syntax correction tools did not depend on any fault

localizer. Some of the APR tools [42, 119, 125, 131] expects syntactically correct programs and

those approaches are not applicable for syntactical code correction. For our purposes the most

directly compatible recent APR tool was “SequenceR” [45] which reported good performance, and

also fixes errors at the line level; it was readily adapted to using the Javac to locate the line

65

to be fixed, so we chose it for comparison. Pradel et al. also detect specific types of bugs (e.g.,

accidentally swapped function arguments, incorrect binary operators, and incorrect operands in

binary operations) but in syntactically correct code [156].

Brown et al. used BlueJ IDE to collect the data in Blackbox repository [35] In this paper, we

did a case study on the performance of the popular IDEs (e.g., Eclipse, IntelliJ, VSCode, BlueJ)

in fixing novice programs. We compare repair hints from Eclipse JDT Core Compiler for Java

(ECJ) (used in both Eclipse and VSCode) and javac (used by IntelliJ and BlueJ). That is, both

Eclipse and VSCode present the same error messages, and IntelliJ and BlueJ present the same error

messages. Four IDEs, but ultimately, only two compilers. SynShine improves upon repair hints

from both compilers. Therefore, we primarily focus on Eclipse and IntelliJ for the case study. We

chose VSCode because it is popular, well-documented, available free for students, and is easy to

extend. We were able to integrate SynShine into VSCode without any major difficulties.

3.5. Conclusion

We have described SynShine, a machine-learning based tool to fix syntax errors in programs.

SynShine leverages RoBERTa pre-training, uses compiler errors (both location and message), and

generates fixes using multi-label classification, rather than autoregressive generation, to achieve

substantial improvements in fixing syntax errors. Our evaluation shows substantial improvements

in fixing rates over the previous best results reported by BF+FF , and other tools, at all program

lengths. Our evaluations suggest that the the use of compilers to locate the precise line provides a

big advantage; our evaluations also suggest that the compiler error message per se may be helpful

in locating the precise token within the line that needs to be repaired. We have built SynShine

into the VSCode IDE, and have found that even without a GPU, the SynShine-enhanced VSCode

can fix syntax errors fairly quickly, often in less than second. We have made all the source-code

and data available, to the extent allowable under UK Law applicable to the BlackBox dataset.

SynShine can fix errors that IDEs (Eclipse, IntelliJ, and VSCode) cannot. In the supplementary

materials (https://bit.ly/3CMM0TP) we show several real-world examples of student-made errors

that cannot be fixed by any of these IDEs, but can be fixed by SynShine. The supplementary

materials also include the list of edits (FixList.pdf) that LineFix can generate. Finally, the entire

66

 https://bit.ly/3CMM0TP

source for our SynShine, including the VSCode extension, is made available anonymously at

https://doi.org/10.5281/zenodo.4563241.

67

https://doi.org/10.5281/zenodo.4563241

CHAPTER 4

Multilingual Training for Software Engineering

Well-trained machine-learning models, which leverage large amounts of open-source software

data, have now become an interesting approach to automating many software engineering tasks.

Several SE tasks have all been subject to this approach, with performance gradually improving

over the past several years with better models and training methods. More, and more diverse,

clean, labeled data is better for training; but constructing good-quality datasets is time-consuming

and challenging. Ways of augmenting the volume and diversity of clean, labeled data generally

have wide applicability. For some languages (e.g., Ruby) labeled data is less abundant; in others

(e.g., JavaScript) the available data maybe more focused on some application domains, and thus

less diverse. As a way around such data bottlenecks, we present evidence suggesting that human-

written code in different languages (which performs the same function), is rather similar, and

particularly preserving of identifier naming patterns; we further present evidence suggesting that

identifiers are a very important element of training data for software engineering tasks. We leverage

this rather fortuitous phenomenon to find evidence that available multilingual training data (across

different languages) can be used to amplify performance. We study this for 3 different tasks: code

summarization, code retrieval, and function naming. We note that this data-augmenting approach

is broadly compatible with different tasks, languages, and machine-learning models.

4.1. Background & Motivation

We now present some motivating evidence suggesting the value of multilingual training data

for deep-learning applications to software tasks. We begin the argument focused on code summa-

rization.

Deep learning models have been widely applied to code summarization, with papers report-

ing substantial gains in performance over recent years [1, 2, 15, 64, 66, 76, 77, 83, 84, 85, 91, 120,

121,122,124,126,139,154,157,197,200,202,205,206,213,221,223]. We focus here on what

68

information in the code ML models leverage for summarization (while we use summarization to

motivate the approach, we evaluate later on 3 different tasks). Does every token in the program

under consideration matter, for the code summarization task? Or, are the function and variable

names used in the programs most important? Since identifiers carry much information about the

program, this may be a reasonable assumption.

Considering the content words1 in the example in Figure 1.3 there are four major terms (i.e.,

Returns, text content, node, and descendants) used in the summary. The first 3 directly occur as

tokens or subtokens in the code. Though the word “descendants” is missing in the program, high

capacity neural models like BERT [56] can learn to statistically connect, e.g., ”descendant” with

the identifier subtoken “child”. This suggests that, perhaps, comments are recoverable primarily

from identifiers. If this is so, and identifiers matter more for comments than the exact syntax of

the programming language, that may actually be very good news indeed. If developers choose

identifiers in the same way across different languages (viz., problem-dependent, rather than lan-

guage dependent) perhaps we can improve the diversity and quality of dataset by pooling training

set across may languages. Pooled data sets may allow us to fine-tune using multilingual data,

and improve performance, especially for low-resource languages (e.g., Ruby and JavaScript from

CodeXGLUE [134]). Since this is a core theoretical background for our work, we start off with two

basic research questions to empirically gauge the possibility and promise of multilingual fine-tuning.

RQ1 What role do identifiers play in for code summarization?

RQ2 Do programs that solve the same problem in different languages tend to use similar iden-

tifier names?

4.1.1. RQ1: Role Played by Identifiers. We first examine the importance of identifiers

for code summarization; specifically, we compare the relative value of identifier tokens and other

tokens. We use the CodeXGLUE dataset and pre-trained CodeBERT embeddings for the task [64].

We begin with a brief backgrounder on CodeBERT [64] & BERT [56].

1“Content” words in linguistics, are words that carry meaning, as contrasted with function words, such as prepositions,
pronouns, and conjunctions, which denote grammatical relationships. See https://en.wikipedia.org/wiki/
Content_word. In code, we consider function words to be keywords, operators and punctuations, and content words
to be identifiers (functions, variables, types, etc)

69

https://en.wikipedia.org/wiki/Content_word
https://en.wikipedia.org/wiki/Content_word

CodeBERT uses the pre-training + fine-tuning strategy of BERT, RoBERTa etc [56,129]. This

approach begins with a self-supervised “pre-training” step, to learn textual patterns from a large,

unlabeled, corpus using just the content; in the next step, “fine-tuning”, task-specific labeled data is

used to provide task-related supervised training. This approach is known to achieve state-of-the-art

performance in both natural language processing, and software-related tasks [6, 9, 29, 64, 69, 97,

99,103,139,225].

We study the effect of identifiers in several steps. For the pre-training step, we start with

the available CodeBERT model, which is pre-trained on a large, multilingual corpus of code. For

the fine-tuning step, for this task, we use the CodeXGLUE benchmark dataset (see table 4.4 for

languages and dataset sizes); we start with the original set of code-comment pairs, and apply

two different treatments to create overall three different fine-tuning training datasets–1) base case

leaving code as is, 2) a treatment to emphasize identifiers, and 3) a treatment to de-emphasize

them. First, to emphasize identifiers we abstract out the program’s keywords, separators, and

operators by replacing those with three generic tokens (i.e., “key”, “sep”, and “opt”), thus forcing

the model (during fine-tuning) to rely more on the identifiers, for the task. Next, to assess the

importance of keywords, separators, and operators, we abstract out the identifiers with a generic

token “id”. We fine-tune the model separately after each of these abstraction steps, thus yielding

3 fine-tuned models: the baseline, keyword-abstracted, and identifier-abstracted. We compare the

results (smoothed BLEU-4) across all three.

If a fine-tuned model’s performance is relatively unaffected by an abstraction, one may infer that

the model relies less on the abstracted tokens. We perform these experiments with two languages

with low-resource (i.e., Ruby and JavaScript, See table 4.4) and two languages with high-resource

(i.e., Java and Python). We train, validate, and test with the same dataset in each case. For

each test instance, we have one value from the complete program and another one from each of the

two abstracted versions. We compared these values, using two distinct pair-wise Wilcoxon tests:

1) Alternative Hypothesis (AH): complete program > identifier de-emphasis & 2) AH: complete

program ¿ identifier emphasis. We also perform the same test with the keyword-abstracted and

identifier-abstracted versions (AH: identifier emphasis > identifier de-emphasis).

70

Dataset

Complete

Program

Abstracting keyword,

operator, separator

Abstracting

identifiers

BLEU-4 BLEU-4
Effect

Size

p-value

(adjusted)
BLEU-4

Effect

Size

p-value

(adjusted)

Ruby 12.53 11.57 -0.028 0.008 7.94 -0.238 <0.001

JavaScript 13.86 13.06 -0.033 <0.001 9.06 -0.175 <0.001

Java 18.72 18.72 -0.002 0.344 11.41 -0.254 0

Python 18.25 18.10 -0.010 <0.001 11.68 -0.288 0

Table 4.1. Role played by identifiers

The data (table 4.1) suggests that abstracting the keyword, separator, and operator has a

smaller impact on the performance: the BLEU-4 scores are rather similar (with effect size ranging

from 0.002 to 0.033) to those from the unabstracted code. On the other hand, when de-emphasizing

identifiers, the performance drops more, with effect sizes 5x-100x larger. We find similar results

while comparing the emphasizing and de-emphasizing identifiers versions (omitted for brevity).

Language
Training

Ruby JavaScript Java Go PHP Python

Testing

Ruby 12.53 11.84 13.42 12.32 13.84 14.09

JavaScript 11.98 13.86 14.16 12.55 13.90 14.09

Java 13.38 14.57 18.72 14.20 16.27 16.20

Go 11.68 11.24 13.61 18.15 12.70 13.53

PHP 17.52 19.95 22.11 18.67 25.48 21.65

Python 14.10 14.44 16.77 14.92 16.41 18.25

Table 4.2. Intra and inter language training and testing

The results in table 4.1 suggests that syntax is less relevant that identifier names. In all the prior

works, the training and testing were done in the same language. Since syntax is less important,

could we train and test with different languages? The CodeXGLUE dataset enables just such

an experiment. Using six different languages, we apply a CodeBERT model fine-tuned in each

language, to a test set in another language. Table 4.2 shows that for high-resource languages (i.e.,

Java, go, PHP, and Python), we achieve the best result (diagonal) when training and test data are

from the same language. However, the performance does not degrade to a very large extent when

71

trained with one language and tested on a different one. Surprisingly we observe that for Ruby

and JavaScript, we actually achieve higher performance while trained with Java, PHP, and Python

than the language itself. That indicates that code summarization is not completely dependent on

syntax (perhaps it relies more on identifier similarity, which we shall explore next)

Finding 1. Code summarization sometimes appears to train quite well with data sets from other languages, even

if the syntax is different.

4.1.2. RQ2: Identifier Similarity Across Languages. Here, we evaluate RQ2: given a

problem, do developers choose similar, descriptive identifiers, regardless of the programming lan-

guage? Based on the findings in the previous section: if identifiers were indeed used in similar ways,

perhaps code-comment pairs from any programming language could help train a code summarization

model, for any other language. As an example, Figure 4.1 presents that all the “indexOf” functions

implemented in Java, PHP and JavaScript use very similar identifiers “needle” and “haystack”.

Quantitatively evaluating this hypothesis requires multiple implementations of the same prob-

lem in different programming languages, where we could compare identifier names. Luckily, Roset-

taCode provides just such a dataset. RosettaCode currently consists of 1,110 tasks, 305 draft

tasks and includes 838 languages2. We collect the mined data3 and study the same six languages

(i.e., Ruby, JavaScript, Java, Go, PHP, and Python) in the CodeXGLUE dataset. We get 15

cross-language pairs from six languages and measure identifier similarity between pairs of programs

which solve the same problem in each language (e.g., programs for graph diameter problem in Java

and Ruby). For baselining, we also compare with a random pair (solving different problems) for

the same two languages (e.g. graph diameter in Java, and SHA-hashing in Ruby). Fortunately,

we found sufficient sample sizes for all our language pairs in RosettaCode. For example, for Java

& Python we find 544 matched program pairs solving the same problem in both languages. We

then take the 544 Java programs and randomly pair them with 544 other Python programs. There-

fore, we have two groups of programs (i.e., same program implemented in different languages and

different programs implemented in different languages), and we check the similarity level between

the two groups. Note that size-unrestricted random pairing may yield misleading results. Suppose

2Last Accessed August, 2021
3https://github.com/acmeism/RosettaCodeData

72

we have a Java & Python program matched pair with 100 Java subtokens and 40 Python subto-

kens. Now, if we replace the matched python program with a random, bigger program (e.g., 500

subtokens), we may have more chance of finding matched identifiers. Therefore, while choosing the

random program, we try to ensure it has a similar length to the program it is replacing in the pair.

We randomly select a program having the subtoken counts within a 5% length range (e.g., 38-42

subtokens for a 40 subtoken program) of the removed one. Fortunately, in 99.25% cases, we get at

least one example within the 5% range. On the remaining instances, we select the program with

the nearest subtoken count.

We measure identifier similarity thus:

(1) Remove all keywords, operators, and separators from the programs.

(2) Break all CamelCase and snake case identifiers and keep only one copy of each sub token.

(3) Discard too-small programs with less than 5 sub-tokens.

(4) Calculate the mean Szymkiewicz-Simpson coefficient (overlap coefficient) [194] for both

groups (i.e., same program pair and random pair) of programs.

(5) Repeat this process across all 15 language pairs, for all program pairs.

Table 4.3 shows the common program pairs have 89%-235% additional identifier overlap com-

pared to random program pairs. We compare the matched and random pair overlaps using the non-

parametric Wilcoxon signed-rank test (AH: random has less overlap than matched). We observe

that the null hypothesis is rejected, and Szymkiewicz-Simpson Overlap coefficient4 is significantly

higher for the common program pairs in all the cases. That indicates programs solving the same

problem (even in different languages) are much more likely to use the same or similar identifier

names.

We also calculate each pair’s Jaccard index [92] (similarity coefficient) and find 112%-309%

more similarity between common pairs than random ones, thus, giving essentially the same result.

However, we prefer to report the detailed result using the overlap coefficient because Jaccard index

can be affected by the differing verbosity of languages. For example, on average, Java, Python, and

Ruby programs in RosettaCode have 29.45, 17.93, and 17.63 identifier subtokens. Java has higher

4This is a measure of similarity like the Jaccard index; we use it here since sometimes the sizes of the programs are

quite different. It’s calculated as |X∩Y |
min(|X|,|Y |) .

73

Language

pair

#of common

programs

Overlap coefficient Effect

Size

p-value

(adjusted)for random

programs

for common

programs
increased in %

Java & Python 544 0.10 0.32 +210.67% 0.747 <0.001

Java & Ruby 532 0.11 0.31 +174.97% 0.751 <0.001

Java & Javascript 411 0.13 0.36 +188.17% 0.774 <0.001

Java & Go 602 0.19 0.36 +89.24% 0.641 <0.001

Java & PHP 282 0.08 0.28 +235.01% 0.740 <0.001

Python & Ruby 538 0.11 0.35 +228.89% 0.780 <0.001

Python & Javascript 377 0.12 0.34 +190.09% 0.728 <0.001

Python & Go 601 0.13 0.31 +133.06% 0.664 <0.001

Python & PHP 267 0.09 0.29 +214.32% 0.679 <0.001

Ruby & Javascript 370 0.13 0.35 +167.02% 0.751 <0.001

Ruby & Go 571 0.12 0.28 +133.47% 0.724 <0.001

Ruby & PHP 262 0.09 0.28 +205.32% 0.716 <0.001

Javascript & Go 418 0.14 0.29 +110.96% 0.635 <0.001

Javascript & PHP 236 0.11 0.29 +175.03% 0.678 <0.001

Go & PHP 293 0.10 0.23 +121.25% 0.562 <0.001

Overall 6304 0.12 0.31 +158.94% 0.697 0

Table 4.3. Cross-language identifier similarity, when functionality is preserved

subtokens compared to Python and Ruby because of the import statements, package naming etc.

Therefore, Jaccard index between Java and Python will be lower than that of Python and Ruby

even if the programs use very similar identifiers.

Finding 2. For a given problem, developers are likely to choose similar identifiers, even if coding in different

languages.

In this section, we have presented evidence suggesting that a) identifiers are important for code

summarization, that b) cross-language training is promising, and also that c) identifiers tend to be

used in similar ways across languages. Taken together, these findings present a strong argument to

try multilingual fine-tuning for SE tasks. Note that it is already well established that multi-lingual

pre-training is helpful, and most BERT-style SE pre-trained models are multilingual [1, 64, 154,

157]. However, pre-training data are unsupervised and easy to collect. Preparing clean data for

the supervised fine-tuning phase requires more time and attention. In this paper, our aim is to

prove that multilingual training is not only effective in pre-training stage but also in fine-tuning

stage for SE models, which is already found to be beneficial for natural language models [186].

74

1

2 pub l i c s t a t i c i n t indexOf (ByteBuf needle ,

ByteBuf haystack) {
3 // TODO: maybe use Boyer Moore f o r e f f i c i e n c y

.

4 i n t attempts = haystack . readableBytes () −
need le . readableBytes () + 1 ;

5 f o r (i n t i = 0 ; i < attempts ; i++) {
6 i f (equa l s (needle , need l e . reader Index () ,

7 haystack , haystack . readerIndex () + i ,

8 need le . readableBytes ())) {
9 r e turn haystack . reader Index () + i ;

10 }
11 }
12 r e turn −1;

13 }

(a) Java

1

2 pub l i c s t a t i c func t i on indexOf (s t r i n g $haystack
, s t r i n g $needle ,

3 i n t $ o f f s e t =0) : i n t

4 {
5 $pos=s e l f : : s t rpo s ($haystack , $needle , $ o f f s e t

) ;

6 r e turn i s i n t ($pos) ? $pos :−1;

7 }

(b) PHP

1 f unc t i on indexOf (haystack , need le) {
2 i f (typeo f haystack===’ s t r i n g ’)

3 r e turn haystack . indexOf (need l e) ;

4 f o r (l e t i =0, j =0, l=haystack . length , n=

need le . l ength ; i<l ; i++) {
5 i f (haystack [i]===need le [j]) {
6 j++;

7 i f (j===n) return i−j +1;

8 }
9 e l s e {

10 j =0;

11 }
12 }
13 r e turn −1;

14 }

(c) JavaScript

Figure 4.1. Usage of similar identifiers (e.g., needle, haystack) in “indexOf” function

in different programming languages

75

4.2. Benchmark Datasets and Tasks

We evaluate the benefits of multilingual training in the context of several tasks, and associated

datasets. In this section, we discuss the models and tasks used for our experiments.

4.2.1. The Models. For our study of multilingual training, we adopt the BERT, or “founda-

tion model” paradigm. Foundation models [37,52,56,129,163] have two stages: i) unsupervised

pre-training with corpora at vast scale and ii) fine-tuning with a smaller volume of supervised data

for the actual task. Foundation models currently hold state-of-the-art performance for a great

many NLP tasks. BERT [56] style models have also been adapted for code, pre-trained on a huge,

multilingual, corpora, and made available: CodeBERT and GraphCodeBERT are both freely avail-

able: both source code and pre-trained model parameters. While these models for code have thus

far generally been fine-tuned monolingually, they provide an excellent platform for training experi-

ments like ours, to measure the gains of multilingual fine-tuning. CodeBERT & GraphCodeBERT

use a multi-layer bidirectional Transformer-based [193] architecture, and it is exactly as same as

the RoBERTa [129], with 125M parameters; we explain them further below.

Pre-training The CodeBERT [64] dataset, has two parts: a matched-pairs part with 2.1M pairs

of function and associated comment (NL-PL pairs) and 6.4M samples with just code. The code

includes several programming languages. It was created by Hussain et al. [89]. CodeBERT model

is pre-trained with two objectives (i.e., Masked Language Modeling and Replaced Token Detection)

on both parts. Mask language Modeling (MLM) is a widely applied and effective [56,129] training

objective where a certain number of (15%) tokens are masked out, and the model is asked to

find those tokens. For CodeBERT training, Feng et al. apply this first objective only to bimodal

data [64]. The second objective, Replaced Token Detection (RTD) [50], is a binary classification

problem that is applied to both unimodal and bimodal data. Two data generators (i.e., NL and

PL) generate plausible alternatives for a set of randomly masked positions, and a discriminator

is trained to determine whether a word is the original one or not. We note that CodeBERT pre-

training is all about representation-learning: by learning to perform the task well, the model learns

a good way to encode the text, which is helpful during the next, fine-tuning stage. The pre-training

76

took about 12 hours on a machine with 16 NVIDIA V100 cards, and would have taken us very

much longer, so we were grateful to be able to just download the estimated parameters.

Pre-training GraphCodeBERT GraphCodeBERT augments source-code with data flow, during pre-

training. It uses a simple data flow graph (DFG) encoding a where-the-value-comes-from relation

between variables [69]. The DFG nodes are variable occurrences, edges are value flow. Graph-

CodeBERT pretraining learns a joint representation of 1) the DFG structure, 2) DFG alignment

with source code, and 3) the source code token sequences. GraphCodeBERT is therefore pre-

trained with three training objectives (i.e., Edge Prediction, Node Alignment, and MLM) on 2.3M

functions (PL-NL pairs) from CodeSearchNet [89] dataset. For details see [69].

The pre-training+fine-tuning approach relies on VERY high capacity models, and are pre-

trained over a large, multilingual corpus. Thus, even before fine-tuning, the models already know a

lot about each language. Thus, fine-tuning on many languages should not negatively impact what

the model knows about any one language. Thus we find that multilingual fine-tuning improves on

monolingual fine-tuning in most cases. We believe our proposed approach would still consider the

context surrounding the individual programming language even after multilingual training because

these models have sufficient capacity to do so.

We now describe our tasks: in each, we describe the task, the dataset, and the multilingual

fine-tuning approach (if applicable).

4.2.2. Code Summarization. The Task: as described earlier, the goal is to generate a NL

summary given code in some PL.

The Dataset: There are several different code summarization datasets; we chose CodeXGLUE5 [134],

for two main reasons:

(1) CodeXGLUE is carefully de-duplicated [176]. Prior datasets like TL-CodeSum [85] have

duplicates [176] in training, testing, and validation partitions. Duplication can inflate

measured performance [13,176].

(2) We need a multilingual dataset to prove the effectiveness of multilingual fine-tuning. None

of the existing datasets [85,122] is multilingual.

5CodeSearchNet [89] dataset is a standard benchmark, which has been incorporated into CodeXGLUE

77

Table 4.4 presents the number of training, testing and validation instances for each language. in

CodeXGLUE.

