Calendrier de sortiesLes 250 meilleurs filmsLes films les plus populairesRechercher des films par genreMeilleur box officeHoraires et billetsActualités du cinémaPleins feux sur le cinéma indien
    Ce qui est diffusé à la télévision et en streamingLes 250 meilleures sériesÉmissions de télévision les plus populairesParcourir les séries TV par genreActualités télévisées
    Que regarderLes dernières bandes-annoncesProgrammes IMDb OriginalChoix d’IMDbCoup de projecteur sur IMDbGuide de divertissement pour la famillePodcasts IMDb
    OscarsEmmysSan Diego Comic-ConSummer Watch GuideToronto Int'l Film FestivalSTARmeter AwardsAwards CentralFestivalsTous les événements
    Né aujourd'huiLes célébrités les plus populairesActualités des célébrités
    Centre d'aideZone des contributeursSondages
Pour les professionnels de l'industrie
  • Langue
  • Entièrement prise en charge
  • English (United States)
    Partiellement prise en charge
  • Français (Canada)
  • Français (France)
  • Deutsch (Deutschland)
  • हिंदी (भारत)
  • Italiano (Italia)
  • Português (Brasil)
  • Español (España)
  • Español (México)
Liste de favoris
Se connecter
  • Entièrement prise en charge
  • English (United States)
    Partiellement prise en charge
  • Français (Canada)
  • Français (France)
  • Deutsch (Deutschland)
  • हिंदी (भारत)
  • Italiano (Italia)
  • Português (Brasil)
  • Español (España)
  • Español (México)
Utiliser l'appli
  • Distribution et équipe technique
  • Avis des utilisateurs
IMDbPro

The Colours of Infinity

  • Téléfilm
  • 1995
  • Not Rated
  • 52min
NOTE IMDb
7,7/10
575
MA NOTE
The Colours of Infinity (1995)
Documentaire

Ajouter une intrigue dans votre langueArthur C. Clarke presents the mathematical discovery of the Mandelbrot Set, an infinitely complex geometrical shape first seen in 1980 by Benoît B. Mandelbrot using a very simple equation wi... Tout lireArthur C. Clarke presents the mathematical discovery of the Mandelbrot Set, an infinitely complex geometrical shape first seen in 1980 by Benoît B. Mandelbrot using a very simple equation with computers and graphics.Arthur C. Clarke presents the mathematical discovery of the Mandelbrot Set, an infinitely complex geometrical shape first seen in 1980 by Benoît B. Mandelbrot using a very simple equation with computers and graphics.

  • Réalisation
    • Nigel Lesmoir-Gordon
  • Scénario
    • Arthur C. Clarke
    • Nigel Lesmoir-Gordon
  • Casting principal
    • Arthur C. Clarke
    • Michael Barnsley
    • Stephen Hawking
  • Voir les informations de production sur IMDbPro
  • NOTE IMDb
    7,7/10
    575
    MA NOTE
    • Réalisation
      • Nigel Lesmoir-Gordon
    • Scénario
      • Arthur C. Clarke
      • Nigel Lesmoir-Gordon
    • Casting principal
      • Arthur C. Clarke
      • Michael Barnsley
      • Stephen Hawking
    • 7avis d'utilisateurs
    • 1avis de critique
  • Voir les informations de production sur IMDbPro
  • Voir les informations de production sur IMDbPro
  • Photos

    Rôles principaux5

    Modifier
    Arthur C. Clarke
    Arthur C. Clarke
    • Self
    Michael Barnsley
    • Self
    • (non crédité)
    Stephen Hawking
    Stephen Hawking
    • Self
    • (non crédité)
    Benoît B. Mandelbrot
    • Self
    • (non crédité)
    Ian Stewart
    • Self
    • (non crédité)
    • Réalisation
      • Nigel Lesmoir-Gordon
    • Scénario
      • Arthur C. Clarke
      • Nigel Lesmoir-Gordon
    • Toute la distribution et toute l’équipe technique
    • Production, box office et plus encore chez IMDbPro

    Avis des utilisateurs7

    7,7575
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10

    Avis à la une

    10ablebravo

    Mind bending

    This is a fantastic yet completely understandable documentary which discusses in detail the phenomenon of Fractal geometry. Sir Arthur Clarke does an excellent job of never talking down to his audience, yet imparts a great deal of detail in an enjoyable fashion. Interviews with other mathematicians including Prof. Mandelbrot himself adds to the intellectual appeal of this great (and not nearly long enough, IMO) production. The Fractal graphics are utterly breathtaking, and are aided by a perfectly composed musical score by none other than Roger Waters of Pink Floyd fame. The Fractal animations alone stand up to repeated viewings for no other reason than they are spectacularly beautiful. Totally recommended! Ten stars out of ten!
    10umpire63

    This is the very best explanation of fractals ever presented

    "Colors of Infinity" is the very best explanation of fractals in general and the Mandelbrot set in particular ever presented. Arthur C. Clarke's soft-spoken style sets the "common man" at ease, and his pinpoint commentary makes the concept of fractals easy to understand. One need not be a stellar mathematician to grasp the concepts and why they are profound. The experts are trotted out, and they, too, explain fractal geometry in ways that are accessible to everyman.