Programming

language
Training Dev Test

Candidate

codes*

Ruby 24,927 1,400 1,261 4,360

JavaScript 58,025 3,885 3,291 13,981

Java 164,923 5,183 10,955 40,347

Go 167,288 7,325 8,122 28,120

PHP 241,241 12,982 14,014 52,660

Python 251,820 13,914 14,918 43,827

*Candidate codes are only used for code retrieval task

Table 4.4. CodeXGLUE dataset

Model & Fine-tuning Feng et al. use a transformer-based encode-decoder architecture for the code

summarization task [64]. The encoder is all ready well-trained in the pre-training stage; for fine-

tuning, the encoder is primed with weights from pre-training. Now, the transformer model is given

the input code token sequence and asked to generate the comment, as in the Neural Machine

Translation (NMT) problem. We fine-tune using the CodeXGLUE paired samples. During fine-

tuning, the decoder is trained auto-regressively, using next-token cross-entropy loss. Feng et al. use

smooth BLEU-4 [128] for the evaluations of the models. Subsequently, We replace the pre-trained

CodeBERT with pre-trained GraphCodeBERT in the encoder while evaluating the effectiveness of

multilingual fine-tuning with GraphCodeBERT.

Why baseline with CodeBERT for code summarization? Feng et al. compare CodeBERT with other

popular encoder-decoder based (e.g., LSTM [184], Transformer [193], RoBERTa [129]) models;

CodeBERT handily beats all of them [64]. Thus, CodeBERT is a good baseline to measure the

value of multilingual finetuning. CodeBERT also does very well on prior datasets: using smoothed

Sentence BLEU-4, we found that CodeBERT reaches 44.89 on TL-Codesum [85], and 32.92 on

Funcom [122]6. TL-Codesum has high degree of duplicates; we found that Funcom also does, but

just in the comments. CodeXGLUE has very little duplication, which makes it more challenging,

6As reported in [67, 176], measurement approaches vary across papers, and these numbers may differ from prior
results: we use smoothed sentence BLEU-4 everywhere in our paper.

78

and also more reliable. Note that GraphCodeBERT does not report any performance on the code

summarization task, and so we had to measure it.

4.2.3. Code Search. The Task Given a natural language query, find the semantically closest

code sample from a large set of candidates. Vector-based information retrieval methods can be

used here along with BERT-style encoders. CodeBERT was shown to perform quite well; the

best published performance is reported by GraphCodeBERT [69] (CodeBERT augmented with

graph representations). We study the value of multilingual fine-tuning for both CodeBERT and

GraphCodeBERT (pre-training of both models was discussed earlier in Section 4.2.1).

The Dataset: Guo et al. adapt the same CodeSearchNet [89] dataset, with some additional data

for candidate codes [69]. Note that it is basically the same dataset we used for code summarization

except the candidate codes.

Model & Fine-tuning We use Guo et al.’s GraphCodeBERT model, which at the time of submission

is the best performing model with code and parameters available, and so is fine-tunable. The

fine-tuning data is code (PL) matched with (NL) comments, from CodeXGLUE. The pre-trained

GraphCodeBERT embedding vector is calculated for each PL and NL part. During fine-tuning,

Guo et al. take a minibatch of (say n) NL query vector, along with n (correct answers) PL answer

vectors. n2 dot products are calculated; the embedding vectors are then full-stack trained to give

”1” normalized dot product for the matches, and ”0” for the mis-matches. For the actual retrieval,

GraphCodeBERT calculates the vector embedding of a given query, and simply retrieves candidates

ranked by the dot-product distance from the query vector.

4.2.4. Method Name Prediction. The Task as introduced by Allamanis et al. [14] as the

“extreme summarization” problem, the task is to predict the function name given the body.

The Dataset: We adapt the CodeXGLUE dataset by extracting the function name and asking the

model to find the name given the function body. Following [14], the function names are broken

into subtokens using BPE [175] (we’ve used BPE tokenization for all tasks). This problem then

becomes very similar to code summarization.

Model & Fine-tuning Previously Code2Seq [15] and Code2Vec [16] have worked on this problem.

All prior works [14,15,16] use a mono-lingual datasets, which are not suitable for our experiment.

79

We use the same model we used for summarization, except we now learn to sequentially generate the

method name, subtoken by subtoken. We use F1-score for the evaluation. For example, the function

name “createLocal” is broken into two sub tokens (i.e., create and Local), and the model predicts

only “create”. Hence, the precision, recall, and F1-score are 1.0, 0.5, and 0.66, respectively.

4.3. Results

In this section, we evaluate multilingual fine-tuning for the baselines for the tasks enumerated

above.

4.3.1. Code Summarization. We apply multilingual fine-tuning on the CodeXGLUE dataset.

We first replicate the summarization task by (monolingually) fine-tuning the available pre-trained

CodeBERT model for six languages7. We replicate the fine-tuning stage for 2 reasons:

(1) We want to account for any hardware or environmental bias (e.g., we have a different set

of GPUs than the original paper. We fine-tune with NVIDIA TITAN RTX, while Feng et

al. [64] use NVIDIA Tesla V100).

(2) We use a pairwise two-sample statistical test (as described in [169], it is more precise

than just comparing test-set summary statistics) to gauge differences. This requires a

performance measurement for each test sample, which the repository did not include.

Our BLEU-4 numbers for monolingual training were close to reported numbers, with some differ-

ences; but we do obtain the same overall score (17.83) (table 4.5, leftmost 2 columns).

We use the same, per-language test sets to compare monolingual and multilingual fine-tuning.

The validation set, however, is a single multilingual one combining all the monolingual validation

sets. Table 4.5 shows that multilingual fine-tuning improves performance, even for high-resource

languages (with more than 100K training instances). With CodeBERT, multilingual fine-tuning

gains 2.5%-17.5% over monolingual fine-tuning, for all languages, yielding a 6.90% overall improve-

ment (4.48% weighted improvement)8. With the more advanced GraphCodeBERT, we see smaller

gains, although the relative gains span a wide range.

7We use the publicly available CodeBERT implementation and dataset, https://github.com/microsoft/
CodeXGLUE/tree/main/Code-Text/code-to-text
8The CodeBERT paper simply averages the BLEU across languages to report the “overall” number; our weighted
average weights each BLEU by the number of samples in that language.

80

https://github.com/microsoft/CodeXGLUE/tree/main/Code-Text/code-to-text
https://github.com/microsoft/CodeXGLUE/tree/main/Code-Text/code-to-text

Language
CodeBERT

(reported)

CodeBERT

(re-trained)
PolyglotCodeBERT Improvement

Effect

Size

p-value

(adjusted)
GraphCodeBERT PolyglotGraphCodeBERT Improvement

Effect

Size

p-value

(adjusted)

Ruby 12.16 12.53 14.75 +17.72% 0.055 <0.001 12.62 14.95 +18.46% 0.055 <0.001

JS 14.90 13.86 15.80 +14.00% 0.016 <0.001 14.79 15.79 +6.76% 0.016 0.014

Java 17.65 18.72 20.11 +7.43% 0.016 <0.001 19.22 19.91 +3.59% 0.016 <0.001

Go 18.07 18.15 18.77 +3.42% 0.010 <0.001 18.40 18.92 +2.83% 0.010 <0.001

PHP 25.16 25.48 26.23 +2.94% 0.012 <0.001 25.45 26.15 +2.75% 0.012 <0.001

Python 19.06 18.25 18.71 +2.52% 0.022 <0.001 18.02 18.90 +4.88% 0.022 <0.001

Overall 17.83 17.83 19.06 +6.90%
0.016 <0.001

18.08 19.10 +5.64%
0.016 <0.001

Overall

(weighted)

Not

Reported
19.85 20.74 +4.48% 19.98 20.76 +3.90%

*Evaluation criteria followed by CodeXGLUE [134] and CodeBERT [64]

Table 4.5. Effectiveness of multi-lingual fine-tuning for code summarization task. Note

that p-values are B-H corrected

We use a one-sided (AH: monolingual ¡ multilingual) pairwise Wilcoxon signed-rank test (thus

avoiding the corpus-level measurement pitfalls noted in [169]). Null hypothesis is rejected for all

six languages, for CodeBERT. For GraphCodeBERT, it’s rejected overall, and for every language;

except for Javascript, where the p-value is 0.014 (all after B-H correction).

Thus our measurement indicates that multilingual fine-tuning provides a statistically significant

improvement over monolingual training. We find rather low effect sizes using Cliff’s Delta [137].

While we report the effect size for the sake of completeness, this is not a major concern: we

note that all gains are statistically highly significant. We also emphasize that even the minor

improvements provided here by multilingual training (which is broadly compatible with a range of

settings) constitute a relevant and potentially widely useful result. Roy et al [169] have previously

noted that small gains in BLEU-4 may not be perceptible to humans as increased text quality;

nevertheless, we note that natural language translation (which is now widely used) attained high

performance levels based on decades of incremental progress; this result and others below provide

evidence that multilingual training could be an important step in the progress towards more useful

automated tools. Finally, we note that BLEU-4 gains are higher for low-resource language (e.g.,

17.7% for Ruby), and lower for high-resource languages (e.g., 2.5% for Python), as expected.

Comparing Multi-lingual CodeBERT with Other Models Code summarization is widely studied—

there are many models for this task; our specific focus here is to understand if multilingual fine-

tuning provides benefits, using a high-quality token-sequence model and dataset. So we focus com-

parisons on the papers which report performance on CodeXGLUE dataset, and use a token-sequence

inductive bias: comparing against all models is beyond the scope of this paper. We compare multi-

lingual CodeBERT (PolyglotCodeBERT) and GraphCodeBERT (PolyglotGraphCodeBERT)

81

with other models that have been published in peer-reviewed venues; among them, four apply

pre-training strategies [1,64,129,157]. We achieve the best overall performance (table 4.6), out-

performing all the models, and for four specific languages (i.e., Ruby, Java, Go and PHP).

There is one other system, CoTexT [154] which claims (in an unpublished, non-peer-reviewed

report) better performance than us for just Python [154], but is worse overall. We will include it

for comparison once it is published in a peer-reviewed venue.

This table also provides evidence supporting the effectiveness of multilingual fine-tuning.

4.3.2. Code Search. We study the gains from multilingual fine-tuning using two pre-trained

models (i.e.,CodeBERT & GraphCodeBERT). We multilingually fine-tune both models using the

publicly available code & dataset 9. As we did for code summarization, we re-trained the baseline

models, to get performance numbers for each case in the test set (to enable pairwise two-sample

testing). We use the same test sets for both monolingual and multilingual training to evalu-

ate our approach. During the training, GraphCodeBERT uses a matrix of dimension |query| ∗

|candidate codes|. We could not use the full merged validation set (as we did for the code sum-

marization task) because that makes the query and candidate code sets too large; the resulting

matrix could not fit on our GPU server. We used a down-sampled validation set comprising six

monolingual validation sets with 10K query and 50K candidate codes each. However, we did not

face any issue while testing because we did not merge the test sets.

9https://github.com/microsoft/CodeBERT/tree/master/GraphCodeBERT/codesearch

Models Overall Ruby JavaScript Go Python Java PHP

PolyglotGraphCodeBERT 19.10 14.95 15.79 18.92 18.90 19.91 26.15

PolyglotCodeBERT 19.06 14.75 15.80 18.77 18.71 20.11 26.23

ProphetNet-X [157] 18.54 14.37 16.60 18.43 17.87 19.39 24.57

PLBART [1] 18.32 14.11 15.56 18.91 19.30 18.45 23.58

GraphCodeBERT [69] 18.08 12.62 14.79 18.40 18.02 19.22 25.45

CodeBERT [64] 17.83 12.16 14.90 18.07 19.06 17.65 25.16

RoBERTa [129] 16.57 11.17 11.90 17.72 18.14 16.47 24.02

Transformer [193] 15.56 11.18 11.59 16.38 15.81 16.26 22.12

Seq2Seq [184] 14.32 9.64 10.21 13.98 15.93 15.09 21.08

Table 4.6. Comparison to existing models, on CodeXGLUE dataset
82

We report both the published values, and our replication; we need the replication to measure

pairwise gains. Though CodeBERT and GraphCodeBERT both work on sequence of code tokens,

GraphCodeBERT creates a rudimentary data-flow graph, once it’s told the programming language.

Table 4.7 shows that multilingual fine-tuning improves the mean reciprocal rank for all lan-

guages except Go with CodeBERT. The improvement for Ruby, JavaScript, and Java are statisti-

cally significant. We found similar results for GraphCodeBERT exhibiting improvement for Ruby,

JavaScript, Java, and Python; but with GraphCodeBERT both Go and PHP showed performance

declines. However, overall, both showed statistically signficant improvements (p ¡ 0.001); but the

improvement for GraphCodeBERT (1.54%) is lower than CodeBERT (2.74%). Finally, we note

that our numbers for CodeBERT differ from the performance reported for on the CodeXGLUE

leaderboard. This is because CodeXGLUE benchmark uses only Python, and is based on a re-

stricted setting where identifier names are left out. CodeXGLUE team argues that this abstraction

enables them to stress-test the generalization ability of a model; however, here we consider an

unmodified setting where someone gives an natural language query and wishes to find “natural”

code with variable names intact.

Language
CodeBERT

(published) [69]

CodeBERT

(re-trained)
PolyglotCodeBERT Improvement

Effect

Size

p-value

(adjusted)

GraphCodeBERT

(published) [69]

GraphCodeBERT

(re-trained)
PolyglotGraphCodeBERT Improvement

Effect

Size

p-value

(adjusted)

Ruby 0.679 0.677 0.732 +8.12% 0.072 <0.001 0.703 0.708 0.738 +4.24% 0.039 <0.001

JavaScript 0.620 0.616 0.643 +4.38% 0.034 <0.001 0.644 0.644 0.660 +2.48% 0.019 0.004

Java 0.676 0.676 0.697 +3.11% 0.026 <0.001 0.691 0.693 0.710 +2.45% 0.022 <0.001

Go 0.882 0.885 0.885 0% -0.003 0.550 0.897 0.894 0.894 0% -0.002 0.724

PHP 0.628 0.629 0.635 +0.95% 0.009 0.003 0.649 0.648 0.646 -0.31% -0.002 0.904

Python 0.672 0.676 0.678 +0.30% 0.004 0.050 0.692 0.692 0.695 +0.43% 0.005 0.300

Overall* 0.693 0.693 0.712 +2.74%
0.013 <0.001

0.713 0.713 0.724 +1.54%
0.007 <0.001

Overall

(weighted)

Not

Reported
0.692 0.702 +1.42%

Not

Reported
0.709 0.715 +0.80%

*Evaluation criteria followed by GraphCodeBERT [69]

Table 4.7. Effectiveness of multi-lingual fine-tuning for code search task. Note that p-

values are BH-corrected

4.3.3. Method Name Prediction. As for the previous two tasks, we try multilingual fine-

tuning for method name prediction for CodeBERT. Here, too, we find evidence supporting the

conclusion that multilingual training provides improvement for all the languages (Table 4.8). Non-

parametric pairwise improvements are significant for Ruby, JavaScript, and Java. We also note

observe relatively greater effect size for Ruby and JavaScript. Note that we achieve highest im-

provement for JavaScript because many functions therein are anonymous lambdas, since these

functions have no names, they are not useful, and this diminishes available the JavaScript training

83

set relative to other tasks (lambdas still have summaries, and can be used for other tasks). There-

fore, multilingual fine-tuning increases the dataset diversity and boosts JavaScript method name

prediction performance.

Language
CodeBERT PolyglotCodeBERT F-Score

Improvement

Effect

Size

p-value

(adjusted)Precision Recall F-Score Precision Recall F-Score

Ruby 0.44 0.40 0.41 0.53 0.49 0.49 20.59% 0.112 <0.001

JavaScript 0.30 0.24 0.26 0.45 0.40 0.41 59.00% 0.215 <0.001

Java 0.54 0.51 0.51 0.56 0.52 0.52 2.22% 0.016 <0.001

Go 0.54 0.52 0.52 0.56 0.53 0.52 1.67% 0.015 0.004

PHP 0.56 0.53 0.52 0.57 0.53 0.53 1.30% 0.009 0.004

Python 0.49 0.45 0.45 0.50 0.45 0.46 1.60% 0.011 0.002

Overall 0. 48 0.44 0.44 0.53 0.49 0.49 10.09%
0.024 <0.001

Overall

(weighted)
0. 52 0.48 0.48 0.54 0.50 0.50 3.37%

Table 4.8. Effectiveness of multi-lingual fine-tuning for method naming task. Note that

p-values are adjusted using Benjamini-Hochberg

4.3.4. Two Illustrative Examples. We used the same dataset for all tasks; for illustration,

we show (Table 4.9) two test instances where all the tasks show improved performance from mul-

tilingual fine-tuning. In code summarization task, the monolingual fine-tuning scores 25 BLEU-4

in Example 1. CodeBERT produces a semantically wrong comment where multilingual fine-tuning

generates the semantically correct solution. Note that the BLEU-4 is 84 for the second exam-

ple because of the missing period in the gold standard (BLEU-4 is case-insensitive). Multilingual

fine-tuning also helps the code search problem by increasing the MRR from 0.33 (Rank:3) to 1.00

(Rank:1). We also observe performance improvement from the method name prediction task. The

gold standard consists of two sub tokens (i.e., set and Values), and mono-lingual fine-tuning gener-

ates three (i.e., set, Array, and Value), one of them is exact match. On the other hand, multilingual

fine-tuning removes the extra “Array” subtoken and produces two subtokens(i.e., set and Value)

resulting in the F-score 0.50. We observe a similar result in example 2. Note that like BLEU-4,

our method name prediction metric is also case-insensitive.

Finding 3. Multilingual fine-tuning is likely to increase diversity and help the models perform better than those

trained with smaller mono-lingual datasets, especially for low-resource languages, irrespective of the task.

84

4.4. Interpreting results, and Threats

In this section we consider several issues that are relevant to the observed performance of mul-

tilingual training, such as model choice, dataset duplication, performance metrics, generalization,

and different training strategies for the models.

4.4.1. Does Multilingual Fine-tuning Help with Other Models? There are several

models, including CoTexT [154], ProphetNet-X [157], and PLBART [1] which report higher per-

formance than CodeBERT [64] model for the code summarization task. The models for all these

tasks were fine-tuned using monolingual datasets, so we might expect that multilingual fine-tuning

should improve performance. These experiments would require a substantial investment of compute

energy and is left for future work. We focused on CodeBERT (and also GraphCodeBERT on some

tasks). We did some preliminary experiments with multilingual fine-tuning on PLBART. In our

preliminary study, did see the same gains for low-resource language (Ruby, 5% gain). However, we

found a 0.55% overall loss, which is inconsistent with what we observe with PolyglotCodeBERT

(6.90% overall improvement) & PolyglotGraphCodeBERT (5.64% overall improvement). More

study is needed.

Finding 4. Multilingual fine-tuning could benefit a broad range of models. We find gains for CodeBERT and

GraphCodeBERT, but more data is required for other models.

4.4.2. Threats: Risk of Data Duplication? Data duplication can lead to poor-quality

estimates of performance, especially when data is duplicated across training & test; even duplication

just within test data risks higher variance in the estimates. Allamanis finds that performance

metrics are highly inflated when test data has duplicates, and advocates de-duplicating datasets, for

more robust results [13]. Shi et al. also discusses the impact of duplication in code summarization

task [176].

Sadly, there is a large amount of copied code on GitHUB [132]; inattentively combining dif-

ferent datasets harvested from GitHUB can lead to undesirable levels of duplication in the merged

dataset. Fortnuately, CodeXGLUE is atually a carefully de-duplicated dataset; performance esti-

mates therein are thus more robust. Combining multilingual data is unlikely to introduce the same

85

kind of exact duplication in the dataset, because of syntax differences; There is a possibility of

cross-language clones [153]; the study of this is left for future work.

Finding 5. Combining multilingual datasets is unlikely to cause exact duplication, because of syntax differences.

More study is needed to study the effect of cross-language clones.

4.4.3. Threats: Other Metrics? Following CodeXGLUE benchmark recommendation, we

evaluate the code summarization task with smooth sentence BLEU-4 [128] throughout this pa-

per. However, other recognized metrics are are available (e.g., ROUGE-L [127], METEOR [19]).

Prior works [67,169,176] provide a careful analysis of the metrics, baselines, evaluations for code

summarization task. Table 4.10 shows ROUGE-L and METEOR data; we find that multilingual

fine-tuning increases the overall performance by 4.89% and 5.61% in ROUGE-L and METEOR,

respectively. As with BLEU-4, we find that multilingual fine-tuning shows similar performance

gains with these metrics. We find 0.3%-14.1% improvement in ROUGE-L and 1.2%-22.5% gains

in METEOR (except for PHP, were we see a 0.17% decline, not statistically significant). We also

see that Python shows the smallest improvement, not as strongly statistically significant. These

metrics also indicate strong gains from multilingual training for low-resource and narrow-domain

languages (i.e., Ruby and JavaScript).

Finding 6. We observe performance improvement in all code summarization metrics with multilingual fine-tuning.

4.4.4. Monolingual Minibatches? or Multilingual? While training deep neural networks

with stochastic gradient descent, gradients (multivariate derivatives of loss w.r.t learnable parame-

ters) are estimated over mini-batches, rather than calculating loss gradients over the entire training

set; these estimates are used to adjust the weights in the network. Better choices of mini-batches

could improve convergence behavior. With multilingual training, a natural question arises: is

it better to sequentially interperse monolingual mini-batches (e.g., first a Java minibatch, then

Ruby minibatch and so on, before going back to Java?) or should we make each minibatch per se

multilingual?

In the previous experiments, we had randomly sort the dataset; hence, our mini-batches are also

multilingual. So we deliberately tried sequentially monolingual minibatching during multilingual

fine-tuning. We find that sequentially monolingual minibatch training appears to somewhat degrade

86

performance: we observe the overall performance goes down by 1.05%. However, the change is not

statistically significant for any language. We omit the actual numerical details, for space reasons,

since we didn’t find any strong results in either direction.

Finding 7. We don’t find any clear difference between multilingual mini batches and (interspersed) monolingual

mini batches.

4.4.5. Multilingual Model as Pre-trained Model. Our findings provide evidence support-

ing the claim that a multilingual fine-tuned model is effective for code summarization task, which

outperforms all the models trained with monolingual datasets. Could this this improved multi-

lingual model further benefit from a secondary, monolingual fine-tuning exercise, where it receives

specialized fine-tuning for each language separately? To evaluate this intriguing and promising idea,

we load the model with the weights from multilingual fine-tuning, and fine-tune it, again, for each

individual language. Table 4.11 shows that We found some minor performance improvement for

JavaScript and Python. However, the performance goes down for other languages. We do not find

evidence that a secondary, monolingual fine-tuning is helpful; further work is needed to understand

why, and perhaps develop other ways this idea might yield further improvement.

Finding 8. We don’t find evidence that applying a secondary, mono-lingual fine-tuning provides benefits for all

languages.

4.5. Related work

Code Summarization: Code summarization has recently been a hot topic. More than 30 papers have

been published in the last five years that follow some form of encoder-decoder architecture [169].

Several works [67, 169, 176] discuss the evaluations, metrics, and baselining. Roy et al. show

that metric improvements of less than 2 points do not guarantee systematic improvements in

summarization and are not reliable as proxies of human evaluation [169]. We find more than 2

points of improvement for Ruby and almost 2 points of improvement for JavaScript. We observe less

than 2 points in other languages. It should also be noted that we don’t use the corpus-level metrics

which Roy et al. show is problematic; we use pairwise comparisons on the test-sets. Finally,

we note that progress in both code & NLP occurs in small steps over decades, and innovations

87

(especially ones that could cumulate with others) such as ours can be an important part of research

community’s long-term pursuit of practically relevant performance improvements.

Pre-trained models [1, 64, 129, 154, 157] are proven to be more effective than prior models.

Different pre-trained models are trained with the different pre-trained objectives even though fine-

tuning steps are almost similar for all the models. As discussed earlier in Section 4.2.1, CodeBERT

is an encoder model, pre-trained with MLM and Repace Token Detection objectives. Unlike Code-

BERT, PLBART [1] is an encoder-decoder model which is trained as a denoising auto-encoder.

Though all the models are pre-trained with different training objectives, there is one thing common

among all the models: using Transformers as core architecture.

Parvez et al. very recently present an approach that augments training data using relevant

code or summaries retrieved from a database (e.g., GitHub, Stack Overflow) [151]. They ap-

ply this approach on monolingual Java and Python datasets from CodeXGLUE and claim gains

over PolyglotCodeBERT & PolyglotGraphCodeBERT for code summarization. Prima facie,

multilingual fine-tuning is complementary to their approach; this needs to be studied.

Code Retrieval and Method Name Prediction: Code retrieval is also getting attention recently. There

are multiple datasets for this task. CodeXGLUE introduces a monolingual python dataset (taken

initially from CodeSearchNet) abstracting the function names and variables. Guo et al. mod-

ify the multilingual CodeSearchNet dataset and achieve state-of-the-art performance on this task.

However, using multilingual training, we show that both CodeBERT and GraphCodeBERT can be

improved. There is one other very recent paper, CLSEBERT [201] which reports (in an unpub-

lished, non-peer-reviewed report) better performance than us in all languages except Ruby. We

could not show the effectiveness of multilingual training on CLSEBERT because the authors have

not released the code implementation yet. Note that like code summarization, we focus only on

the work using CodeSearchNet multilingual dataset.

CodeSearchNet dataset can be easily adapted to method name prediction task. Several earlier

works address method name prediction, in a Java-only such as Code2Seq [15], Allamanis [14]. They

all use a conventional single-stage machine-learning approach (no pre-training + fine-tuning). Our

goal here is to simply demonstrate that multilingual fine-tuning improves upon monolingual fine-

tuning for the method-naming task, so we demonstrate using CodeBERT. Our numbers are roughly

88

comparable with previously reported results, but we cannot make a precise comparison because of

differences in subtokenization, and because our datasets are multilingual whereas previous work

has largely been monolingual. We are simply arguing here our data suggests that multilingual

fine-tuning is broadly beneficial in different tasks.

It would certainly be interesting to use same-domain data for fine-tuning. For example, sum-

marizing methods in Android apps might work better if trained on Android app corpora; however

curated, domain-specific datasets for each domain are needed, and may not always be possible,

depending on the domain. However, cross-language data is already available, and we show that

it does indeed help improve performance! The effect of domain-specific corpora is left for future

work.

4.6. Conclusion

We began this chapter with three synergistic observations: First, when solving the same prob-

lem, even in different programming languages, programmers are more likely to use similar identi-

fiers (than when solving different problems). Second, identifiers appear to be relatively much more

important than syntax markers when training machine-learning models to perform code summa-

rization. Third, we find that quite often a model trained in one programming language achieves

surprisingly good performance on a test set in a different language, sometimes even surpassing a

model trained on the same language as the test set! Taken together, these findings suggest that

pooling data across languages, thus creating multilingual training sets, could improve performance

for any language, particularly perhaps languages with limited resources, as has been found in

Natural-language processing [53,72,165,186]. We test this theory, using two BERT-style models,

CodeBERT, and GraphCodeBERT, with encouraging results.

Foundation models [32] are currently achieving best-in-class performance for a wide range of

tasks in both natural language and code. The models work in 2 stages, first “pre-training” to

learn statistics of language (or code) construction from very large-scale corpora in a self-supervised

fashion, and then using smaller labeled datasets to “fine-tune” for specific tasks. We adopt the

multilingual CodeXGLUE dataset, and the pre-trained CodeBERT and GraphCodeBERT models,

and study the value of multilingual fine-tuning for a variety of tasks. We find evidence suggesting

89

that multilingual fine-tuning is broadly beneficial in many settings. Our findings suggest that

multilingual training could provide added value in broad set of settings, and merits further study.

90

Example:1

//set the values from an Array

public void setValues* (Array arr) {
//we omit intermediate lines to fit in the paper

//original code here

}
Code Summarization

Models & comments BLEU-4

Gold: set the values from an Array NA

CodeBERT: Sets the values of the array . 25

PolyglotCodeBERT: Set the values from an array . 84

Code Search

Models MRR

GraphCodeBERT 0.33

PolyglotGraphCodeBERT 1.00

Method Name Prediction

Models & method name Sub tokens F-Score

Gold: setValues set Values NA

CodeBERT: setArrayValue set Array Value 0.40

PolyglotCodeBERT: setValue set Value 0.50

Example:2

//Registers set injection point .

public void registerPetiteSetInjectionPoint* (final String beanName, final String property) {
//we omit intermediate lines to fit in the paper

//original code here

}
Code Summarization

Models & comments BLEU-4

Gold: Registers set injection point . NA

CodeBERT: Register a set of set InjectionPoint . 19

PolyglotCodeBERT: Register a set injection point . 60

Code Search

Models MRR

GraphCodeBERT 0.50

PolyglotGraphCodeBERT 1.00

Method Name Prediction

Models & method name Sub tokens F-Score

Gold: registerPetiteSetInjectionPoint register Pet ite Set In jection Point NA

CodeBERT: addPropertyInjectionPoint add Property In jection Point 0.50

PolyglotCodeBERT: setPropertyInjectionPoint set Property In jection Point 0.57

*“registerPetiteSetInjectionPoint” & “setValues” tokens are abstracted for method name prediction task

Table 4.9. Examples exhibiting the effectiveness of multilingual training
91

https://github.com/Unidata/thredds/blob/d2d68f9eee87f345625211324d71d5dc3e162ee1/cdm/src/main/java/ucar/nc2/Attribute.java#L548-L596
https://github.com/oblac/jodd/blob/85ad7f813ec0e07ecd27042aeb47ff2047631fa5/jodd-petite/src/main/java/jodd/petite/PetiteBeans.java#L585-L598

Language
ROUGE-L METEOR

PolyglotCodeBERT Improve.*
Effect

Size

p-value

(adjusted)
PolyglotCodeBERT Improve.*

Effect

Size

p-value

(adjusted)

Ruby 24.36 +14.10% 0.087 <0.001 21.96 +22.54% 0.125 <0.001

JavaScript 24.30 +7.05% 0.022 <0.001 21.59 +11.40% 0.030 <0.001

Java 34.89 +3.32% 0.020 <0.001 31.73 +4.41% 0.020 <0.001

Go 37.36 +2.69% 0.024 <0.001 30.28 +3.73% 0.023 <0.001

PHP 38.81 +0.34% -8.65E-05 0.508 35.52 -0.17% -0.003 0.779

Python 32.86 +1.86% 0.015 <0.001 27.75 +1.24% 0.004 0.033

Overall 32.10 +4.89%
0.016 <0.001

28.14 +5.61%
0.013 <0.001

Overall

(weighted)
34.82 +2.24% 30.52 +2.59%

*Improvement reported over CodeBERT

Table 4.10. Performance improvement in ROUGE-L and METEOR for code summa-

rization task

Language PolyglotCodeBERT
PolyglotCodeBERT

as pre-training
Improvement

Effect

Size

p-value

(adjusted)

Ruby 14.75 14.58 -1.15% -0.016 0.303

JS 15.80 16.47 +4.24% 0.024 <0.001

Java 20.11 19.81 -1.49% -0.003 0.303

Go 18.77 17.97 -4.26% -0.012 <0.001

Php 26.23 25.52 -2.71% -0.017 <0.001

Python 18.71 18.83 +0.64% 0.010 <0.001

Overall 19.06 18.86 -1.05%
-0.003 0.005

Overall

(weighted)
20.74 20.43 -1.47%

Table 4.11. Multilingual model as pre-trained model

92

CHAPTER 5

Towards Understanding What Code Language Models Learned

Pre-trained language models are effective in a variety of natural language tasks, but their

capabilities fall short of fully learning meaning or understanding language. To understand the

extent to which language models can learn some form of meaning, we investigate their ability to

capture semantics beyond superficial frequency and co-occurrence. In contrast to previous research

on probing models for linguistic features, we study pre-trained models in a setting that allows for

objective and straightforward evaluation of a model’s ability to learn semantics. In this paper, we

examine whether models capture the semantics of code, which is precisely and formally defined.

Through experiments involving the manipulation of code fragments, we show that code pre-trained

models learn a robust representation of the computational semantics of code that goes beyond

superficial features of form alone.

Figure 5.1. Semantically identical forms after transformation: Block Swap

5.1. Related Work

Language models are capable of completing various tasks such as reading comprehension [47,

208]. However, model performance is lacks robustness, and so it’s unclear to what extent the

performance of PLMs can be characterized as understanding of the input. For example, PLMs are

known for not properly handling negation and other changes to the intent of the input [62, 110].

93

Moreover, adversarial triggers [100,195] can determine the model output independent of the actual

context. This suggests that PLMs lack understanding of the “meaning” of input texts. Like NLP,

researchers in SE domain have also become interested in studying what pre-train models learn.

Karmakar and Robbes designed four probing tasks (probing for surface-level, syntactic, structural,

and semantic information) [109]. They used them to show how probes can be used to observe

different code properties. Troshin and Chirkova introduced a new set of more complex probing

tasks [190]. They also consider a more comprehensive range of pre-trained models and investigate

different pretraining objectives, model sizes, and the effect of fine-tuning. Unlike these two works,

we restrict ourselves from fine-tuning and directly communicating with the pre-trained models (via

API) to investigate the robustness of the models’ prediction.

Different from previous probing work in understanding what knowledge PLMs capture by ei-

ther correlating models with known information [187, 211] or extracting information from the

model [61, 155], we focus on studying the extent to which PLMs, for code, understand inputs.

Specifically, instead of polluting the input or introducing implicit diagnosing targets [168], we

design experiments to show whether the apparent understanding exhibited by PLMs is limited to

mimicry at a superficial (lexical of syntactic) level, or whether these models capture a deeper notion

of semantics.

Like the BERT-style models, the generative autoregressive models (e.g., GPT-2 [162], GPT-

3 [36]) may also learn the semantics of the program. However, our approach applies only to the

models trained with mask language modeling objectives. BERT Model still in wide use, since

VLLMS not widely available our experimental method is not suitable to study how autoregressive

models model distributions over semantics.

It should be noted that various works have utilized transformations that preserve meaning to

train and comprehend the behavior of models. For instance, Jain et al. [95] utilized an automated

source-to-source compiler to generate functionally similar variants of a program as data and pre-

trained a neural network to identify them among many non-equivalent distractors. Henke et al. [80]

and colleagues employed sequences of parametric, semantics-preserving program transformations

in adversarial training to develop models that can resist such adversaries. Chakraborty et al. [41]

introduced unnatural forms of code using six classes of semantic-preserving transformations in

94

NatGen and compelled the model to generate more natural original programs written by developers

in the pre-training stage. Wan et al. [196] conducted a thorough structural analysis to interpret

pre-trained language models for source code, such as CodeBERT and GraphCodeBERT, from three

perspectives, including attention analysis, probing on word embedding, and syntax tree induction.

They discovered that integrating the syntax structure of code into the pre-training process may

lead to better code representations.

The objective of our study is not to enhance the performance of the models, but rather to com-

prehend the knowledge that the model acquires via certain irrelevant self-supervised training. For

instance, BERT models are trained to unmask randomly selected tokens, which does not contribute

to the model’s resilience to meaning-preserving transformations.

5.2. Methodology

This section will cover the methodology we used in conducting our experiments.

5.2.1. Models’ accuracy with meaning preserving transformation. Unlike natural lan-

guage, code affords feasibly automatable meaning-preserving transforms: in several settings, code

can be rewritten into lexically and syntactically different forms, while exactly preserving meaning.

The formal semantics of code allows, e.g., compilers to manipulate code to change its form, without

altering the computational meaning thereof1. In other words, the compiler for a language L has a

built-in, robust conception of the meaning of code in language L. This robust conception allows

compilers (during optimization) to extensively modify the form of code, without changing its mean-

ing. Thus, here we’re asking the question: can a PLM, trained purely on lexical fill-in-the-blanks

language modeling tasks, capture semantics in a similar manner to compilers, which are explicitly

programmed to capture programming language semantics, via meaning-preserving transforms? Here

are the two different types of meaning-preserving transformations for our experiments.

5.2.1.1. Block Swap. One example can be seen in Figure 5.1, where the original java if state-

ment can be rewritten into the semantically identical form by flipping the then and else blocks,

and also the condition. The forms are different, while the semantics remains unchanged. A PLM

that learns a robust representation of such computational semantics should perform its primary

1This property enables effective metamorphic testing [44] of compilers.

95

completion task correctly, regardless of the lexical or syntactic form of this computation, especially

if the computation is very common. In the case of a BERT-like PLM, the primary task is masked

language modeling (MLM): viz., fill in a masked token. Thus in the example of the original program

in Figure 5.1, if the comparison operator != is masked, a well-trained PLM should guess it correctly

if it can determine that one specific computation is preferred over others resulting from alternatives

that are equally valid from a syntactic perspective. This preference could well be a reflection of

frequency. Now, if the PLM were calculating a robust representation of the computation, if the

operator were masked in the transformed (block swap), semantically identical form, it should guess

the == token.

5.2.1.2. Operand Swap. Figure 5.2 presents another type of meaning-preserving transformation.

Unlike block swaps, we did not change the order of the statements; instead, we switch the positions

of the operands used for binary operators. If we swap the positions of “a” and “b” for this expression,

a > b, we have to update the operator “>” to “<” to preserve the meaning.

Figure 5.2. Semantically identical forms after transformation: Operand Swap

A variety of such transforms are possible: more generally, assume a token (operator, identifier,

etc) ω in a program P . When this program form P is transformed into a semantically equivalent

form P T , let us assume that the ω token in P becomes a token ωT in P T . Given a PLM M, we

check that when ω is masked out in P , M is able to correctly guess it; in addition, ifM were able

to robustly capture the computational semantics of P , it should also recover ωT in P T , were that

token masked.

5.2.2. Robustness of Model Representation. In this section, we evaluate factors affecting

how robustly the model appears to be learning the computational meaning of the code. We consider

various potential factors that might be relevant, including: the influence of variable naming; the

96

Figure 5.3. Semantically equivalent and non-equivalent pairs of program snippets.
We found that the embedding vector distance between the equivalent pairs is lower
than the nonequivalent pairs.

code context that allows the model to learn the meaning; and the effect of refactoring conditions.

Finally, we examine the geometry of the internal embedding space, to check if similarity in meaning

translates to closeness in vector space.

5.2.2.1. Consistent Variable Renaming. Apart from block swap and operand swap, we also

evaluated the performance of the GraphCodeBERT model with consistent variable renaming. Re-

naming the locally declared variables does not change the program’s semantics but certainly leads

to a lexically very different program. Figure 5.4 presents an example where we replace the “ref-

erence” and “ctx” variables with var1 and var2 and perform the block swap and operand swap

evaluation following the approach we mentioned in Section 5.3.3.3. We only change the locally

declared variables, because renaming other variables may change the semantics on the program;

our goal here is to evaluate whether PLMs can reconstruct programs of the same meaning. We

discuss our findings in Section 5.3.3.3.

Figure 5.4. Impact of variable renaming on the performance of GraphCodeBERT
model in block swap transformation. Results show that the model’s performance
does not degrade that much with obfuscation

5.2.2.2. Context length and direction. Language models use embeddings of context to make

their predictions. If predictions are robust to changes in form, which part of the context matters

in determining the operators? To determine the operator in an- if statement, a human developer

97

needs to see the following code (or code written after the conditional statement) to select the right

operator. The code before the if statement should have much less influence. Is this also true for

the model? In this study, we gradually increase the context on both sides (before and after the

conditional statements) and observe the models’ output. We compare it with results we get only

using the after context. Of course, it’s possible that previous tokens may also help maintain the

program semantics (e.g., method name, identifiers)

5.2.2.3. Refactoring of Conditional Statement. We consider a Refactoring transformation, to

see if this affects the performance of the model2. Figure 5.5 presents an example showing how we

refactored the conditional statement, by introducing a boolean variable. Note that it is not trivial

to change the position of the conditional statement one has to ensure that such a refactoring step,

leaves the semantics the same. We declared a boolean variable condition, assigned the conditional

statement to the variable, and replaced the statement with that variable. After transformation,

we applied a block swap operation on the function and evaluated the model on the original and

block-swapped versions.

5.2.2.4. Distance in Embedding Space. We also study how program transformations affect the

representation space. Specifically, we create two versions of programs from the original function.

One preserves computational meaning (i.e., block swap), and the other one is superficially more

similar (smaller edit distance) but is semantically non-equivalent (See example in Table 5). We

take the embedding of the CLS token in the last layer as the program representation and report the

euclidean distance between the two swap versions and the original. If PLMs are capturing meaning

robustly in representation space, we might expect that semantically identical programs are closer

in representation space. We discuss the result in Section 5.3.3.5.

5.2.3. Confidence vs. Robustness. PLMs, like other language models, have varying degrees

of confidence when they predict a token. This can be measured using negative log-likelihood, which

is analagous to entropy3. The more confident a model is on a prediction, the higher the probability,

and the lower this value. We were interested to understand how confidence, measured as negative

log-likelihood, which we informally refer to as entropy below affects the correctness of it’s prediction.

2We thank Aryaz Eghbali of the Uni. of Stuttgart, for this suggestion.
3Entropy is the expected value of negative log-likelihood, typically estimated by averaging negative log-likehood over
a test sample.

98

Transformation Model
Accuracy Entropy

Original Transformed Both Original Transformed

Block Swap

RoBERTa (NLP) 48.12% 29.01% 1.88% 1.43 1.78

CodeBERT 84.64% 63.65% 59.04% 0.55 1.43

GraphCodeBERT 87.97% 68.34% 65.19% 0.45 1.39

Operand Swap

RoBERTa (NLP) 52.67% 13.31% 10.77% 1.21 1.75

CodeBERT 93.30% 87.18% 86.02% 0.24 0.48

GraphCodeBERT 95.18% 91.38% 89.85% 0.17 0.35

Table 5.1. Performance of model prediction on the original and transformed pro-
grams. Results show that the PLMs can still predict the operators accurately on
both block and operand swap despite higher entropy. This indicates that the model
relies on semantic meaning rather than simple frequency (signified by entropy).

It’s not always the case that higher confidence results in more correctness; Zhou et al [226] for

example, report inverse relationships between confidence, and more accuracy in answers on Q&A

datasets generated by GPT-3. A well-calibrated model should be more right, when it’s more

confident. To evaluate this, we consider four cases:

(1) ORTR (original right & transformed right): The model successfully predicts both the

original and transformed operator.

(2) ORTW (original right & transformed right): The model successfully predicts the original

operator but fails to predict the transformed operator.

(3) OWTR (original wrong & transformed right): The model successfully predicts the trans-

formed operator but fails to predict the original operator.

(4) OWTW (original wrong & transformed wrong): The model fails to predict the original

and transformed operator.

The model’s robustness gradually decreases from top to bottom in the above list. For example,

if the model can achieve a higher number of examples in ORTR category, that indicates that the

model is more robust to meaning-preserving transformation. We observed the entropy in each

category and examined if the entropy of the operator connected to the robustness of the model.

5.3. Experiments and Results

We now present the experimental setup we used, and some of our results and analysis.

99

5.3.1. Dataset and experiments. We implemented two transforms in our experiments to

check the robustness property, Block Swap, and Operand Swap. For block swap, we parsed

programs into abstract syntax tree (AST)4 form, and swapped the “then-else” clause nodes in the

tree; to preserve meaning, the conditional operator therein will also have to be changed. Similarly,

for operand swap, we swap the variable names of the statement clause. We apply operand swap to

all conditional statements (e.g., in both loops and conditionals), while we only apply transformation

to if-else statements with block swap. We show examples in Figure 5.1 and 5.2 for illustration.

We use the Java code in the test set of CodeSearchNet [89] for our experiments; CodeSearchNet

is a properly de-duplicated dataset following the approach proposed by Allamanis [ref]. The training

split of the dataset was used to pre-train the GraphCodeBERT model. To prevent exact data

leakage from training to testing, we only use the test split of the CodeSearchNet dataset for our

semantic transformations. Note that we also apply several transformations (variable renaming and

refactoring of the conditional statement) to the program. The resulting code is un-natural, and

that reduces the likelihood of the exact test data being present in the original pre-training dataset

(as demonstrated by Casalnuovo et al [39]). We gather 1,425 examples for block swap and 9,377

examples for operand swap. To guarantee meaning preserving transformation, we did not include

any condition where both operands make function call.

Specifically, we choose the programs where there are conditions that we can apply block or

operand swap. For all the experiments, the task is to predict the masked operator (i.e., ==, ! =,

<, >, <=, >=).

We experiment with one LM trained on natural language (RoBERTa [130]) and two PLMs

trained on code (CodeBERT [64] and GraphCodeBERT [68]). In particular, CodeBERT adapts

MLM and replaced token detection (RTD) as the training objective, while GraphCodeBERT also

considers simplified dataflow (including edge prediction and node alignment) in addition to MLM.

We report the model prediction accuracy before and after the transformation on Java, as well as

the accuracy when the model predicts both forms correctly.

5.3.2. Models under Consideration. Widely-used pre-trained models, including BERT,

RoBERTa, and GPT, are based on Transformer models and trained with various pre-training

4We use https://github.com/tree-sitter/tree-sitter

100

https://github.com/tree-sitter/tree-sitter

objectives. The pre-trained models go through two stages, where the model is pre-trained on a

large, unlabeled corpus before being fine-tuned on a smaller labeled dataset for specific tasks. This

allows for training high-capacity deep-learning models despite the limited availability of labeled

data. The following subsections will briefly overview models used in the experiments. Note that

we could evaluate the models with enabled “”fill-mask”” API.