    Fractals are part of our lives, and math informs everything that exists, whether natural or man-made. When I saw this on TV several years ago, it reminded me of the Douglas Adams (of "Hitchhiker's Guide" fame) book "Dirk Gently's Holistic Detective Agency." In the novel, a software engineer tries to create a program that sets the flapping of a bird's wings to music using mathematical equations. That is exactly what fractals seem to do; they describe events in nature in mathematical ways, and the section of "Colors" which discusses this is eye-opening.

    Whether you think you would be interested or not, give this show a viewing. You will be glad you did.
    8Quinoa1984

    lots of colors, and David Gilmour

    This is the kind of film that you'll likely find, and possibly watch if it's in the right 'mood', amid your friend's lot of obscure DVD's. Apparently that's how I came across it, as my friend was a big Pink Floyd- and more so David Gilmour- fan. As I understood what went on screen, Arthur C. Clarke talks to the audience about special things out in the universe. Particularly what are called 'fractals'. What was really most interesting about it all was the idea that such fractals, which continue on and on into infinity, it may connect to what happens with human revolution, or really how it connects to how the universe works. How, perhaps, things keep going in spirals. You don't have to be an astronomer to get what Clarke is talking about, but it does take some paying attention to. There are many little points made that, regrettably, flew over my head until I heard the intriguing key point about fractals. On the other hand, if you might happen to be looking for a little obscure stoner quickie, look no further. There's lots of staggering guitar solos by Floyd guitar maestro Gilmour that matches up well with the visuals provided. Make no mistake, the term 'trippy' does apply to these fractals, and it's probably a must-see in some circles. Though I probably wouldn't go out of my way to reach out for it.
    9beschuitfluiter

    Great explanation of this mind boggling stuff

    I'd always like to refer the Mandelbrot set as 'they accidentally discovered the code to the universal matrix'

    Scary thing is, it's probably true 😂

    Be careful with these visuals, they can be overwhelming when unsober.
    10Pat-mustard

    One for the nerds and spacecadets

    Really excellent watch! Arthur C Clarke explores the discovery of fractal geometry, its importance and connection to the natural world. The colours and shapes created using the Mset are stunning, I was glued to the screen. I definitely didn't watch it on magic mushrooms.

    Vous aimerez aussi

    Clouds are not Spheres
    7,0
    Clouds are not Spheres
    Voyage vers l'infini
    7,0
    Voyage vers l'infini
    Islands in the Sky
    Islands in the Sky
    Arthur C. Clarke's Venus Prime
    Arthur C. Clarke's Venus Prime
    Is God a Number?
    5,9
    Is God a Number?
    Childhood's End : Les Enfants d'Icare
    6,8
    Childhood's End : Les Enfants d'Icare
    Unknown: Cosmic Time Machine
    7,2
    Unknown: Cosmic Time Machine
    Breaking Strain
    Breaking Strain
    3001: The Final Odyssey
    Rendezvous with Rama
    2010 - L'année du premier contact (L'odyssée continue)
    6,7
    2010 - L'année du premier contact (L'odyssée continue)
    Cryptopia: Bitcoin, Blockchains and the Future of the Internet
    6,8
    Cryptopia: Bitcoin, Blockchains and the Future of the Internet

    Histoire

    Modifier

    Le saviez-vous

    Modifier
    • Connexions
      Features Infinit: The Journey (1995)

    Meilleurs choix

    Connectez-vous pour évaluer et suivre la liste de favoris afin de recevoir des recommandations personnalisées
    Se connecter

    Détails

    Modifier
    • Pays d’origine
      • Royaume-Uni
    • Langue
      • Anglais
    • Aussi connu sous le nom de
      • Colours of Infinity, Is God a Number?
    • Sociétés de production
      • Gordon Films
      • Iterated Systems
      • New Moon Pictures
    • Voir plus de crédits d'entreprise sur IMDbPro

    Spécifications techniques

    Modifier
    • Durée
      • 52min

    Contribuer à cette page

    Suggérer une modification ou ajouter du contenu manquant
    • En savoir plus sur la contribution
    Modifier la page

    Découvrir

    Récemment consultés

    Activez les cookies du navigateur pour utiliser cette fonctionnalité. En savoir plus
    Obtenir l'application IMDb
    Identifiez-vous pour accéder à davantage de ressourcesIdentifiez-vous pour accéder à davantage de ressources
    Suivez IMDb sur les réseaux sociaux
    Obtenir l'application IMDb
    Pour Android et iOS
    Obtenir l'application IMDb
    • Aide
    • Index du site
    • IMDbPro
    • Box Office Mojo
    • Licence de données IMDb
    • Salle de presse
    • Annonces
    • Emplois
    • Conditions d'utilisation
    • Politique de confidentialité
    • Your Ads Privacy Choices
    IMDb, une société Amazon

    © 1990-2025 by IMDb.com, Inc.