5.3.2.1. RoBERTa. BERT was the first model to introduce pre-training as a strategy, which

surpassed traditional Transformer models. It used two pre-training techniques: Masked Language

Modeling (MLM) and Next Sentence Prediction (NSP). MLM involves randomly masking out 15%

of the tokens and asking the model to predict them, while NSP trains the model to predict the

next sentence following an input sentence. RoBERTa, proposed by Liu et al. [130], improved on

BERT’s performance by implementing a few changes, such as dynamic masking and dropping NSP.

As a result, it achieved better results and is used as the NLP baseline model.

5.3.2.2. CodeBERT. CodeBERT [64] is similar in structure to the RoBERTa model and utilizes

two pre-training objectives: MLM and Replaced Token Detection (RTD). RTD involves two data

generators, NL and PL, generating possible replacements for a set of randomly masked positions,

which the model is then trained to classify as either the original word or a replacement. CodeBERT

was pre-trained on the CodeSearchNet dataset. Note that we could not use the original CodeBERT

model because that model is not easily programmable. We used an alternative CodeBERT version

“CodeBERT-mlm”, pre-trained with only MLM objective.

5.3.2.3. GraphCodeBERT. GraphCodeBERT [68] enhances source code with data flow during

the pre-training process. It uses a simple data flow graph (DFG) to represent the relation between

variables in terms of where their values come from. The DFG nodes are variable occurrences, while

the edges represent value flow. GraphCodeBERT is pre-trained with three objectives (Edge Predic-

tion, Node Alignment, and MLM) on 2.3 million functions (PL-NL pairs) from the CodeSearchNet

dataset. It learns a joint representation of the DFG structure, DFG alignment with source code,

and the source code token sequences. The pre-training and fine-tuning approach utilizes high-

capacity models that are pre-trained over a large, multilingual corpus. Hence, the models already

have extensive knowledge of each language even before fine-tuning.

101

5.3.3. Results and Analysis. In this section, we will analyze the outcomes of our experi-

ments and discuss our findings.

5.3.3.1. Accuracy of Block Swap and Operand Swap. Table 5.1 shows results for operator pre-

diction accuracy. CodeBERT and GraphCodeBERT achieve high accuracy on the original programs

(> 80%) and relatively high for the transformed programs (> 60%) for both the block swap and

operand swap, compared to a random baseline (which does a multinomial guess over operators

based on frequency in the training set) of 16.67%. This suggests that the PLMs are robustly

learning a realistic distribution over the semantics of the code, and can thus correctly perform

the pre-training tasks, even when working with different forms of a program (while maintaining

the same computational meaning). The higher accuracy on operand swap over block swap can be

due to that other conditions might be easier to predict over if statements. Moreover, the smaller

difference between the original and transformed forms indicates that PLMs are not confused by

the edit distance of transformation, while the context window might be important in preserving

semantics (analyzed below). The poor results of RoBERTa, which is not pre-trained specifically

on code data are noteworthy; the results suggest that it lacks robustness in capturing semantics,

perhaps it hasn’t “seen” a lot of code.

5.3.3.2. Impact of Context Length and Direction. In Section 5.2.2.2, we discuss the context

length and direction used by the model for prediction. Table 5.2 examines how model prediction

accuracy (and entropy) vary with context length. We evaluate the performance considering the

next ten tokens only after the target operator (e.g., +10) or together with the previous ten tokens

(e.g., ±10). Results suggest that previous tokens (such as function names and identifiers) also

help maintaining the program semantics, but the majority improvement is from considering longer

context after the target token for both block swap and operand swap. Note that as the amount of

context increases, the entropy decreases, indicating greater model confidence. For Block swap, using

the 50 following tokens we achieve 82.05% accuracy while adding 50 more preceding tokens increases

the accuracy to 85.13%. Therefore, we can conclude that the preceding token has minimal impact

on the models’ accuracy. The importance of the following tokens to accuracy gives an additional

signal that the model is utilizing the correct context for determining the correct missing operator

in both transformed and original programs.

102

Transformation Context Original Transformed Both
Original

(Entropy)

Transformed

(Entropy)

Block-swap

±10 66.61% 47.96% 31.35% 1.10 1.85

+10 67.25% 46.14% 30.71% 1.18 2.03

±30 81.77% 60.66% 52.80% 0.66 1.52

+30 79.52% 58.34% 50.07% 0.77 1.58

±50 85.13% 64.10% 58.34% 0.53 1.47

+50 82.05% 61.99% 54.63% 0.66 1.54

Complete 87.97% 68.34% 65.19% 0.45 1.39

Operand-swap

±10 85.05% 81.70% 78.08% 0.51 0.65

+10 78.88% 73.83% 69.32% 0.69 0.98

±30 92.86% 89.49% 87.46% 0.25 0.41

+30 88.19% 84.39% 80.47% 0.38 0.57

±50 93.93% 90.14% 88.44% 0.21 0.39

+50 89.21% 85.60% 81.89% 0.36 0.54

Complete 95.18% 91.38% 89.85% 0.17 0.35

Table 5.2. Impact of context length and direction on the performance of Graph-
CodeBERT model in block swap and operand swap transformations. Results show
that the next few tokens (e.g., +50) is critical to model performance, while consid-
ering previous tokens (e.g., +-50) provides complementary information. “complete”
considers all tokens in the program.

5.3.3.3. Impact of Consistent Variable Renaming. Earlier in Section 5.2.2.1, we discussed the

use of consistent variable renaming to evaluate the models’ accuracy and robustness against meaning

preserving transformations. Though the number of samples where the model successfully predicts

the original and transformed operators decrease a bit (65.19% vs. 64.64% for block swap and

89.85% vs. 86.11% for operand swap), the performance and entropy of the model are very much

similar to what we observed with the original version of the program. Therefore, variable renaming

does not impact GraphCodeBERT’s performance on both the original and transformed version of

the code; the model is able to robustly capture useful statistics over semantics of programs, even

after variable renaming.

The variable names we use are unhelpful and unnatural; professional developers would avoid

writing such programs. The model is unlikely to have seen the transformed program in the pre-

training dataset. Even so, the model fairly reliably predicts the operators, suggesting that the

103

Transformation Model
Accuracy Entropy

Original Transformed Both Original Transformed

Bock Swap

RoBERTa 50.04% 27.4% 1.87% 1.48 1.81

CodeBERT 84.88% 62.33% 58.41% 0.56 1.41

GraphCodeBERT 88.12% 67.89% 64.64% 0.46 1.39

Operand Swap

RoBERTa 52.53% 14.07% 11.44% 0.38 1.45

CodeBERT 92.91% 83.28% 81.72% 0.26 0.71

GraphCodeBERT 94.65% 87.54% 86.11% 0.20 0.55

Table 5.3. Impact of variable renaming on the performance of the models in block
swap transformation. Results show that the model’s performance does not degrade
that much with variable renaming.

Model
Accuracy Entropy

Original Transformed Both Original Transformed

RoBERTa (NLP) 13.77 7.78 0.7 2.64 2.39

CodeBERT-mlm 68.52 51.06 41.83 1.13 1.56

GraphCodeBERT 77.41 58.16 52.52 0.88 1.45

Table 5.4. Impact of refactoring conditional statement on model performance in
re block-swap transformation. Model performance decreases somewhat with refac-
toring, but is still quite good.

model robustly learns the semantics of the program and isn’t just repeating something it has seen

during pre-training.

Figure 5.5. Impact of refactoring on the performance of GraphCodeBERT model
in block swap transformation. Results show that the model’s performance does not
degrade that much with such operation

5.3.3.4. How Do the Models When Condition Expressions are Refactored? Table 5.4 shows that

the model’s accuracy decreases for all the models. For GraphCodeBERT, the accuracy goes down

for both the original and block-swapped versions, and the model’s accuracy to correctly guess both

104

Model
distance between

non-equivalent swap

distance between

equivalent swap
p-value

CodeBERT 2.51e-5 1.80e-5 <0.001

GraphCodeBERT 9.09e-5 7.63e-5 <0.001

Table 5.5. The impact of semantically meaning preserving transformations in the
embedding space reported by the averaged cosine similarity between semantically
equivalent swap and non-equivalent swap. The significant difference suggests that
PLMs learn a robust representation beyond superficial features. p-value is calculated
for one-sided pairwise Wilcoxon set [209].

operators goes down from 65.19% to 52.52%. However, 52.52% is significantly higher than random

guessing. Note that refactoring the conditional statement, substantially increases the entropy of

the operator, and (as shown below) the models’ robustness depends on this measure.

5.3.3.5. Semantics versus Training Frequency. To examine whether the PLMs predict the operands

by merely memorizing token frequency, rather than more robustly relying on the functional seman-

tics (which is an important component of meaning), we report the entropy (negative log-likelihood)

of the masked operands. Entropy measures the unlikelihood of a predicted token, which is influ-

enced by its surrounding context. Table 5.1 presents the log-likelihood of the original operator and

transformed operator and the log-likelihoodof the predicted operator increases significantly after

the transformation (for example, doubling from 0.17 to 0.35 for GraphCodeBERT on Operand

Swap). Even so the accuracy is robustly preserved (from 95.18% to 91.38%). This suggests that

rather than minimizing the superficial (lexical) entropy by memorizing familiar syntax, PLMs learn

to encode the computational meaning.

We also examined the geometric effect of program transformation in the vector representation

space. Specifically, we create two versions of programs from the original function. One preserves

computational meaning (i.e., block swap), and the other one is superficially more similar (smaller

edit distance) but is semantically non-equivalent (See example in Table 5.3). We take the em-

bedding of the CLS token in the last layer as the program representation, and report the cosine

distance between the two swap versions and the original. Table 5.5 shows that the distance be-

tween semantics-preserving swap is significantly smaller than that for non-preserving swap. The

results suggest that PLMs assign similar representation to programs of similar meanings, rather

than similar surface forms. It also justifies for the relatively high accuracy in operator prediction

105

after form transformation. Note that we can increase the syntactic similarity but keep the program

semantically inconsistent. In those scenarios, the models may prefer the syntactically similar one.

However, evaluating all possible combinations is beyond the scope of the study.

Since the transformed programs do not occur in the training data and in fact are rather differ-

ent from real code scripts, our findings suggest that code PLMs learn a robust representation of

computational meaning, beyond superficial features.

Transformation Model Transformed?
Entropy Count

ORTR ORTW OWTR OWTW ORTR ORTW OWTR OWTW

Block Swap

RoBERTa (NLP)
No 0.99 0.63 1.96 2.38

22 542 318 290
YES 0.94 2.46 0.66 1.76

CodeBERT-mlm
No 0.06 0.41 2.58 2.67

692 300 54 126
YES 0.10 3.88 0.41 3.31

GraphCodeBERT
No 0.05 0.31 2.74 2.99

764 267 37 104
YES 0.08 4.29 0.48 3.84

Operand Swap

RoBERTa (NLP)
No 0.42 0.57 2.03 1.96

931 3619 219 3868
YES 1.03 2.20 1.37 1.55

CodeBERT-mlm
No 0.05 0.31 1.99 2.79

7431 629 100 477
YES 0.09 3.10 0.72 3.19

GraphCodeBERT
No 0.03 0.34 2.02 2.95

7762 460 132 283
YES 0.06 3.28 0.67 3.48

Table 5.6. The model’s success on both original and transformed operators can
be predicted from the entropy of the original and transformed operators.

5.3.4. Log-likelihood Indicates Robustness. As discussed in Section 5.2.3, we consider

four categories of samples (i.e., ORTR, ORTW, OWTR, and OWTW); in each, we measure the

average entropy of the masked operator. In all cases, lower values of operator’s cross-entropy is

associated with better performance of the model; In the (best performing) ORTR category, the

entropy for the CodeBERT and GraphCodeBERT models ranges from 0.05 to 0.10 for both the

original and transformed version of the operators in both transformations; most examples for the

code-specialized models above are in this category. Compared to ORTR, for other categories,

the entropy is much higher. Note that the (non-code) NLP model (i.e., RoBERTa) yields higher

log-likelihood even for ORTR category. Also for ORTW and OWTR category the code models

relatively show low log-likelihood for the right prediction and high log-likelihood for the wrong

prediction.

5.3.5. Error analysis. Table 5.7 shows model performance on the original and block swapped

programs for each individual operator. We observe that the model achieves the highest F-score for

106

Operator
Is block

swapped?
TP FP FN Precision Recall F-score

“==”
No 547 50 19 0.92 0.97 0.94

Yes 314 171 7 0.65 0.98 0.78

“!=”
No 301 15 20 0.95 0.94 0.94

Yes 431 13 175 0.97 0.71 0.82

“<”
No 66 23 29 0.74 0.69 0.71

Yes 18 67 8 0.21 0.69 0.32

“<=”
No 2 11 23 0.15 0.08 0.1

Yes 9 2 90 0.82 0.09 0.16

“>”
No 57 25 42 0.7 0.58 0.63

Yes 9 107 16 0.08 0.36 0.13

“>=”
No 18 16 8 0.53 0.69 0.6

Yes 20 10 75 0.67 0.21 0.32

Overall
No 991 140 141 0.88 0.88 0.88

Yes 801 370 371 0.68 0.68 0.68

Table 5.7. Operator-wise performance of GraphCodeBERT in the block-swapped
program.

Operator
Is operand

swapped?
TP FP FN Precision Recall F-score

“==”
No 4081 90 116 0.98 0.97 0.97

Yes 4119 226 78 0.95 0.98 0.96

“!=”
No 2910 62 74 0.98 0.98 0.98

Yes 2901 94 83 0.97 0.97 0.97

“<”
No 761 80 67 0.9 0.92 0.91

Yes 184 207 125 0.85 0.67 0.75

“<=”
No 51 46 37 0.53 0.58 0.55

Yes 70 65 104 0.52 0.4 0.45

“>”
No 237 86 73 0.73 0.76 0.74

Yes 558 97 270 0.85 0.67 0.75

“>=”
No 126 46 48 0.73 0.72 0.72

Yes 10 25 78 0.29 0.11 0.16

Overall
No 8166 410 415 0.95 0.95 0.95

Yes 7842 714 738 0.92 0.91 0.91

Table 5.8. Operator-wise performance of GraphCodeBERT in the operand-
swapped program.

“==” (0.94) , which is also the most frequent operator in the original code. However, after trans-

formation, the model can still predict its corresponding “!=” correctly (0.82) despite the higher

frequency distribution of “==” in the training data. Meanwhile, results show a large performance

107

drop after the transformation for “<” and “>”, where the model is confused by whether to add

the equal condition (e.g., the model may predict “>” while the ground truth is “>=” after the

transformation for “<”) . This can also be justified by the relatively high F-score after transfor-

mation on the “<=” and “>=” operators, where the frequency distributions are relatively similar.

We observed similar results with operand swap operations (Table 5.8). Apart from >= and <=s,

for all the operators the F-score is more than 0.73.

5.4. Limitations

Although our experiments and analysis suggest that pre-trained language models can learn a

semantic representation which robust against some meaning-preserving transforms, we acknowledge

that our findings may only apply to code PLMs rather than PLMs for natural language, and that

the semantics of code is different from the semantics of natural language, although parallels exist.

Despite that defining “meaning understanding” is complicated in natural language, it is non-trivial

to construct an equivalent experiment to our setting. We plan to expand our experiments to natural

language inspired by pragmatics and psycholinguistic diagnostics [62,150] as our future work. Also,

our proposed approach can only investigate the mask language model. The recent large language

models (e.g., GPT-3) are decoder only, and whether that auto-regressive generative model learns

semantics can not be judged by our approach.

5.5. Conclusion

Unlike previous probing research using linear classifiers, we study how much pre-trained lan-

guage models encode semantics for understanding beyond frequency and co-occurrence. We de-

signed experiments in a restricted setting based on the precise and formal quality of code and

found that the models learn code semantics. We also observed that semantically equivalent pro-

gram pairs have the minimum distance in the embedding space compared to syntactically more

similar but semantically inequivalent program pairs. Our experiments with restricted context,

variable renaming, and repositioning the conditional statement strengthen our claim about the

model’s semantic understanding because such transformations made the program more unnatural.

Still, the model can efficiently predict the original and transformed operators correctly even though

the model is not pre-trained with the exact token sequence.

108

CHAPTER 6

Automatic Semantic Augmentation of Language Model Prompts

(for Code Summarization)

Large Language Models (LLM) are a new class of computation engines, “programmed” via

prompt engineering. Researchers are still learning how to best “program” these LLMs to help

developers. We start with the intuition that developers tend to consciously and unconsciously have

a collection of semantics facts in mind when working on coding tasks. Mostly these are shallow,

simple facts arising from a quick read. For a function, examples of facts might include parameter

and local variable names, return expressions, simple pre- and post-conditions, and basic control

and data flow, etc.

One might assume that the powerful multi-layer architecture of transformer-style LLMs makes

them inherently capable of doing this simple level of “code analysis” and extracting such informa-

tion, implicitly, while processing code: but are they, really? If they aren’t, could explicitly adding

this information help? Our goal here is to investigate this question, using the code summariza-

tion task and evaluate whether automatically augmenting an LLM’s prompt with semantic facts

explicitly, actually helps.

Prior work shows that LLM performance on code summarization benefits from few-shot samples

drawn either from the same-project or from examples found via information retrieval methods

(such as BM25 [166]). While summarization performance has steadily increased since the early

days, there is still room for improvement: LLM performance on code summarization still lags its

performance on natural-language tasks like translation and text summarization.

We find that adding semantic facts actually does help! This approach improves performance

in several different settings suggested by prior work, including for two different Large Language

Models. In most cases, improvement nears or exceeds 2 BLEU; for the PHP language in the

109

challenging CodeSearchNet dataset, this augmentation actually yields performance surpassing 30

BLEU1.

6.1. Background & Motivation

Large Language Models (LLM) are transforming software engineering: these LLMs define a new

class of computation engines that require a new form of programming, called prompt engineering.

We first contextualise ASAP, our contribution to prompt engineering. Finally, we discuss our choice

of code summarisation as the exemplary problem to demonstrate ASAP’s effectiveness.

6.1.1. The LLM Tsunami Hits SE. LLMs are now widely used in Software Engineering

for many different problems: code generation [43,94], testing [106,123], mutation generation [21],

program repair [63, 98, 101, 145], incident management [8], and even code summarization [3].

Clearly, tools built on top of pre-trained LLM are advancing the state of the art. Beyond their

raw performance at many tasks, two key factors govern the growing dominance of pretrained LLM,

both centered on cost. First, training one’s own large model, or even extensively fine-tuning a

pre-trained LLM, requires expensive hardware. Second, generating a supervised dataset for many

important software engineering tasks is difficult and time-consuming. Often, neither academic nor

small companies can afford these costs.

There are some smaller models swimming against the LLM riptide specifically designed for code

that have gained popularity, e.g., Polycoder [212] or Codegen [146]. Despite these counterpoints,

we focus on LLM rather than small models, because, while small models can be fine-tuned, they

don’t do very well at few-shotting, which brings the advantage of being able to use just small

amounts of available data. The few-shot approach is key because it brings into reach many problems,

like code summarization, for which collecting sufficient, high-quality, project- or domain-specific

training data to train even small models from scratch is challenging.

With few-shot learning, we do not actually change the parameters of the model. Instead, we

present a few problem instances along with solutions to a model and ask it to generate the answer

for the last instance, which we do not provide with a solution. When it works, few-shotting allows

us to automate even purely manual problems, since generating a few samples is relatively easy. In

1Scores of 30-40 BLEU are considered “Good” to ”Understandable” for natural language translation, see https:
//cloud.google.com/translate/automl/docs/evaluate

110

https://cloud.google.com/translate/automl/docs/evaluate
https://cloud.google.com/translate/automl/docs/evaluate

this paper, we experiment with the code-davinci-002 model [43]. We discuss models in more detail

in subsection 6.2.2.

6.1.2. Prompt Engineering. Reasoning is a mental process that involves using evidence,

logical thinking, and arguments to make judgments or arrive at conclusions. It is an essential

component of intellectual activities like decision-making, problem-solving, and critical thinking [86,

158]. In the field of natural language processing (NLP), several attempts have been made to develop

models that can reason about specific scenarios and improve performance. Approaches like ”Chain

of thought” [207] and ”step-by-step” [113] require generating intermediate results (“lemmas”) and

utilizing them in the task at hand. Such approaches appear to work on simpler problems like school

math problems even without providing them with “lemmas” , because, for these problems, models

are powerful enough to generate their own “lemmas”; in some cases just adding “let’s think step

by step” seems sufficient (See Kojima et al. [113]).

We tried an enhanced version of the “step-by-step” prompt, with few-shots, on code summa-

rization. We found that the model under-performed (getting about 20.25 BLEU-4), lower even than

our vanilla BM25 baseline (24.97 BLEU-4). With zero-shot Kojima-style “step by step” prompt,

the models peform even worse. To induce the model to generate steps, and finally a summary, we

framed the problem as chain of thought, and included few-shot samples containing both interme-

diate steps (“lemmas”) and final comments. The reasoning is that, on the (usually challenging)

code-related tasks, models need to explicitly be given intermediate “lemmas” derived from code,

to be able to reason effectively about most software engineering tasks, which tend more complex

and varied than school maths.

Fortunately, software engineering is a very mature research area; well-engineered tools for code

analysis are available. In this paper, we aim to derive “lemmas” directly using code analysis tools,

rather than expecting the models to (perhaps implicitly) derive them, during on-task performance.

We directly embed this information into the prompt provided to the model, and evaluate the

benefits. The information we derive and add are based on our own intuitions about the kinds of

“lemmas” that developers consciously or unconsciously consider as they seek to understand and

summarize code.

111

We do find that providing such information to models improves scores at the summarization

task. It is, of course, possible that LLMs could derive this information themselves given more

computation during training and inference. Nonetheless, it is simple, quick and easy to just build

them into a prompt, using robust, fast analysis tools. It is worth reminding the reader that most

work involving large language models (LLMs) usually uses some form of prompt engineering to

boost performance. In this paper, we show that the ASAP approach, which augments prompts

with code analysis products, can help models summarize code even better than previous prompting

approaches.

6.1.3. Summarizing Code. Well-documented code is much easier to maintain; so experi-

enced developers do make significant efforts to add textual summaries to code. However, outdated

or misleading summary comments can occur due to the continuous evolution of projects [33, 65].

Automated code summarization is thus a well-motivated task, which has attracted a great deal of

attention; and considerable progress (albeit incremental, over many years) has been made. Initially,

template-based approaches were popular [59,73,74,167,183]; however, creating a list of templates

with good coverage is very challenging. Later, researchers focused on the retrieval-based (IR) ap-

proach [59,73,74,167], where existing code (with a summary) is retrieved based on similarity-based

metrics. However, this promising approach only worked if a similar code-comment pair could be

found in the available pool.

In recent years, the field of Natural Language Processing (NLP) has undergone a revolution

with the introduction of neural models. The similarity of code summarization to Neural Machine

Translation (NMT), led to research that adapted NMT approach for code summarization. Neural

models are now widely used for code summarization, and numerous studies have been conducted in

this area [2,85,91,122]. Some studies have combined previous approaches, such as template-based

and retrieval-based approaches, using neural models [223], and have reported promising results.

Such neural methods for NLP have vastly improved, due to the Transformer architectural style.

Until recently, pre-trained language models such as CodeBERT [64] and CodeT5 [203] per-

formed best for code summarization. However, Large Language Models (LLMs) can outperform

smaller pre-trained models in many problems; indeed, it is quite rare anymore for pre-trained mod-

els to outperform LLMs. Ahmed and Devanbu [3] report that LLMs can outperform pre-trained

112

Figure 6.1. Different steps of prompt enhancement.

language models with a simple prompt consisting of just a few samples already in the same project;

this work illustrates the promise of careful construction of prompt structures (c.f. “prompt engi-

neering”). In this paper, we introduce ASAP, the general approach of Automatic Augmentation of

Prompts with Semantic information. We emphasize, again, that progress in code summarization

has been incremental, as in the field of NMT, where practical, usable translation systems took

decades to emerge; while progress has been faster for code summarization, more advances are still

needed, and we contribute our work to this long-term enterprise.

6.2. Dataset & Methodology

In this section, we will discuss the dataset, models, and methodology of our approach.

6.2.1. Dataset. We use the CodeSearchNet [89] dataset for our experiments: it is a carefully

de-duplicated, multi-project dataset, which allows cross-project testing. De-duplication is key:

Code duplication in machine learning models can deceptively inflate performance metrics by as

much as 100% when measured on duplicated code datasets, compared to de-duplicated datasets [13,

132,177].

It is part of the CodeXGLUE [133] benchmark, which comprises 14 datasets for 10 soft-

ware engineering tasks. Many models have been evaluated on this dataset. The CodeXGLUE

dataset contains thousands of samples from six different programming languages (i.e., Java, Python,

113

Language #of Training Samples #of Test Samples

Java 164,923 250

Python 251,820 250

Ruby 24,927 250

JavaScript 58,025 250

Go 167,288 250

PHP 241,241 250

Table 6.1. Number of training and test samples.

JavaScript, Ruby, Go, PHP). However, we did not use the entire test dataset; instead, we selected

250 samples uniformly at random from each language. Since the original dataset is cross-project

and we sampled it uniformly, our subsample remains cross-project. Additionally, we utilized a sub-

set of this dataset for same-project few-shotting, following Ahmed and Devanbu [3]; This approach

sorts the same-project data by creation date, using git blame, and selects only temporally earlier

samples for the few-shot samples; this prevents any data leakage from the future to the past. We

will delve deeper into this same-project dataset in Section 6.3.3.

As mentioned earlier, we don’t use any parameter-changing training on the model; we just

insert a few samples selected from the training subset into the few-shot prompt. Table 6.1 lists the

count of training & test samples used for our experiments.

6.2.2. The Models. In earlier work, transformer-based pre-trained language models offered

significant gains, in both NLP and software engineering. Pre-trained language models can be

divided into three categories: encoder-only, encoder-decoder, and decoder-only models. While

encoder-decoder models have initially shown success on many tasks, decoder-only LLMs are now

more scaleable and effective for numerous tasks.

Encoder-Decoder model. BERT was one of the earliest pre-trained language models [56]; it

was pre-trained using two self-supervised tasks: Masked Language Modeling (MLM) and Next

Sentence Prediction (NSP). Later, RoBERTa [129] was introduced with some minor modifications

to BERT, using only the MLM model, and it performs even better than BERT. CodeBERT [64]

and GraphCodeBERT [69] introduced these ideas to Software Engineering, solving more complex

problems and trained with very similar pre-training objectives. Note that although CodeBERT and

114

Figure 6.2. Different components of our enhanced prompt.

GraphCodeBERT are encoder-only models, they can be applied to code summarization after fine-

tuning with an uninitialized decoder. Ahmed & Devanbu report that polyglot models, which are

fine-tuned with multilingual data, outperform their monolingual counterparts [4]. They also report

that identifiers play a critical role in code summarization tasks. PLBART [1] and CodeT5 [203]

also include pre-trained decoders and are reported to work well for code summarization tasks.

More recently, very large scale (decoder-only) auto-regressive LLMs (with 175B+ parameters) have

been found to be successful at code summarization with few-shot learning, without any explicit

training. In the next section, we will briefly introduce the two OpenAI models we considered for

our experiments.

Decoder-only model. In generative pre-training, the task is to auto-regressively predict the next

token given the previous tokens moving from earlier to later. This unidirectional auto-regressive

training prevents the model from pooling information from future tokens. The newer generative

models such as GPT [161], GPT-2 [162] and GPT-3 [37], are also trained in this way, but they have

more parameters, and are trained on much larger datasets. Current Large language models, such as

GPT-3, have around (or more than) 175B parameters. These powerful models perform so well, with

few-shot prompting, that they have diminished the focus on task-specific parameter-adjustment via

fine-tuning.

Codex is a GPT-3 variant, specifically trained on code and natural language comments. The

Codex family consists of two versions: Codex-Cushman, which is smaller, with 12B parameters,

and Codex-davinci, the largest, with 175B parameters. The Codex model is widely used, for various

tasks. Our experiments mostly target the code-davinci model, particularly code-davinci-002, which

excels at translating natural language to code [43] and supports code completion as well as code

insertion2. A new variant, GPT-3.5 Turbo, is now available; unlike Codex, GPT-3.5 models can

2https://openai.com/

115

understand and generate both natural language and code. Although optimized for chat, GPT-3.5

Turbo also performs well on traditional completion tasks. We evaluate the effectiveness of our

prompt enhancement in code summarization tasks using the GPT-3.5 Turbo model.

6.2.3. Retrieving Samples from Training Data. As previously discussed, few-shot learn-

ing can be quite effective, when used with models at the scale of GPT-3. We prompt the model

with a small number of < problem, solution > pairs, and ask it to solve a new problem. However,

carefully selecting samples for few-shot learning can be very useful. Nashid et al. discovered that

retrieval-based prompt selection is helpful for problems such as assertion generation and program

repair [145]. Following their findings, we use the BM25 IR algorithm to select relevant samples

from the training set, for few-shot prompting. BM25 [166] is a frequency-based retrieval method

which improves upon TF-IDF [164]. We noted a substantial improvement over fixed samples in

few-shot learning, as detailed in Section 6.3.1. Nashid et al. compare several retrieval methods,

and we use BM25, which they found to work best.

6.2.4. Automatic Semantic Augmentation of Prompts (ASAP). This section presents

different prompt enhancement strategies and our final ASAP pipeline (See Figure 6.2). ASAP is

not tied to these analyses. Developers can easily add others as discussed at the close of this section.

Repository Name & Path. Augmenting prompts with domain-specific information can improve

LLM performance on various tasks. Prior work suggests that prompts comprising information

from the same repository can enhance performance in code generation tasks [180]. Even basic

repository-level information, such as the repository name and the complete path to the reposi-

tory, provides additional context. For example, repository names like “tony19/logback-android”,

“apache/parquet- mr”, and “ngageoint/geo- package-android” all connect a function to a specific

domain (e.g., android, apache, geo-location), which can enhance the understanding of the target

code to be summarized. Figure 6.2 (a) presents an example of how we enhance the prompt with

repository-level information. Similar to the repository name, the path to the function can also

contribute to the model.

Tagged Identifiers. Prior work suggests that pre-trained language models find greater value in

identifiers, rather than code structure, when generating code summaries [4]. However, identifiers

116

do play specific roles in code. Local variables, function names, parameters, global variables etc.,

all play different roles in the meaning and purpose of the method in which they occur; a developer

reading the code is certainly aware of the roles of identifier, simply by identifying the scope and

use. Thus, providing the roles of the identifiers within the prompt might help the model better

“understand” the function. We use tree-sitter to traverse the AST of the function and gather

identifiers with their roles. Figure 6.2 (c) presents a sample example showing how we enhanced

the prompt of the function with tagged identifiers. Although the model has access to the token

sequence of the code, and thus also all the identifiers, these in a classified form might a) save the

model some compute effort, and b) help focus the model’s conditioned prompt generation better.

Data Flow Graph (DFG). Guo et al. introduced the GraphcodeBERT model, which uses data

flow graphs (DFG) instead of syntactic-level structures like abstract syntax trees (ASTs) in the

pre-training stage [69]. They conjectured that data flow presents a semantic-level structure of code

that encodes the relationship of “where-the-value-comes-from” between variables. GraphcodeBERT

outperformed the CodeBERT [64] model in various software engineering (SE) tasks. We incorporate

this DFG information into the prompt; we conjecture that this provides the model a better semantic

understanding of the examples. Figure 6.2 (b) presents a sample showing the Data Flow Graph

(DFG) we used for our experiments. Each line contains an identifier with its index and the index

of the identifiers to which that particular data flows. Note that unlike repo and tagged identifiers,

the data flow graph can be very long, making it inconvenient to add the complete data flow to the

prompt. In the case of long prompts, we only kept the first 30 lines of the DFG in the prompt. In

addition to identifiers, the DFG also provides a better understanding of the importance of identifiers

in the function.

Use Case & Completion Pipeline. To deploy ASAP, we envision realising it as a function, which

we eponymously name ASAP , that takes a function definition as input. ASAP must be equipped

with program analyses, and given an LLM to query and told where to find that LLM’s training

data. A configuration file specifies these inputs. Once configured, a developer can invoke it on a

function definition. Once invoked, ASAP first feds the function definition to BM25 over the LLM’s

training data to get a result set of exemplars, which, in our context, are relevant function definition

with function header comments. It then applies program analyses to its input and the exemplars

117

found by BM25. It constructs code summarization prompt from the results of those analyses, its

BM25 queries and the input function definition. ASAP then queries an LLM with that prompt,

and returns the natural language summarisation. A developer would apply ASAP to a function

definition and use its output as the function’s header comment for documentation.

ASAP ’s configuration file specifies the program analyses it applies to an input function definition

and its exemplars. By default, ASAP ’s come configured with analyses that extract repository

info, tag identifiers, construct DFGs. These analyses are independent and label their additions

separately. For example, Figure 6.2 (b) show the output of the DFG analysis in ASAP ’s constructed

prompt.

These few shot examples, are augmented and inserted into the prompt: the code, repository

info, tagged identifiers, the DFG, and the desired (Gold) summary are all included in each few-shot.

For the test example, naturally, the desired summary is omitted; ASAP thus provides the LLM

with a lot of additional information. In prior work using “chain of thought” [207] or “step by

step” [113] reasoning, no such information is given to the model, and we simply help it organize

its reasoning about the sample with some instructions. Here, rather than having the model do

its own reasoning, we are providing it externally using a simple program analysis tool, since we

can get very precise information from very efficient analysis tools. Each few-shot example includes

source code, derived information, and conclusion (summary), thus providing exemplary ”chains of

thought” for the model to implicitly use when generating the desired target summary. Figure 6.1

presents the overall pipeline of our approach that we apply to each sample.

Next we describe how we evaluate this pipeline.

6.2.5. Experimental Setup & Evaluation Criteria. Our primary model is OpenAI’s code-

davinci-002. We access the beta version, through the web service API. Based on the rate limits,

while also desiring robust estimates of performance, we chose to use 250 samples per experimental

treatment (one treatment for each language, each few-shot selection approach, with ASAP, without

ASAP etc.). While higher sample sizes would be nice, we had sufficient statistical power to get in-

terpretable results. Each 250-sample trial still took 2 to 5 hours, presumably varying with OpenAI’s

load factors. We includes waiting periods between attempts, following OpenAI’s recommendations.

To obtain well-defined answers from the model, we found it necessary to set the temperature to

118

Language CodeBERT GraphCodeBERT
Polyglot

CodeBERT

Polyglot

GraphcodeBERT
CodeT5

Few-shot

(random)

Few-shot

with BM25

Gain (%) over

random few-shot

Java 19.28 19.32 20.13 19.65 20.86 21.14 24.97 18.12%

Python 18.48 17.87 18.54 18.03 20.87 21.31 22.43 5.26%

Table 6.2. Performance of encoder-decoder and few-shot models on Java and
Python code summarization.

0, for all our experiments. The model is designed to allow a window of approximately 4K tokens;

this limits the number of few-shot samples. For our experiments, we used 3 shots. However, for up

to 2% of the randomly chosen samples in each experiment, we didn’t get good results; either the

prompt didn’t fit into the model window, or the model mysteriously generated an empty string. In

cases where the prompt as constructed with 3 samples was too long, we automatically reduce the

number of shots. When empty summaries were emitted, we resolved this by increasing the number

of shots. This is simple repeated procedure can be incorporated into automated summarization

tools with a modest overhead.

6.3. Results

We now report the benefits of ASAP-enhanced prompts, for code summarization, in different

settings and using various metrics. We do find evidence of overall performance gain, in studies

for six languages. However, for other detailed analyses, we focused primarily on Java and Python,

because of OpenAI API rate limits.

6.3.1. Encoder-decoders & Few-shot Learning. Following a lot of prior work, we use

CodeXGLUE [133] as a benchmark dataset to evaluate our approach of ASAP-enhanced few-

shots. Of course, using better samples improves few-shot performance. Prior work suggests that IR

methods can find better samples for few-shot prompting, for tasks such as program repair [145] and

code generation [94]. In Table 6.2, we observe that this is also true for code summarization. We

observed an improvement of 3.83 (18.12%) and 1.12 (5.26%) in BLEU-4 score for Java and Python,

respectively, simply by using BM25 as a few-shot sample selection mechanism. Since BM25 was

already used in prior paper (albeit for other tasks) [145], we consider this BM25 -based few-shot

learning for code summarization as just a baseline (not a contribution per se) in this paper.

6.3.2. Prompt Enhanced Few-shot Learning. We now focus on the effect of our proposed

ASAP semantic prompt-enhancement. Table 6.3 shows the element-wise and overall improvements

119

achieved after combining all the prompting elements for all six programming languages. We ob-

served BLEU improvements ranging from 1.85 (7.41%) to 5.42 (20.93%). Regarding magnitude of

improvement: Roy et al. suggest that a measured improvement of more than two BLEU may be

perceptible to humans [169]; in most cases, we see such an improvement. We also noticed that

all three components (i.e., Repository Information., DFG Data Flow Graph, Identifiers) help the

model achieve better performance in all six languages, as we combined these components individ-

ually with BM25. However, for Python, the best performing combination doesn’t require all three

components: just Repo. information gives the best results. In most cases, incorporating Repo.

helps a lot, in comparison to other components.

To measure the significance of our contributions, we performed a pairwise one-sided Wilcoxon

signed-rank test and found statistical significance in all cases, for our final prompt when compared

with vanilla BM25 few-shot learning, even after adjusting for false discovery risk.

Language BM25 BM25+repo BM25+id BM25+DFG ASAP
Comparing with BM25

Gain (%) over BM25 p-value

Java 24.97 25.68 25.37 25.40 26.82 +7.41% <0.01

Python 22.43 24.93 23.67 21.79 24.56 +9.50% <0.01

Ruby 17.40 21.16 20.66 18.50 21.19 +21.78% <0.01

JavaScript 23.36 25.61 24.82 24.16 26.04 +11.47% <0.01

Go 21.62 24.05 22.64 23.19 24.31 +12.44% <0.01

PHP 25.90 30.37 27.35 26.30 31.32 +20.93% <0.01

Table 6.3. Performance of prompt enhanced comment generation with code-
davinci-002 model. p-values are calculated applying one-sided pair-wise Wilcoxon
signed-rank test and B-H corrected.

Language Project Name #of training sample #of test sample
Cross-project Same-project

BM25 ASAP p-value BM25 ASAP p-value

Java

wildfly/wildfly 14 100 24.05 24.77

<0.01

17.86 18.27

<0.01

orientechnologies/orientdb 10 100 25.54 27.23 19.43 20.24
ngageoint/geopackage-android 11 100 29.33 42.84 45.48 46.21
RestComm/jain-slee 12 100 17.04 19.06 17.99 19.61

Python

apache/airflow 12 100 20.39 20.37 20.36 20.72
tensorflow/probability 18 100 21.36 21.18 20.30 20.86
h2oai/h2o-3 14 100 19.50 20.72 18.75 19.81
chaoss/grimoirelab-perceval 14 100 25.23 29.23 32.75 38.23

Table 6.4. Performance of prompt enhanced comment generation with code-
davinci-002 model on same project data and p-values are calculated applying one-
sided pair-wise Wilcoxon signed-rank test after combining the data from all projects.

6.3.3. Same Project Code Summarization. Few-shot learning is especially salient for soft-

ware engineering, because of the availability of pre-existing project-specific artifacts; such artifacts

120

can provide useful statistical context that generative models can condition upon. For example,

developers often use project-specific names for identifiers, APIs, etc; there are also coding patterns

that are specific to each project’s requirements [79,81,191]. These practices are closely tied to the

project domain’s concepts, algorithms, and data. Experienced developers have prior knowledge of

domain-specificities, and so can comprehend code better & faster. Naturally, these details can also

provide helpful hints for machine learning models. However, project-specific data can be limited,

e.g. in the beginning stages of a project. The capacity of LLMs to leverage even just a few shots

is very helpful in such settings.

To see if our prompt enhancement idea helps in project-specific code summarization, we eval-

uated our approach on the dataset supplied by Ahmed and Devanbu [3]. Due to rate limits, we

reduced the number of test samples to 100 for each of the four Java and Python projects. When

working with the same project, one must split data with care, to avoid leakage from future sam-

ples (where desired outputs may already exist) to past ones. Therefore, we sorted the samples by

creation dates in this dataset. After generating the dataset, we applied our approach to evaulate

the performance in same project setting. We also compared our results with a cross-project setup,

where we retrieved samples from the complete cross-project training set, similar to the setting used

in Section 6.3.2.

Table 6.4 displays the results of our approach for project code summarization. We found that

for 4 projects, cross-project few-shot learning yielded the best performance, while for another 4

projects, same-project few-shot learning was most effective. We noted that Ahmed & Devanbu

didn’t use IR to select few-shot samples and consistently achieved better results with same-project

few-shot learning [3]. IR does find relevant examples in the large samples available for Java &

Python, and we get good results. We analyzed 16 pairs of average BLEU-4from 8 projects, consid-

ering both cross-project and same-project scenarios. Our prompt-enhanced few-shot learning out-

performed vanilla BM25 retrieved few-shot learning in 14 cases (87.5%). This suggests that ASAP

prompt enhancement is helpful across projects. Since we have too-few samples for a per-project

test, we combined all the samples to perform the statistical test. ASAP performs significantly

better in both cross-project and same-project settings.

121

Figure 6.3. Length (number of tokens) distribution of the reference comment and
model outputs

Figure 6.4. Length (number of tokens) vs BLEU-4 for ASAP.

6.3.4. Is ASAP Model-agnostic? Thus far, we presented the results for the code-davinci-

002 models. We also applied semantic prompt augmentation to another model, gpt-3.5-turbo, which

is primarily a chat model but can also be used for code analysis. Our findings are in Table 6.5.

Gpt-3.5-turbo doesn’t do as well as the code-davinci-002 model at code summarization. Gpt-3.5-

turbo generates verbose comments that stylistically differ from comments written by developers,

and the few-shot examples in the prompt. Figure 6.3 illustrates how comments generated by

gpt-3.5-turbo are more verbose (longer) than both “gold” comments and those generated by code-

davinci-002. Longer comments tend to achieve lower BLEU-4 (Figure 6.4). It may be possible to

prompt-engineer the turbo model into generating program comments that are as natural, and brief

as human-produced comments; this is left for future work.

Nevertheless, we found that our prompt-enhanced few-shot learning approach improved the

performance of the gpt-3.5-turbo model by 2.47% to 25.74%. We also conducted pairwise one-sided

122

Language BM25 ASAP Gain (%) p-value

Java 15.37 17.55 +14.18% <0.01

Python 12.18 14.18 +16.42% <0.01

Ruby 9.09 11.43 +25.74% <0.01

JavaScript 10.51 10.76 +2.47% 0.25

Go 13.48 15.66 +16.17% <0.01

PHP 13.56 16.86 +24.33% <0.01

Table 6.5. Performance of GPT-3.5-turbo on code summarization. p-values are
calculated applying one-sided pair-wise Wilcoxon signed-rank test and B-H cor-
rected.

Wilcoxon signed rank tests, and the statistical significance of our findings (except JavaScript)

suggests that the ASAP approach is applicable across LLMs.

6.3.5. Performance on Other Metrics. Proper performance evaluation of Neural Machine

Translation (NMT), or code summarization models, is an often debated issue [67]! Despite the

availability of several metrics, researchers have yet to reach a consensus on a standard metric for this

problem. BLEU [128,149] is the most widely used metric, but there are various versions of BLEU

that can yield significantly different results. For our experiments, we primarily use BLEU-CN.

There are deep-learning-based metrics available for code summarization, such as BERTScore [75,

224], BLEURT [174], NUBIA [105]. However, these metrics are also limited and computationally

expensive. Recently, Shi et al. found that BLEU-DC better reflects human perception [177],

so we also report the performance of our models on BLEU-DC and two other popular metrics:

ROUGE-L [127] and METEOR [19].

Our results, in Table 6.9, demonstrate that ASAP improves performance on all three metrics

(except for gpt-3.5-turbo model’s performance on JavaScript) indicating its effectiveness across dif-

ferent metrics. Furthermore, we conducted pairwise one-sided Wilcoxon signed-rank tests and found

that the majority of languages (for Davinci and Turbo models) exhibited statistically significant

improvement with BLUE-DC and ROUGE-L. However, we did not observe significant differences

with METEOR, even though we noticed improved performance with ASAP in 11 out of 12 com-

parisons. It’s worth noting that we had only 250 language samples for each language, so it’s not

123

Language Prompt component BLEU-4

Java

ALL 26.82

-Repo. 25.73

-Id 26.16

-DFG 26.25

Python

ALL 24.56

-Repo. 24.25

-Id 24.31

-DFG 24.25

Table 6.6. Ablation study.

unexpected to see some cases where we didn’t observe significance. To evaluate the overall impact

of ASAP, we combined the dataset from all languages for both Davinci and Turbo models (3000

samples) and performed the same test. This time, we achieved statistical significance (p-value ¡

0.01) for all three metrics, a finding that strongly supports the effectiveness of ASAP.

6.3.6. Ablation Study. The primary aim of an ablation study is to identify the crucial

components or features that are essential for the proper functioning of the system or model and

to understand their impact on its overall behavior or performance. In our study, we removed one

component of the enhanced prompt and observed its performance. We found that Repo. was

the most significant contributing component to the model’s performance (Table 6.6) especially for

Java. However, tagged identifier and DFG also made some contribution, and the best results were

obtained when we combined all three components in the prompt.

6.3.7. Two Illustrative Examples. Table 6.7 shows the results of our experiments with

enhanced prompting on two samples. We computed the difference between the BLEU score of the

vanilla BM25 model and our prompt-enhanced BLEU score, and sorted the samples in descending

order of improvement. We observed that in several samples, the prompted enhanced version was

able to recover new information that was crucial for the summary. For instance, in the first

example, the baseline model failed to generate the term ”element-wise”. However, our prompted

enhanced version was able to capture this important concept, resulting in a higher BLEU-4 score

of 0.74 compared to the baseline score of 0.39. Similarly, in the second example, the baseline model

was not able to recognize the function as a standalone process, leading to a low BLEU score of

124

Example 1

def round(input a, name: nil)

check allowed types(input a, TensorStream::Ops::FLOATING POINT TYPES)

op(:round, input a, name: name)

end

Gold & model output Comment BLEU-4

Gold
Rounds the values of a tensor

to the nearest integer element - wise
NA

BM25 Round a tensor to the nearest integer 0.39

ASAP
Rounds the values of a tensor to

the nearest integer, element-wise.
0.74

Example 2

public static void main(final String[] args)

{
loadPropertiesFiles(args);

final ShutdownSignalBarrier barrier = new ShutdownSignalBarrier();

final MediaDriver.Context ctx = new MediaDriver.Context();

ctx.terminationHook(barrier::signal);

try (MediaDriver ignore = MediaDriver.launch(ctx))

{
barrier.await();

System.out.println(”Shutdown Driver...”);

}
}
Gold & model output Comment BLEU-4

Gold
Start Media Driver as a

stand - alone process .
NA

BM25
Main method that starts the

CLR Bridge from Java .
0.10

ASAP
Main method for running Media

Driver as a standalone process.
0.33

Table 6.7. Examples showing the effectiveness of prompt enhancement.

0.10. However, our proposed approach successfully identified the function as a standalone process,

resulting in a higher BLEU score of 0.33.

125

6.4. Discussion

In this section, we discuss several issues that are relevant to our prompt component & design

choices.

6.4.1. Does the Model Memorize the Path? Among the three components, it was found

that the repository information has a greater impact on the model’s performance. However, it is

important to note that the training dataset for the code-davinci-002 model is not accessible, which

means that the model may have memorized the file path during pre-training. Therefore, when we

provide the path to the function, the model may use the memorized information and perform better

based on prior exposure.

To investigate this further, we modified the path representation from absolute to a list. We took

the repository name and path, split the tokens at ”/”, and presented the model with a list of tokens.

The main idea behind this approach is to dissolve the original representation and present the model

with something that it did not encounter during pre-training. If the model is not memorizing, its

performance should not be impacted. We observed that the differences between both versions were

very small. For Java, we gained 0.24 BLEU but, for Python, we lost 0.04 with tokenized paths.

This indicates a reduced chance of the model memorizing the path to the function.

6.4.2. Is the Identifier Tag Necessary? In this paper, we assign roles to the identifiers

and tag them as Function Name, Parameters, Identifier etc. in the prompt (See fig. 6.2 part c).

But does this explicit tagging actually help performance? To investigate this, we compare the

model’s performance when provided with a plain, “tag-free” list of identifiers. We observed that

the tagged identifiers lead to better performance for both Java and Python than a simple tag-free

list of identifiers. Our performance metric BLEU-4 increased by 0.41 and 1.22 for Java and Python,

respectively. Therefore, providing explicit semantic information does indeed contribute to better

model performance.

6.4.3. What’s Better: More Shots, or ASAP?. Although Large Language Models (LLMs)

have billions of parameters, their window sizes are still limited. For example, code-davinci-002 and

gpt-3.5-turbo support only around 4k tokens. Therefore, the length of our prompt is constrained

by the model’s capacity. Augmentation does indeed gobble up some of the available prompt length

126

Language
Prompt Enhanced Vanilla BM25

#of shots BLEU-4 #of shots BLEU-4

Java 3 26.82
3 24.97
4 24.82
5 25.75

Python 3 24.56
3 22.43
4 21.57
5 22.18

Table 6.8. Comparing with higher-shots Vanilla BM25.

Language Model
BLUE-DC ROUGE-L METEOR

BM25 ASAP Gain (%) p-value BM25 ASAP Gain (%) p-value BM25 ASAP Gain (%) p-value

Java
code-davinci-002 17.36 18.32 +5.53% <0.01 38.62 40.74 +5.49% 0.01 37.09 38.19 +2.97% 0.24
gpt-3.5-turbo 9.98 11.32 +13.43% 0.02 27.81 29.38 +5.65% 0.01 33.48 34.83 +4.03% 0.10

Python
code-davinci-002 12.84 14.43 +12.38% <0.01 35.70 38.16 +6.89% <0.01 33.47 35.35 +5.62% 0.10
gpt-3.5-turbo 6.54 7.19 +9.94% 0.02 23.89 25.63 +7.28% <0.01 28.86 29.88 +3.53% 0.19

Ruby
code-davinci-002 9.16 11.95 +30.45% <0.01 28.45 32.80 +15.29% <0.01 28.84 32.67 +13.28% 0.01
gpt-3.5-turbo 4.63 5.82 +25.70% <0.01 19.53 21.77 +11.47% <0.01 26.32 27.28 +3.65% 0.18

JavaScript
code-davinci-002 15.12 16.82 +11.24% 0.02 31.97 33.80 +5.72% 0.02 31.72 32.67 +2.99% 0.17
gpt-3.5-turbo 5.49 5.28 -3.83% 0.21 20.28 19.41 -4.29% 0.49 26.36 24.96 -5.31% 0.91

Go
code-davinci-002 16.06 18.01 +12.14% 0.03 40.21 41.70 +3.71% 0.06 35.18 35.81 +1.79% 0.48
gpt-3.5-turbo 9.80 11.34 +15.71% <0.01 29.20 31.44 +7.67% <0.01 31.39 33.42 +6.47% 0.10

PHP
code-davinci-002 14.92 18.16 +21.71% <0.01 37.72 41.09 +8.93% <0.01 39.29 41.08 +4.56% 0.10
gpt-3.5-turbo 6.96 8.76 +25.86% <0.01 24.64 27.84 +12.99% <0.01 32.03 33.75 +5.37% 0.10

Table 6.9. The effectiveness of ASAP in popular code summarization metrics. p-
values are calculated applying one-sided pair-wise Wilcoxon signed-rank test and
B-H corrected.

budget! Thus we have two design options: 1) use fewer, but Automatically Semantically Augmented

samples in the prompt or 2) use more few-shot samples without augmentation. To investigate this,

we also tried using 4 and 5 shots (instead of 3) for Java and Python with the code-davinci-002

model. However, Table 6.8 shows that higher shots using BM25 does not necessarily lead to better

performance. With higher shots, there is a chance of introducing unrelated samples, which can

hurt the model instead of helping it.

Only for Java, we observed better performance with 5 shots compared to our baseline model.

However, our proposed technique with just 3-shots still outperforms using BM25 with 5 shots. It’s

worth noting that the context window of the model is increasing day by day, and the upcoming

GPT-4 model will allow us to have up to 32K tokens3. Therefore, the length limit might not be

an issue in the near future. However,our studies suggest that Automated Semantic Augmentation

will still be a beneficial way to use available prompt length budget.

3https://platform.openai.com/docs/models/gpt-4

127

6.5. Related work

6.5.1. Code Summarization. Deep learning models have advanced the state-of-the-art in SE

tasks such as code summarization. The LSTM model for code summarization was first introduced

by Iyer et al. [91], leveraging early conceptions of attention [18]. Transformer [193] models have

substantially impacted software engineering. Pre-trained transformer-based models such as Code-

BERT [64], PLBART [1], and CodeT5 [203] have been extensively used on the CodeXGLUE [133]

code summarization dataset, resulting in significant improvements. However, there is a caveat to

using pre-trained language models: although these models perform well, extensive fine-tuning is

required, which can be data-hungry & time-consuming. Additionally, separate models had to be

trained for different languages, making it an expensive process. To reduce the number of models

required, multilingual fine-tuning has been suggested, to maintain or improve performance while

reducing the number of models to one [4]. However, this approach did not reduce the training time

or the need for labeled data.

LLMs, or large language models, are much larger than earlier pre-trained models, and are

trained on much bigger datasets with a simple training objective — auto-regressive next-token

prediction [37]. A huge benefit of such models is that they perform quite well on tasks even

without fine-tuning. Just prompting the model with different questions, while showing the model a

few examples of how to solve the problem, is sufficient. Few-shot learning has already been applied

to code summarization, and has been found to be beneficial [3].

6.5.2. Other Datasets. There are several datasets available for code summarization, in ad-

dition to the CodeXGLUE [133] dataset. TL-CodeSum [85] is a relatively smaller dataset, with

around 87K samples, but it has duplicates and data from the same projects are spread across

training, test, and validation sets, which may result in higher performance. Funcom [122] is a

dedicated dataset with 2.1 million Java functions, but there are some repetitions on the comment

side. CodeXGLUE (derived from CodeSearchNet) is a diverse, multilingual dataset that presents a

challenge for models. Even well-trained initial models like CodeBERT struggle on this benchmark

dataset, and performance is particularly poor for languages with fewer training samples. Note that

there have been hundreds of models introduced for the code summarization problem, ranging from

128

template matching to few-shot learning. These models use different representations and sources

of information to perform well in code summarization. However, comparing or discussing all of

these models is beyond the scope of this work. We note, however, that our numbers represent a

new high-point on the widely used CodeXGlue benchmark for code summarization; we refer the

reader to https://microsoft.github.io/CodeXGLUE/ for a quick look at the leader-board.

Our samples are smaller (N=250), but the estimates, and estimated improvements, are statistically

robust.

6.5.3. LLMs in Software Engineering. Although LLMs are not yet so widely used for

code summarization, they are extensively used for code generation [43, 146, 212] and program

repair [63, 98, 101]. The goal of models like Codex is to reduce the burden on developers by

automatically generating code or completing lines. Several models such as Polycoder [212] and

Codegen [146] perform reasonably well, and due to their few-shot learning or prompting, they can

be applied to a wide set of problems. However, Code-davinci-002 model generally performs well

than those models and allows us to fit our augmented prompts into a bigger window.

Jain et al. proposed supplementing LLM operation with subsequent processing steps based

on program analysis and synthesis techniques to improve performance in program snippet gen-

eration [94]. Bareiß et al. showed the effectiveness of few-shot learning in code mutation, test

oracle generation from natural language documentation, and test case generation tasks [21]. CO-

DAMOSA [123], an LLM-based approach, conducts search-based software testing until its coverage

improvements stall, then asks the LLM to provide example test cases for functions that are not

covered. By using these examples, CODAMOSA helps redirect search-based software testing to

more useful areas of the search space. Jiang et al. evaluated the effectiveness of LLMs for the

program repair problem [98].

Retrieving and appending a set of training samples has been found to be beneficial for multiple

semantic parsing tasks in NLP, even without using LLM [222]. One limitation of this approach is

that performance can be constrained by the availability of similar examples. Nashid et al. followed

a similar approach and significantly improved performance in code repair and assertion generation

with the help of LLM [145]. However, none of the above works has attempted to automatically

semantically augment the prompt. Note that it is still too early to comment on the full capabilities

129

https://microsoft.github.io/CodeXGLUE/

of these large language models. Our findings suggest that Augmenting the input with semantic

hints helps on the code summarization task; we hope that this type of prompt augmentation will

prove useful for other tasks as well.

6.6. Threats & Limitations

A major concern when working with large language models is the potential for test data expo-

sure during training. However, it is not possible to confirm this since the training dataset is not

accessible. Thus there is a risk that the model may overfit, but examining its ability to solve a

diverse set of problems does not indicate overfitting. Additionally, the model’s performance with

random few-shotting suggests that overfitting is not a major issue since the numbers are low. As we

incorporate relevant information, the model’s performance improves with the amount and quality

of information. If the model had memorized the summaries, it would have achieved a much higher

BLEU-4 without requiring the augmented prompt based on the given token sequence.

Another concern is our smaller test dataset, which we had to reduce due to API rate limits.

Despite this limitation, we achieved statistical significance for each language with the Davinci model

on the BLEU-4 metric, demonstrating ASAP’s effectiveness. ASAP also performs well with other

metrics and achieved statistical significance if we combine all the samples from different languages

and models.

Fine-tuning the LLMs may yield even better results than our augmented prompting approach,

but it is costly to train such a model for a specific task. With just a few samples and augmented

prompts, we could easily outperform all the fine-tuned models trained with thousands of samples.

We will leave the fine-tuning part for future research.

6.7. Conclusion

In this paper, we explored the idea of Automatic Semantic Augmentation of Prompts, whereby

we propose to enhance few-shot samples in LLM prompts, by adding tagged facts automatically

derived by semantic analysis. This based on an intuition that human developers often will need to

scan the code to implicitly extract such facts in the process of code comprehension leading to writing

a good summary. While it is concievable that LLMs can implicitly infer such facts for themselves,

we conjectured that adding these facts in a formatted style to the samples and target will help

130

the LLM organize it’s “chain of thought” as it seeks to construct a summary. We evaluated this

idea a challenging, de-duplicated, well-curated CodeSearchNet dataset, and found that Automated

Semantic Augmentation of Prompts is helpful in the preponderance of settings where we tried it,

beyond the state of the art in few-shot prompting technique; our estimates suggest it can surpass

state-of-the-art.

131

CHAPTER 7

Conclusion & Future Research Direction

In this chapter, we will summarize the dissertation with some discussion of possible future

research directions.

7.1. Pre-trained language model: where to go from here?

Pre-trained language models have undergone numerous changes since their inception. Prior

to LLM, pre-trained language models were typically smaller in size (110-220M parameters), and

were easily trainable using a few medium-end GPUs. In this dissertation, we mainly focused

on discussing the applicability and robustness of these models, with the exception of chapter 6.

The most widely used pre-training objectives that played an important role in pre-training were

masking of tokens or spans. Syntactic [1] and semantic denoising [41] were also successful for

various software engineering tasks. It should be noted that although researchers proposed several

models, the performance improvements of newer models were not massive compared to previous

models, and in many cases, the improvements did not have any statistical significance. With the

introduction of LLM, traditional pre-trained language models are receiving less attention; however,

the value and importance of such models cannot be ignored. These models can be easily trained

for new domains and can be applied with minimal resources.

Various pre-training objectives have been identified as the primary driving force behind the

success of pre-training models. As of now, the Transformer architecture remains the most popular

and widely used. Until we develop better architectures than Transformer, pre-training objectives

will remain the major factor affecting performance. Incorporating new pre-training objectives is

relatively easier than introducing new architecture. However, to achieve even better results, we may

have to go beyond masking or spanning objectives and incorporate more contextual information

into the models to help them better understand the problem and improve their performance.

132

7.2. Emergence of LLMs and its Implications

Large Language Models (LLMs) are decoder-only models that have had a significant influence

on both the NLP and SE domains. LLMs are large-scale models that are pre-trained with over

175 billion parameters and work very well with prompt engineering and few-shot learning. They

eliminate the need for supervised fine-tuning with datasets of hundreds of thousands of samples.

These models have proven useful in various tasks, including code summarization, test case gener-

ation, and code generation. Furthermore, these models are not only adept at old tasks, but they

also offer an opportunity to work on new problems, as we do not need as much labeled data to

begin with.

While large language models (LLMs) have significantly influenced both the NLP and SE do-

mains, there are still some challenges associated with them. One such challenge is that it can be

difficult to train such models with limited resources, especially in academia. The easiest way to

access the models is through APIs, but this can be costly. Another challenge is that the dataset

used to pre-train the models may not be accessible, making it difficult to measure the generality of

the model. Some results may be inflated because the model may have already seen the data. That

might be the case for smaller pre-trained models also. However, in the majority of cases, the dataset

is accessible for these models. Additionally, even if the LLM has seen the data in the pre-training

stage, the models were trained with different pre-training objectives, which may prevent them from

simply memorizing the results. The fact that they perform well on a diverse set of data indicates

the robustness of these models.

New large language models (LLMs) are being introduced almost every month, and it can be

difficult to keep up with and fully understand each one. Despite variations in performance and size,

most of these models are trained with the same objective: autoregressive next token prediction.

However, recent research has shown that fine-tuning LLMs with reinforcement learning, using

feedback from human annotators, can improve their performance even further. This approach

involves providing the model with feedback in the form of rewards for generating high-quality text

or penalizing it for generating low-quality text. With this reinforcement learning approach, LLMs

can learn to generate more accurate and natural-sounding text that better aligns with human

preferences.

133

7.3. AI Safety and Use Cases

The emergence of LLMs comes with a set of new tools like copilot, which shows promising results

in program generation tasks like token completion, line completion, or even function completion.

It comes with a new concern regarding the safety of these models. Unlike the prior model, it does

not require intensive human intervention and can generate programs that can be executed without

any edits.

In this software-centric ecosystem, it is not wise to assume that these models are safe. The

models are trained on buggy programs, even with programs that can introduce security vulnera-

bilities. It is already found [96], the model tend to generate buggy program if it is more ”natural”

than the fixed one. Furthermore, these high capacity models can memorize and regurgitate training

data, thus increasing the worry that proprietary information accidentally leaked into training data

(Meeting notes, internal discussions, other organizational secrets) can be exposed to such models

with clever prompting [12].

Considering above scenario, the safety of such model will be the center of attention in near

future. Safety-related modification may have to be applied to the model, and or to the model

client, to ensure the safe application models. Also even though models are found to be useful, it is

also important to gain the trust of the users and make them aware of the possible adverse impact

of the model. The AI safety and use-cases of LLMs is slowly becoming the most widely reserach

area in this era.

Although large language models (LLMs), even smaller pre-trained models, have revolutionized

AI, they have also raised concerns. The interpretability, explainability, and robustness of the models

still need to be studied to improve their safety. Despite these concerns, the rise of LLMs is inevitable

due to their perceived ability to increase productivity.

134

Bibliography

[1] W. Ahmad, S. Chakraborty, B. Ray, and K.-W. Chang, Unified pre-training for program understanding

and generation, in Proceedings of the 2021 Conference of the North American Chapter of the Association for

Computational Linguistics: Human Language Technologies, Online, June 2021, Association for Computational

Linguistics, pp. 2655–2668.

[2] W. U. Ahmad, S. Chakraborty, B. Ray, and K.-W. Chang, A transformer-based approach for source code

summarization, in Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

(ACL), 2020.

[3] T. Ahmed and P. Devanbu, Few-shot training llms for project-specific code-summarization, in 37th

IEEE/ACM International Conference on Automated Software Engineering, 2022, pp. 1–5.

[4] , Multilingual training for software engineering, in Proceedings of the 44th International Conference on

Software Engineering, 2022, pp. 1443–1455.

[5] T. Ahmed, P. Devanbu, and V. Hellendoorn, Learning lenient parsing & typing via indirect supervision,

Empirical Software Engineering Journal, (To Appear), (2021).

[6] T. Ahmed, P. Devanbu, and A. A. Sawant, Learning to find usage of library functions in optimized binaries,

IEEE Transactions on Software Engineering, (2021).

[7] , Learning to find usages of library functions in optimized binaries, IEEE Transactions on Software Engi-

neering, 48 (2021), pp. 3862–3876.

[8] T. Ahmed, S. Ghosh, C. Bansal, T. Zimmermann, X. Zhang, and S. Rajmohan, Recommending root-

cause and mitigation steps for cloud incidents using large language models, ICSE, (2023).

[9] T. Ahmed, N. R. Ledesma, and P. Devanbu, Synshine: improved fixing of syntax errors, 2022.

[10] T. Ahmed, K. S. Pai, P. Devanbu, and E. T. Barr, Improving few-shot prompts with relevant static analysis

products, arXiv preprint arXiv:2304.06815, (2023).

[11] U. Z. Ahmed, P. Kumar, A. Karkare, P. Kar, and S. Gulwani, Compilation error repair: for the

student programs, from the student programs, in Proceedings of the 40th International Conference on Software

Engineering: Software Engineering Education and Training, 2018, pp. 78–87.

[12] A. Al-Kaswan, M. Izadi, and A. van Deursen, Targeted attack on gpt-neo for the satml language model

data extraction challenge, arXiv preprint arXiv:2302.07735, (2023).

135

[13] M. Allamanis, The adverse effects of code duplication in machine learning models of code, in Proceedings

of the 2019 ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and Reflections on

Programming and Software, 2019, pp. 143–153.

[14] M. Allamanis, H. Peng, and C. Sutton, A convolutional attention network for extreme summarization of

source code, in International conference on machine learning, PMLR, 2016, pp. 2091–2100.

[15] U. Alon, S. Brody, O. Levy, and E. Yahav, code2seq: Generating sequences from structured representations

of code, in International Conference on Learning Representations, 2019.

[16] U. Alon, M. Zilberstein, O. Levy, and E. Yahav, code2vec: Learning distributed representations of code,

Proceedings of the ACM on Programming Languages, 3 (2019), pp. 1–29.

[17] N. Arivazhagan, A. Bapna, O. Firat, D. Lepikhin, M. Johnson, M. Krikun, M. X. Chen, Y. Cao,

G. Foster, C. Cherry, et al., Massively multilingual neural machine translation in the wild: Findings and

challenges, arXiv preprint arXiv:1907.05019, (2019).

[18] D. Bahdanau, K. Cho, and Y. Bengio, Neural machine translation by jointly learning to align and translate,

arXiv preprint arXiv:1409.0473, (2014).

[19] S. Banerjee and A. Lavie, Meteor: An automatic metric for mt evaluation with improved correlation with

human judgments, in Proceedings of the acl workshop on intrinsic and extrinsic evaluation measures for machine

translation and/or summarization, 2005, pp. 65–72.

[20] T. Bao, J. Burket, M. Woo, R. Turner, and D. Brumley, {BYTEWEIGHT}: Learning to recognize

functions in binary code, in 23rd {USENIX} Security Symposium ({USENIX} Security 14), 2014, pp. 845–860.

[21] P. Bareiß, B. Souza, M. d’Amorim, and M. Pradel, Code generation tools (almost) for free? a study of

few-shot, pre-trained language models on code, arXiv preprint arXiv:2206.01335, (2022).

[22] T. Barik, J. Smith, K. Lubick, E. Holmes, J. Feng, E. Murphy-Hill, and C. Parnin, Do developers read

compiler error messages?, in 2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE),

IEEE, 2017, pp. 575–585.

[23] U. Bayer, C. Kruegel, and E. Kirda, TTAnalyze: A tool for analyzing malware, na, 2006.

[24] H. B. BE, Flirt signatures. https://www.hex-rays.com/products/ida/tech/flirt/in_depth/,

2020. Last Accessed August 12th 2020.

[25] H. B. BE, Hexrays ida pro. http://hex-rays.com/products/ida/, 2020. Last Accessed August 2020.

[26] B. A. Becker, P. Denny, R. Pettit, D. Bouchard, D. J. Bouvier, B. Harrington, A. Kamil,

A. Karkare, C. McDonald, P.-M. Osera, et al., Compiler error messages considered unhelpful: The

landscape of text-based programming error message research, in Proceedings of the working group reports on

innovation and technology in computer science education, 2019, pp. 177–210.

136

https://www.hex-rays.com/products/ida/tech/flirt/in_depth/
http://hex-rays.com/products/ida/

[27] E. M. Bender and A. Koller, Climbing towards NLU: On meaning, form, and understanding in the age of

data, in Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Online, July

2020, Association for Computational Linguistics, pp. 5185–5198.

[28] J. Bennedsen and M. E. Caspersen, Failure rates in introductory programming, AcM SIGcSE Bulletin, 39

(2007), pp. 32–36.

[29] E. Biswas, M. E. Karabulut, L. Pollock, and K. Vijay-Shanker, Achieving reliable sentiment analysis

in the software engineering domain using bert, in 2020 IEEE International Conference on Software Maintenance

and Evolution (ICSME), IEEE, 2020, pp. 162–173.

[30] Blinded, Docker containers created. https://hub.docker.com/r/binswarm/cbuilds/tags, 2020. Last

Accessed August 2020.

[31] , Replication package for this work. https://doi.org/10.5281/zenodo.4007527, 2020. Last Ac-

cessed August 2020.

[32] R. Bommasani, D. A. Hudson, E. Adeli, R. Altman, S. Arora, S. von Arx, M. S. Bernstein, J. Bohg,

A. Bosselut, E. Brunskill, et al., On the opportunities and risks of foundation models, arXiv preprint

arXiv:2108.07258, (2021).

[33] L. C. Briand, Software documentation: how much is enough?, in Seventh European Conference onSoftware

Maintenance and Reengineering, 2003. Proceedings., IEEE, 2003, pp. 13–15.

[34] N. C. Brown and A. Altadmri, Novice java programming mistakes: Large-scale data vs. educator beliefs,

ACM Transactions on Computing Education (TOCE), 17 (2017), p. 7.

[35] N. C. C. Brown, M. Kölling, D. McCall, and I. Utting, Blackbox: a large scale repository of novice

programmers’ activity, in Proceedings of the 45th ACM technical symposium on Computer science education,

ACM, 2014, pp. 223–228.

[36] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,

G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child,

A. Ramesh, D. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray,

B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei, Language

models are few-shot learners, in Advances in Neural Information Processing Systems, H. Larochelle, M. Ranzato,

R. Hadsell, M. F. Balcan, and H. Lin, eds., vol. 33, Curran Associates, Inc., 2020, pp. 1877–1901.

[37] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,

G. Sastry, A. Askell, et al., Language models are few-shot learners, arXiv preprint arXiv:2005.14165,

(2020).

[38] BugSwarm, Bugswarm githubory repository. https://github.com/BugSwarm/bugswarm, 2020. Last Ac-

cessed August 2020.

137

https://hub.docker.com/r/binswarm/cbuilds/tags
https://doi.org/10.5281/zenodo.4007527
https://github.com/BugSwarm/bugswarm

[39] C. Casalnuovo, K. Lee, H. Wang, P. Devanbu, and E. Morgan, Do programmers prefer predictable

expressions in code?, Cognitive science, 44 (2020), p. e12921.

[40] C. Casalnuovo, K. Sagae, and P. Devanbu, Studying the difference between natural and programming

language corpora, Empirical Software Engineering, 24 (2019), pp. 1823–1868.

[41] S. Chakraborty, T. Ahmed, Y. Ding, P. T. Devanbu, and B. Ray, Natgen: generative pre-training by

“naturalizing” source code, in Proceedings of the 30th ACM Joint European Software Engineering Conference

and Symposium on the Foundations of Software Engineering, 2022, pp. 18–30.

[42] S. Chakraborty, M. Allamanis, and B. Ray, Tree2tree neural translation model for learning source code

changes, arXiv preprint arXiv:1810.00314, (2018).

[43] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. d. O. Pinto, J. Kaplan, H. Edwards, Y. Burda,

N. Joseph, G. Brockman, et al., Evaluating large language models trained on code, arXiv preprint

arXiv:2107.03374, (2021).

[44] T. Y. Chen, F.-C. Kuo, H. Liu, P.-L. Poon, D. Towey, T. Tse, and Z. Q. Zhou, Metamorphic testing:

A review of challenges and opportunities, ACM Computing Surveys (CSUR), 51 (2018), pp. 1–27.

[45] Z. Chen, S. J. Kommrusch, M. Tufano, L.-N. Pouchet, D. Poshyvanyk, and M. Monperrus, Se-

quencer: Sequence-to-sequence learning for end-to-end program repair, IEEE Transactions on Software Engi-

neering, (2019).

[46] E. J. Chikofsky and J. H. Cross, Reverse engineering and design recovery: A taxonomy, IEEE software, 7

(1990), pp. 13–17.

[47] A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts, P. Barham, H. W. Chung,

C. Sutton, S. Gehrmann, P. Schuh, K. Shi, S. Tsvyashchenko, J. Maynez, A. Rao, P. Barnes, Y. Tay,

N. Shazeer, V. Prabhakaran, E. Reif, N. Du, B. Hutchinson, R. Pope, J. Bradbury, J. Austin,

M. Isard, G. Gur-Ari, P. Yin, T. Duke, A. Levskaya, S. Ghemawat, S. Dev, H. Michalewski,

X. Garcia, V. Misra, K. Robinson, L. Fedus, D. Zhou, D. Ippolito, D. Luan, H. Lim, B. Zoph,

A. Spiridonov, R. Sepassi, D. Dohan, S. Agrawal, M. Omernick, A. M. Dai, T. S. Pillai, M. Pellat,

A. Lewkowycz, E. Moreira, R. Child, O. Polozov, K. Lee, Z. Zhou, X. Wang, B. Saeta, M. Diaz,

O. Firat, M. Catasta, J. Wei, K. Meier-Hellstern, D. Eck, J. Dean, S. Petrov, and N. Fiedel,

Palm: Scaling language modeling with pathways, 2022.

[48] T. CI, Travis build utility. https://github.com/travis-ci/travis-build, 2020. Last Accessed August

2020.

[49] , Travis dockerhub repository. https://hub.docker.com/u/travisci, 2020. Last Accessed August

2020.

[50] K. Clark, M.-T. Luong, Q. V. Le, and C. D. Manning, Electra: Pre-training text encoders as discrimina-

tors rather than generators, arXiv preprint arXiv:2003.10555, (2020).

138

https://github.com/travis-ci/travis-build
https://hub.docker.com/u/travisci

[51] M. L. Collard, M. J. Decker, and J. I. Maletic, Lightweight transformation and fact extraction with the

srcml toolkit, in 2011 IEEE 11th international working conference on source code analysis and manipulation,

IEEE, 2011, pp. 173–184.

[52] A. Conneau and G. Lample, Cross-lingual language model pretraining, Advances in Neural Information

Processing Systems, 32 (2019), pp. 7059–7069.

[53] R. Dabre, C. Chu, and A. Kunchukuttan, A survey of multilingual neural machine translation, ACM

Computing Surveys (CSUR), 53 (2020), pp. 1–38.

[54] Y. David, U. Alon, and E. Yahav, Neural reverse engineering of stripped binaries using augmented control

flow graphs, Proceedings of the ACM on Programming Languages, 4 (2020), pp. 1–28.

[55] P. Denny, A. Luxton-Reilly, and E. Tempero, All syntax errors are not equal, in Proceedings of the 17th

ACM annual conference on Innovation and technology in computer science education, 2012, pp. 75–80.

[56] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, Bert: Pre-training of deep bidirectional transformers

for language understanding, arXiv preprint arXiv:1810.04805, (2018).

[57] Y. Ding, B. Ray, P. Devanbu, and V. J. Hellendoorn, Patching as translation: the data and the metaphor,

35th IEEE/ACM International Conference on Automated Software Engineering (ASE), (2020).

[58] Docker, Docker job matrix configuration. https://docs.travis-ci.com/user/build-matrix, 2020.

Last Accessed August 2020.

[59] B. P. Eddy, J. A. Robinson, N. A. Kraft, and J. C. Carver, Evaluating source code summarization tech-

niques: Replication and expansion, in 2013 21st International Conference on Program Comprehension (ICPC),

IEEE, 2013, pp. 13–22.

[60] T. Eisenbarth, R. Koschke, and D. Simon, Aiding program comprehension by static and dynamic feature

analysis, in Proceedings IEEE International Conference on Software Maintenance. ICSM 2001, IEEE, 2001,

pp. 602–611.

[61] Y. Elazar, S. Ravfogel, A. Jacovi, and Y. Goldberg, Amnesic probing: Behavioral explanation with

amnesic counterfactuals, Transactions of the Association for Computational Linguistics, 9 (2021), pp. 160–175.

[62] A. Ettinger, What BERT is not: Lessons from a new suite of psycholinguistic diagnostics for language models,

Transactions of the Association for Computational Linguistics, 8 (2020), pp. 34–48.

[63] Z. Fan, X. Gao, A. Roychoudhury, and S. H. Tan, Automated repair of programs from large language

models, ICSE, 2022.

[64] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin, T. Liu, D. Jiang, et al.,

Codebert: A pre-trained model for programming and natural languages, arXiv preprint arXiv:2002.08155, (2020).

[65] A. Forward and T. C. Lethbridge, The relevance of software documentation, tools and technologies: a

survey, in Proceedings of the 2002 ACM symposium on Document engineering, 2002, pp. 26–33.

139

https://docs.travis-ci.com/user/build-matrix

[66] S. Gao, C. Gao, Y. He, J. Zeng, L. Y. Nie, and X. Xia, Code structure guided transformer for source code

summarization, arXiv preprint arXiv:2104.09340, (2021).

[67] D. Gros, H. Sezhiyan, P. Devanbu, and Z. Yu, Code to comment ?translation?: Data, metrics, baselining

& evaluation, in 2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE),

IEEE, 2020, pp. 746–757.

[68] D. Guo, S. Ren, S. Lu, Z. Feng, D. Tang, S. LIU, L. Zhou, N. Duan, A. Svyatkovskiy, S. Fu,

M. Tufano, S. K. Deng, C. Clement, D. Drain, N. Sundaresan, J. Yin, D. Jiang, and M. Zhou,

Graphcode{bert}: Pre-training code representations with data flow, in International Conference on Learning

Representations, 2021.

[69] D. Guo, S. Ren, S. Lu, Z. Feng, D. Tang, L. Shujie, L. Zhou, N. Duan, A. Svyatkovskiy, S. Fu,

et al., Graphcodebert: Pre-training code representations with data flow, in International Conference on Learning

Representations, 2020.

[70] R. Gupta, A. Kanade, and S. Shevade, Deep reinforcement learning for programming language correction,

arXiv preprint arXiv:1801.10467, (2018).

[71] R. Gupta, S. Pal, A. Kanade, and S. Shevade, Deepfix: Fixing common c language errors by deep learning,

in Thirty-First AAAI Conference on Artificial Intelligence, 2017.

[72] T.-L. Ha, J. Niehues, and A. Waibel, Toward multilingual neural machine translation with universal encoder

and decoder, arXiv preprint arXiv:1611.04798, (2016).

[73] S. Haiduc, J. Aponte, and A. Marcus, Supporting program comprehension with source code summarization,

in Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering-Volume 2, 2010,

pp. 223–226.

[74] S. Haiduc, J. Aponte, L. Moreno, and A. Marcus, On the use of automated text summarization techniques

for summarizing source code, in 2010 17th Working Conference on Reverse Engineering, IEEE, 2010, pp. 35–44.

[75] S. Haque, Z. Eberhart, A. Bansal, and C. McMillan, Semantic similarity metrics for evaluating source

code summarization, in Proceedings of the 30th IEEE/ACM International Conference on Program Comprehen-

sion, 2022, pp. 36–47.

[76] S. Haque, A. LeClair, L. Wu, and C. McMillan, Improved automatic summarization of subroutines via

attention to file context, in Proceedings of the 17th International Conference on Mining Software Repositories,

2020, pp. 300–310.

[77] M. Hasan, T. Muttaqueen, A. A. Ishtiaq, K. S. Mehrab, M. Haque, M. Anjum, T. Hasan, W. U.

Ahmad, A. Iqbal, and R. Shahriyar, Codesc: A large code-description parallel dataset, arXiv preprint

arXiv:2105.14220, (2021).

140

[78] J. He, P. Ivanov, P. Tsankov, V. Raychev, and M. Vechev, Debin: Predicting debug information in

stripped binaries, in Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications

Security, 2018, pp. 1667–1680.

[79] V. J. Hellendoorn and P. Devanbu, Are deep neural networks the best choice for modeling source code?, in

Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering, ACM, 2017, pp. 763–773.

[80] J. Henke, G. Ramakrishnan, Z. Wang, A. Albarghouth, S. Jha, and T. Reps, Semantic robustness of

models of source code, in 2022 IEEE International Conference on Software Analysis, Evolution and Reengineer-

ing (SANER), IEEE, 2022, pp. 526–537.

[81] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu, On the naturalness of software, in 2012 34th

International Conference on Software Engineering (ICSE), IEEE, 2012, pp. 837–847.

[82] S. Hochreiter and J. Schmidhuber, Long short-term memory, Neural computation, 9 (1997), pp. 1735–1780.

[83] X. Hu, G. Li, X. Xia, D. Lo, and Z. Jin, Deep code comment generation, in 2018 IEEE/ACM 26th Interna-

tional Conference on Program Comprehension (ICPC), IEEE, 2018, pp. 200–20010.

[84] , Deep code comment generation with hybrid lexical and syntactical information, Empirical Software En-

gineering, 25 (2020), pp. 2179–2217.

[85] X. Hu, G. Li, X. Xia, D. Lo, S. Lu, and Z. Jin, Summarizing source code with transferred api knowledge,

(2018).

[86] J. Huang and K. C.-C. Chang, Towards reasoning in large language models: A survey, arXiv preprint

arXiv:2212.10403, (2022).

[87] Huggingface, Huggingface transformers. https://github.com/huggingface/transformers, 2020.

Last Accessed August 2020.

[88] G. Hunt and D. Brubacher, Detours: Binaryinterception ofwin 3 2 functions, in 3rd usenix windows nt

symposium, 1999.

[89] H. Husain, H.-H. Wu, T. Gazit, M. Allamanis, and M. Brockschmidt, Codesearchnet challenge: Eval-

uating the state of semantic code search, arXiv preprint arXiv:1909.09436, (2019).

[90] R. Islam, R. Tian, L. M. Batten, and S. Versteeg, Classification of malware based on integrated static

and dynamic features, Journal of Network and Computer Applications, 36 (2013), pp. 646–656.

[91] S. Iyer, I. Konstas, A. Cheung, and L. Zettlemoyer, Summarizing source code using a neural attention

model, in Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume

1: Long Papers), 2016, pp. 2073–2083.

[92] P. Jaccard, Étude comparative de la distribution florale dans une portion des alpes et des jura, Bull Soc

Vaudoise Sci Nat, 37 (1901), pp. 547–579.

[93] J. Jackson, M. Cobb, and C. Carver, Identifying top java errors for novice programmers, in Proceedings

Frontiers in Education 35th annual conference, IEEE, 2005, pp. T4C–T4C.

141

https://github.com/huggingface/transformers

[94] N. Jain, S. Vaidyanath, A. Iyer, N. Natarajan, S. Parthasarathy, S. Rajamani, and R. Sharma,

Jigsaw: Large language models meet program synthesis, in Proceedings, 44th ICSE, 2022, pp. 1219–1231.

[95] P. Jain, A. Jain, T. Zhang, P. Abbeel, J. E. Gonzalez, and I. Stoica, Contrastive code representation

learning, arXiv preprint arXiv:2007.04973, (2020).

[96] K. Jesse, T. Ahmed, P. T. Devanbu, and E. Morgan, Large language models and simple, stupid bugs,

arXiv preprint arXiv:2303.11455, (2023).

[97] K. Jesse, P. T. Devanbu, and T. Ahmed, Learning type annotation: is big data enough?, in Proceedings of

the 29th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations

of Software Engineering, 2021, pp. 1483–1486.

[98] N. Jiang, K. Liu, T. Lutellier, and L. Tan, Impact of code language models on automated program repair,

ICSE, (2023).

[99] N. Jiang, T. Lutellier, and L. Tan, Cure: Code-aware neural machine translation for automatic pro-

gram repair, in 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE), IEEE, 2021,

pp. 1161–1173.

[100] D. Jin, Z. Jin, J. T. Zhou, and P. Szolovits, Is BERT really robust? A strong baseline for natural language

attack on text classification and entailment, in The Thirty-Fourth AAAI Conference on Artificial Intelligence,

AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The

Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA,

February 7-12, 2020, AAAI Press, 2020, pp. 8018–8025.

[101] H. Joshi, J. Cambronero, S. Gulwani, V. Le, I. Radicek, and G. Verbruggen, Repair is nearly gener-

ation: Multilingual program repair with llms, arXiv preprint arXiv:2208.11640, (2022).

[102] A. Kanade, P. Maniatis, G. Balakrishnan, and K. Shi, Learning and evaluating contextual embedding of

source code, in Proceedings of the 37th International Conference on Machine Learning, H. D. III and A. Singh,

eds., vol. 119 of Proceedings of Machine Learning Research, PMLR, 13–18 Jul 2020, pp. 5110–5121.

[103] , Learning and evaluating contextual embedding of source code, in International Conference on Machine

Learning, PMLR, 2020, pp. 5110–5121.

[104] , Learning and evaluating contextual embedding of source code, in International Conference on Machine

Learning, PMLR, 2020, pp. 5110–5121.

[105] H. Kane, M. Y. Kocyigit, A. Abdalla, P. Ajanoh, and M. Coulibali, Nubia: Neural based interchange-

ability assessor for text generation, 2020.

[106] S. Kang, J. Yoon, and S. Yoo, Large language models are few-shot testers: Exploring llm-based general bug

reproduction, ICSE, (2023).

[107] E. Kantorowitz and H. Laor, Automatic generation of useful syntax error messages, Software: Practice

and Experience, 16 (1986), pp. 627–640.

142

[108] R.-M. Karampatsis, H. Babii, R. Robbes, C. Sutton, and A. Janes, Big code != big vocabulary: Open-

vocabulary models for source code, in International Conference on Software Engineering (ICSE), 2020.

[109] A. Karmakar and R. Robbes, What do pre-trained code models know about code?, in 2021 36th IEEE/ACM

International Conference on Automated Software Engineering (ASE), IEEE, 2021, pp. 1332–1336.

[110] N. Kassner and H. Schütze, Negated and misprimed probes for pretrained language models: Birds can talk,

but cannot fly, in Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics,

Online, July 2020, Association for Computational Linguistics, pp. 7811–7818.

[111] O. Katz, Y. Olshaker, Y. Goldberg, and E. Yahav, Towards neural decompilation, arXiv preprint

arXiv:1905.08325, (2019).

[112] G. Klein, Y. Kim, Y. Deng, J. Senellart, and A. M. Rush, Opennmt: Open-source toolkit for neural

machine translation, arXiv preprint arXiv:1701.02810, (2017).

[113] T. Kojima, S. S. Gu, M. Reid, Y. Matsuo, and Y. Iwasawa, Large language models are zero-shot reasoners,

arXiv preprint arXiv:2205.11916, (2022).

[114] S. K. Kummerfeld and J. Kay, The neglected battle fields of syntax errors, in Proceedings of the fifth

Australasian conference on Computing education-Volume 20, Citeseer, 2003, pp. 105–111.

[115] J. Lacomis, P. Yin, E. Schwartz, M. Allamanis, C. Le Goues, G. Neubig, and B. Vasilescu, Dire:

A neural approach to decompiled identifier naming, in 2019 34th IEEE/ACM International Conference on

Automated Software Engineering (ASE), IEEE, 2019, pp. 628–639.

[116] E. Lahtinen, K. Ala-Mutka, and H.-M. Järvinen, A study of the difficulties of novice programmers, Acm

SIGCSE bulletin, 37 (2005), pp. 14–18.

[117] S. M. Lakew, M. Cettolo, and M. Federico, A comparison of transformer and recurrent neural networks

on multilingual neural machine translation, arXiv preprint arXiv:1806.06957, (2018).

[118] D. Lawrie, C. Morrell, H. Feild, and D. Binkley, Effective identifier names for comprehension and

memory, Innovations in Systems and Software Engineering, 3 (2007), pp. 303–318.

[119] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer, Genprog: A generic method for automatic software

repair, Ieee transactions on software engineering, 38 (2011), pp. 54–72.

[120] A. LeClair, A. Bansal, and C. McMillan, Ensemble models for neural source code summarization of

subroutines, arXiv preprint arXiv:2107.11423, (2021).

[121] A. LeClair, S. Haque, L. Wu, and C. McMillan, Improved code summarization via a graph neural network,

in Proceedings of the 28th International Conference on Program Comprehension, 2020, pp. 184–195.

[122] A. LeClair, S. Jiang, and C. McMillan, A neural model for generating natural language summaries of

program subroutines, in 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE), IEEE,

2019, pp. 795–806.

143

[123] C. Lemieux, J. P. Inala, S. K. Lahiri, and S. Sen, Codamosa: Escaping coverage plateaus in test generation

with pre-trained large language models, in 45th International Conference on Software Engineering, ser. ICSE,

2023.

[124] B. Li, M. Yan, X. Xia, X. Hu, G. Li, and D. Lo, Deepcommenter: a deep code comment generation tool with

hybrid lexical and syntactical information, in Proceedings of the 28th ACM Joint Meeting on European Software

Engineering Conference and Symposium on the Foundations of Software Engineering, 2020, pp. 1571–1575.

[125] Y. Li, S. Wang, and T. N. Nguyen, Dlfix: Context-based code transformation learning for automated program

repair, in 2020 42th International Conference on Software Engineering (ICSE), 2020.

[126] Z. Li, Y. Wu, B. Peng, X. Chen, Z. Sun, Y. Liu, and D. Yu, Secnn: A semantic cnn parser for code

comment generation, Journal of Systems and Software, 181 (2021), p. 111036.

[127] C.-Y. Lin, Rouge: A package for automatic evaluation of summaries, in Text summarization branches out,

2004, pp. 74–81.

[128] C.-Y. Lin and F. J. Och, Orange: a method for evaluating automatic evaluation metrics for machine transla-

tion, in COLING 2004: Proceedings of the 20th International Conference on Computational Linguistics, 2004,

pp. 501–507.

[129] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer, and

V. Stoyanov, Roberta: A robustly optimized bert pretraining approach, arXiv preprint arXiv:1907.11692,

(2019).

[130] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer, and

V. Stoyanov, Roberta: A robustly optimized BERT pretraining approach, CoRR, abs/1907.11692 (2019).

[131] F. Long and M. Rinard, Automatic patch generation by learning correct code, in Proceedings of the 43rd

Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, 2016, pp. 298–312.

[132] C. V. Lopes, P. Maj, P. Martins, V. Saini, D. Yang, J. Zitny, H. Sajnani, and J. Vitek, Déjàvu: a

map of code duplicates on github, Proceedings of the ACM on Programming Languages, 1 (2017), pp. 1–28.

[133] S. Lu, D. Guo, S. Ren, J. Huang, A. Svyatkovskiy, A. Blanco, C. Clement, D. Drain, D. Jiang,

D. Tang, et al., Codexglue: A machine learning benchmark dataset for code understanding and generation,

arXiv preprint arXiv:2102.04664, (2021).

[134] S. Lu, D. Guo, S. Ren, J. Huang, A. Svyatkovskiy, A. Blanco, C. B. Clement, D. Drain, D. Jiang,

D. Tang, G. Li, L. Zhou, L. Shou, L. Zhou, M. Tufano, M. Gong, M. Zhou, N. Duan, N. Sundaresan,

S. K. Deng, S. Fu, and S. Liu, Codexglue: A machine learning benchmark dataset for code understanding

and generation, CoRR, abs/2102.04664 (2021).

[135] M.-T. Luong, H. Pham, and C. D. Manning, Effective approaches to attention-based neural machine trans-

lation, arXiv preprint arXiv:1508.04025, (2015).

144

[136] T. Lutellier, H. V. Pham, L. Pang, Y. Li, M. Wei, and L. Tan, Coconut: combining context-aware neural

translation models using ensemble for program repair, in Proceedings of the 29th ACM SIGSOFT International

Symposium on Software Testing and Analysis, 2020, pp. 101–114.

[137] G. Macbeth, E. Razumiejczyk, and R. D. Ledesma, Cliff’s delta calculator: A non-parametric effect size

program for two groups of observations, Universitas Psychologica, 10 (2011), pp. 545–555.

[138] J. Mahmud, F. Faisal, R. I. Arnob, A. Anastasopoulos, and K. Moran, Code to comment translation:

A comparative study on model effectiveness & errors, arXiv preprint arXiv:2106.08415, (2021).

[139] A. Mastropaolo, S. Scalabrino, N. Cooper, D. N. Palacio, D. Poshyvanyk, R. Oliveto, and

G. Bavota, Studying the usage of text-to-text transfer transformer to support code-related tasks, in 2021

IEEE/ACM 43rd International Conference on Software Engineering (ICSE), IEEE, 2021, pp. 336–347.

[140] M. M. Masud, J. Gao, L. Khan, J. Han, and B. Thuraisingham, Mining concept-drifting data stream to

detect peer to peer botnet traffic, Univ. of Texas at Dallas, Tech. Report# UTDCS-05-08, (2008).

[141] M. McCracken, V. Almstrum, D. Diaz, M. Guzdial, D. Hagan, Y. B.-D. Kolikant, C. Laxer,

L. Thomas, I. Utting, and T. Wilusz, A multi-national, multi-institutional study of assessment of pro-

gramming skills of first-year cs students, in Working group reports from ITiCSE on Innovation and technology

in computer science education, ACM, 2001, pp. 125–180.

[142] R. P. Medeiros, G. L. Ramalho, and T. P. Falcão, A systematic literature review on teaching and learning

introductory programming in higher education, IEEE Transactions on Education, 62 (2018), pp. 77–90.

[143] A. Mesbah, A. Rice, E. Johnston, N. Glorioso, and E. Aftandilian, Deepdelta: learning to repair

compilation errors, (2019).

[144] P. Nakov and H. T. Ng, Improved statistical machine translation for resource-poor languages using related

resource-rich languages, in Proceedings of the 2009 Conference on Empirical Methods in Natural Language

Processing, 2009, pp. 1358–1367.

[145] N. Nashid, M. Sintaha, and A. Mesbah, Retrieval-based prompt selection for code-related few-shot learning,

in Proceedings, 45th ICSE, 2023.

[146] E. Nijkamp, B. Pang, H. Hayashi, L. Tu, H. Wang, Y. Zhou, S. Savarese, and C. Xiong, Codegen: An

open large language model for code with multi-turn program synthesis, arXiv preprint arXiv:2203.13474, (2022).

[147] NS-A, Ghidra. https://ghidra-sre.org/, 2020. Last Accessed August 2020.

[148] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. L. Wainwright, P. Mishkin, C. Zhang, S. Agarwal,

K. Slama, A. Ray, J. Schulman, J. Hilton, F. Kelton, L. Miller, M. Simens, A. Askell, P. Welinder,

P. Christiano, J. Leike, and R. Lowe, Training language models to follow instructions with human feedback,

2022.

145

https://ghidra-sre.org/

[149] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, Bleu: a method for automatic evaluation of machine

translation, in Proceedings of the 40th annual meeting of the Association for Computational Linguistics, 2002,

pp. 311–318.

[150] A. Parrish, S. Schuster, A. Warstadt, O. Agha, S.-H. Lee, Z. Zhao, S. R. Bowman, and T. Linzen,

NOPE: A corpus of naturally-occurring presuppositions in English, in Proceedings of the 25th Conference on

Computational Natural Language Learning, Online, Nov. 2021, Association for Computational Linguistics,

pp. 349–366.

[151] M. R. Parvez, W. U. Ahmad, S. Chakraborty, B. Ray, and K.-W. Chang, Retrieval augmented code

generation and summarization, arXiv preprint arXiv:2108.11601, (2021).

[152] K. Pei, J. Guan, D. W. King, J. Yang, and S. Jana, Xda: Accurate, robust disassembly with transfer

learning, arXiv preprint arXiv:2010.00770, (2020).

[153] D. Perez and S. Chiba, Cross-language clone detection by learning over abstract syntax trees, in 2019

IEEE/ACM 16th International Conference on Mining Software Repositories (MSR), IEEE, 2019, pp. 518–528.

[154] L. Phan, H. Tran, D. Le, H. Nguyen, J. Anibal, A. Peltekian, and Y. Ye, Cotext: Multi-task learning

with code-text transformer, arXiv preprint arXiv:2105.08645, (2021).

[155] T. Pimentel, J. Valvoda, R. Hall Maudslay, R. Zmigrod, A. Williams, and R. Cotterell,

Information-theoretic probing for linguistic structure, in Proceedings of the 58th Annual Meeting of the Associ-

ation for Computational Linguistics, Online, July 2020, Association for Computational Linguistics, pp. 4609–

4622.

[156] M. Pradel and K. Sen, Deepbugs: A learning approach to name-based bug detection, Proceedings of the ACM

on Programming Languages, 2 (2018), pp. 1–25.

[157] W. Qi, Y. Gong, Y. Yan, C. Xu, B. Yao, B. Zhou, B. Cheng, D. Jiang, J. Chen, R. Zhang, et al.,

Prophetnet-x: Large-scale pre-training models for english, chinese, multi-lingual, dialog, and code generation,

arXiv preprint arXiv:2104.08006, (2021).

[158] S. Qiao, Y. Ou, N. Zhang, X. Chen, Y. Yao, S. Deng, C. Tan, F. Huang, and H. Chen, Reasoning with

language model prompting: A survey, arXiv preprint arXiv:2212.09597, (2022).

[159] J. Qiu, X. Su, and P. Ma, Library functions identification in binary code by using graph isomorphism testings,

in 2015 IEEE 22nd International Conference on Software Analysis, Evolution, and Reengineering (SANER),

IEEE, 2015, pp. 261–270.

[160] , Using reduced execution flow graph to identify library functions in binary code, IEEE Transactions on

Software Engineering, 42 (2015), pp. 187–202.

[161] A. Radford, K. Narasimhan, T. Salimans, I. Sutskever, et al., Improving language understanding by

generative pre-training, (2018).

146

[162] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, et al., Language models are unsu-

pervised multitask learners, OpenAI blog, 1 (2019), p. 9.

[163] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. J. Liu,

Exploring the limits of transfer learning with a unified text-to-text transformer, arXiv preprint arXiv:1910.10683,

(2019).

[164] J. Ramos et al., Using tf-idf to determine word relevance in document queries, in Proceedings of the first

instructional conference on machine learning, vol. 242, Citeseer, 2003, pp. 29–48.

[165] S. Ranathunga, E.-S. A. Lee, M. P. Skenduli, R. Shekhar, M. Alam, and R. Kaur, Neural machine

translation for low-resource languages: A survey, arXiv preprint arXiv:2106.15115, (2021).

[166] S. Robertson, H. Zaragoza, et al., The probabilistic relevance framework: Bm25 and beyond, Foundations

and Trends® in Information Retrieval, 3 (2009), pp. 333–389.

[167] P. Rodeghero, C. McMillan, P. W. McBurney, N. Bosch, and S. D’Mello, Improving automated

source code summarization via an eye-tracking study of programmers, in Proceedings of the 36th international

conference on Software engineering, 2014, pp. 390–401.

[168] A. Rogers, O. Kovaleva, and A. Rumshisky, A primer in BERTology: What we know about how BERT

works, Transactions of the Association for Computational Linguistics, 8 (2020), pp. 842–866.

[169] D. Roy, S. Fakhoury, and V. Arnaoudova, Reassessing automatic evaluation metrics for code summariza-

tion tasks, in Proceedings of the 29th ACM Joint Meeting on European Software Engineering Conference and

Symposium on the Foundations of Software Engineering, 2021, pp. 1105–1116.

[170] B. Roziere, M.-A. Lachaux, M. Szafraniec, and G. Lample, Dobf: A deobfuscation pre-training objective

for programming languages, arXiv preprint arXiv:2102.07492, (2021).

[171] E. A. Santos, J. C. Campbell, D. Patel, A. Hindle, and J. N. Amaral, Syntax and sensibility: Using

language models to detect and correct syntax errors, in 2018 IEEE 25th International Conference on Software

Analysis, Evolution and Reengineering (SANER), IEEE, 2018, pp. 311–322.

[172] T. Schorsch, Cap: an automated self-assessment tool to check pascal programs for syntax, logic and style

errors, ACM SIGCSE Bulletin, 27 (1995), pp. 168–172.

[173] M. G. Schultz, E. Eskin, F. Zadok, and S. J. Stolfo, Data mining methods for detection of new malicious

executables, in Proceedings 2001 IEEE Symposium on Security and Privacy. S&P 2001, IEEE, 2000, pp. 38–49.

[174] T. Sellam, D. Das, and A. P. Parikh, Bleurt: Learning robust metrics for text generation, arXiv preprint

arXiv:2004.04696, (2020).

[175] R. Sennrich, B. Haddow, and A. Birch, Neural machine translation of rare words with subword units, arXiv

preprint arXiv:1508.07909, (2015).

[176] E. Shi, Y. Wang, L. Du, J. Chen, S. Han, H. Zhang, D. Zhang, and H. Sun, Neural code summarization:

How far are we?, arXiv preprint arXiv:2107.07112, (2021).

147

[177] , On the evaluation of neural code summarization, in Proceedings of the 44th International Conference on

Software Engineering, 2023, pp. 1597–1608.

[178] E. C. R. Shin, D. Song, and R. Moazzezi, Recognizing functions in binaries with neural networks, in 24th

{USENIX} Security Symposium ({USENIX} Security 15), 2015, pp. 611–626.

[179] P. Shirani, L. Wang, and M. Debbabi, Binshape: Scalable and robust binary library function identification

using function shape, in International Conference on Detection of Intrusions and Malware, and Vulnerability

Assessment, Springer, 2017, pp. 301–324.

[180] D. Shrivastava, H. Larochelle, and D. Tarlow, Repository-level prompt generation for large language

models of code, arXiv preprint arXiv:2206.12839, (2022).

[181] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. G. Kang, Z. Liang, J. Newsome,

P. Poosankam, and P. Saxena, Bitblaze: A new approach to computer security via binary analysis, in

International Conference on Information Systems Security, Springer, 2008, pp. 1–25.

[182] J. C. Spohrer and E. Soloway, Novice mistakes: Are the folk wisdoms correct?, Communications of the

ACM, 29 (1986), pp. 624–632.

[183] G. Sridhara, E. Hill, D. Muppaneni, L. Pollock, and K. Vijay-Shanker, Towards automatically gen-

erating summary comments for java methods, in Proceedings of the IEEE/ACM international conference on

Automated software engineering, 2010, pp. 43–52.

[184] I. Sutskever, O. Vinyals, and Q. V. Le, Sequence to sequence learning with neural networks, in Advances

in neural information processing systems, 2014, pp. 3104–3112.

[185] X. Tan, Y. Ren, D. He, T. Qin, Z. Zhao, and T.-Y. Liu, Multilingual neural machine translation with

knowledge distillation, arXiv preprint arXiv:1902.10461, (2019).

[186] Y. Tang, C. Tran, X. Li, P.-J. Chen, N. Goyal, V. Chaudhary, J. Gu, and A. Fan, Multilingual

translation with extensible multilingual pretraining and finetuning, arXiv preprint arXiv:2008.00401, (2020).

[187] I. Tenney, P. Xia, B. Chen, A. Wang, A. Poliak, R. T. McCoy, N. Kim, B. Van Durme, S. R.

Bowman, D. Das, et al., What do you learn from context? probing for sentence structure in contextualized

word representations, arXiv preprint arXiv:1905.06316, (2019).

[188] R. Tian, R. Islam, L. Batten, and S. Versteeg, Differentiating malware from cleanware using behavioural

analysis, in 2010 5th international conference on malicious and unwanted software, Ieee, 2010, pp. 23–30.

[189] D. A. Tomassi, N. Dmeiri, Y. Wang, A. Bhowmick, Y.-C. Liu, P. T. Devanbu, B. Vasilescu, and

C. Rubio-González, Bugswarm: mining and continuously growing a dataset of reproducible failures and fixes,

in 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE), IEEE, 2019, pp. 339–349.

[190] S. Troshin and N. Chirkova, Probing pretrained models of source code, arXiv preprint arXiv:2202.08975,

(2022).

148

[191] Z. Tu, Z. Su, and P. Devanbu, On the localness of software, in Proceedings of the 22nd ACM SIGSOFT

International Symposium on Foundations of Software Engineering, 2014, pp. 269–280.

[192] M. Tufano, J. Pantiuchina, C. Watson, G. Bavota, and D. Poshyvanyk, On learning meaningful code

changes via neural machine translation, in Proceedings of the 41st International Conference on Software Engi-

neering, IEEE Press, 2019, pp. 25–36.

[193] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polo-

sukhin, Attention is all you need, in Advances in neural information processing systems, 2017, pp. 5998–6008.

[194] M. Vijaymeena and K. Kavitha, A survey on similarity measures in text mining, Machine Learning and

Applications: An International Journal, 3 (2016), pp. 19–28.

[195] E. Wallace, S. Feng, N. Kandpal, M. Gardner, and S. Singh, Universal adversarial triggers for attack-

ing and analyzing NLP, in Proceedings of the 2019 Conference on Empirical Methods in Natural Language

Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP),

Hong Kong, China, Nov. 2019, Association for Computational Linguistics, pp. 2153–2162.

[196] Y. Wan, W. Zhao, H. Zhang, Y. Sui, G. Xu, and H. Jin, What do they capture? a structural analysis of

pre-trained language models for source code, in Proceedings of the 44th International Conference on Software

Engineering, 2022, pp. 2377–2388.

[197] Y. Wan, Z. Zhao, M. Yang, G. Xu, H. Ying, J. Wu, and P. S. Yu, Improving automatic source code

summarization via deep reinforcement learning, in Proceedings of the 33rd ACM/IEEE International Conference

on Automated Software Engineering, 2018, pp. 397–407.

[198] S. Wang, P. Wang, and D. Wu, Semantics-aware machine learning for function recognition in binary code, in

2017 IEEE International Conference on Software Maintenance and Evolution (ICSME), IEEE, 2017, pp. 388–

398.

[199] T.-Y. Wang, S.-J. Horng, M.-Y. Su, C.-H. Wu, P.-C. Wang, and W.-Z. Su, A surveillance spyware

detection system based on data mining methods, in 2006 IEEE International Conference on Evolutionary Com-

putation, IEEE, 2006, pp. 3236–3241.

[200] W. Wang, Y. Zhang, Y. Sui, Y. Wan, Z. Zhao, J. Wu, P. Yu, and G. Xu, Reinforcement-learning-guided

source code summarization via hierarchical attention, IEEE Transactions on software Engineering, (2020).

[201] X. Wang, Y. Wang, P. Zhou, M. Xiao, Y. Wang, L. Li, X. Liu, H. Wu, J. Liu, and X. Jiang, Clsebert:

Contrastive learning for syntax enhanced code pre-trained model, arXiv preprint arXiv:2108.04556, (2021).

[202] Y. Wang, E. Shi, L. Du, X. Yang, Y. Hu, S. Han, H. Zhang, and D. Zhang, Cocosum: Contextual code

summarization with multi-relational graph neural network, arXiv preprint arXiv:2107.01933, (2021).

[203] Y. Wang, W. Wang, S. Joty, and S. C. Hoi, Codet5: Identifier-aware unified pre-trained encoder-decoder

models for code understanding and generation, in Proceedings of the 2021 Conference on Empirical Methods in

Natural Language Processing, 2021, pp. 8696–8708.

149

[204] C. Watson and F. W. Li, Failure rates in introductory programming revisited, in Proceedings of the 2014

conference on Innovation & technology in computer science education, 2014, pp. 39–44.

[205] B. Wei, G. Li, X. Xia, Z. Fu, and Z. Jin, Code generation as a dual task of code summarization, arXiv

preprint arXiv:1910.05923, (2019).

[206] B. Wei, Y. Li, G. Li, X. Xia, and Z. Jin, Retrieve and refine: exemplar-based neural comment generation,

in 2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE), IEEE, 2020,

pp. 349–360.

[207] J. Wei, X. Wang, D. Schuurmans, M. Bosma, E. Chi, Q. Le, and D. Zhou, Chain of thought prompting

elicits reasoning in large language models, arXiv preprint arXiv:2201.11903, (2022).

[208] J. Wei, X. Wang, D. Schuurmans, M. Bosma, E. H. Chi, Q. Le, and D. Zhou, Chain of thought prompting

elicits reasoning in large language models, CoRR, abs/2201.11903 (2022).

[209] F. Wilcoxon, Individual comparisons by ranking methods, in Breakthroughs in statistics, Springer, 1992,

pp. 196–202.

[210] C. Willems, T. Holz, and F. Freiling, Toward automated dynamic malware analysis using cwsandbox, IEEE

Security & Privacy, 5 (2007), pp. 32–39.

[211] Z. Wu, Y. Chen, B. Kao, and Q. Liu, Perturbed masking: Parameter-free probing for analyzing and inter-

preting BERT, in Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics,

Online, July 2020, Association for Computational Linguistics, pp. 4166–4176.

[212] F. F. Xu, U. Alon, G. Neubig, and V. J. Hellendoorn, A systematic evaluation of large language models

of code, in Proceedings of the 6th ACM SIGPLAN International Symposium on Machine Programming, 2022,

pp. 1–10.

[213] G. Yang, X. Chen, J. Cao, S. Xu, Z. Cui, C. Yu, and K. Liu, Comformer: Code comment generation via

transformer and fusion method-based hybrid code representation, arXiv preprint arXiv:2107.03644, (2021).

[214] M. Yasunaga and P. Liang, Graph-based, self-supervised program repair from diagnostic feedback, in Inter-

national Conference on Machine Learning, PMLR, 2020, pp. 10799–10808.

[215] , Break-it-fix-it: Unsupervised learning for program repair, arXiv preprint arXiv:2106.06600, (2021).

[216] Y. Ye, T. Li, D. Adjeroh, and S. S. Iyengar, A survey on malware detection using data mining techniques,

ACM Computing Surveys (CSUR), 50 (2017), pp. 1–40.

[217] Y. Ye, T. Li, K. Huang, Q. Jiang, and Y. Chen, Hierarchical associative classifier (hac) for malware

detection from the large and imbalanced gray list, Journal of Intelligent Information Systems, 35 (2010), pp. 1–

20.

[218] Y. Ye, T. Li, Q. Jiang, Z. Han, and L. Wan, Intelligent file scoring system for malware detection from the

gray list, in Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data

mining, 2009, pp. 1385–1394.

150

[219] Y. Ye, T. Li, Q. Jiang, and Y. Wang, Cimds: adapting postprocessing techniques of associative classifica-

tion for malware detection, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and

Reviews), 40 (2010), pp. 298–307.

[220] Y. Ye, D. Wang, T. Li, and D. Ye, Imds: Intelligent malware detection system, in Proceedings of the 13th

ACM SIGKDD international conference on Knowledge discovery and data mining, 2007, pp. 1043–1047.

[221] H. Yuchao, W. Moshi, W. Song, W. Junjie, and W. Qing, Yet another combination of ir-and neural-based

comment generation, arXiv preprint arXiv:2107.12938, (2021).

[222] Y. Zemlyanskiy, M. de Jong, J. Ainslie, P. Pasupat, P. Shaw, L. Qiu, S. Sanghai, and F. Sha,

Generate-and-retrieve: use your predictions to improve retrieval for semantic parsing, arXiv preprint

arXiv:2209.14899, (2022).

[223] J. Zhang, X. Wang, H. Zhang, H. Sun, and X. Liu, Retrieval-based neural source code summarization, in

2020 IEEE/ACM 42nd International Conference on Software Engineering (ICSE), IEEE, 2020, pp. 1385–1397.

[224] T. Zhang, V. Kishore, F. Wu, K. Q. Weinberger, and Y. Artzi, Bertscore: Evaluating text generation

with bert, arXiv preprint arXiv:1904.09675, (2019).

[225] T. Zhang, B. Xu, F. Thung, S. A. Haryono, D. Lo, and L. Jiang, Sentiment analysis for software engi-

neering: How far can pre-trained transformer models go?, in 2020 IEEE International Conference on Software

Maintenance and Evolution (ICSME), IEEE, 2020, pp. 70–80.

[226] K. Zhou, D. Jurafsky, and T. Hashimoto, Navigating the grey area: Expressions of overconfidence and

uncertainty in language models, arXiv preprint arXiv:2302.13439, (2023).

151

	Abstract
	Acknowledgments
	Chapter 1. Introduction
	1.1. Recovering Usages of Library Function
	1.2. Fixing Student Program
	1.3. Multilingual Training
	1.4. Towards Understanding What Code Language Models Learned
	1.5. Automatic Semantic Augmentation of Language Model Prompts

	Chapter 2. Learning to Find Usages of Library Functions in Optimized Binaries
	2.1. Background
	2.2. Approach/Methodology
	2.3. Creating Funcre
	2.4. Empirical Results
	2.5. Threats to Validity
	2.6. Contributions

	Chapter 3. SynShine: improved fixing of Syntax Errors
	3.1. Background & Motivation
	3.2. Methodology
	3.3. Evaluation & Results
	3.4. Related Work
	3.5. Conclusion

	Chapter 4. Multilingual Training for Software Engineering
	4.1. Background & Motivation
	4.2. Benchmark Datasets and Tasks
	4.3. Results
	4.4. Interpreting results, and Threats
	4.5. Related work
	4.6. Conclusion

	Chapter 5. Towards Understanding What Code Language Models Learned
	5.1. Related Work
	5.2. Methodology
	5.3. Experiments and Results
	5.4. Limitations
	5.5. Conclusion

	Chapter 6. Automatic Semantic Augmentation of Language Model Prompts (for Code Summarization)
	6.1. Background & Motivation
	6.2. Dataset & Methodology
	6.3. Results
	6.4. Discussion
	6.5. Related work
	6.6. Threats & Limitations
	6.7. Conclusion

	Chapter 7. Conclusion & Future Research Direction
	7.1. Pre-trained language model: where to go from here?
	7.2. Emergence of LLMs and its Implications
	7.3. AI Safety and Use Cases

	Bibliography

