
SwarmTalk – Towards Benchmark Software Suites for Swarm
Robotics Platforms

Yihan Zhang
Northwestern University

Evanston, IL, United States
yihan.zhang@u.northwestern.edu

Lyon Zhang
Northwestern University

Evanston, IL, United States
lyonzhang2021@u.northwestern.edu

Hanlin Wang
Northwestern University

Evanston, IL, United States
h.w@u.northwestern.edu

Fabián E. Bustamante
Northwestern University

Evanston, IL, United States
fabianb@cs.northwestern.edu

Michael Rubenstein
Northwestern University

Evanston, IL, United States
rubenstein@northwestern.edu

ABSTRACT
With nearly every new swarm robotic platform built, the designers
develop its software stack, from low-level drivers to high-level algo-
rithmic implementations. And while the different software stacks
frequently share components, especially in robot-to-robot com-
munication, these common components are also developed from
scratch time and again. We present SwarmTalk, a new communica-
tion library that can be quickly ported to new and existing swarm
hardware. SwarmTalk adopts a publish-subscribe communication
model that satisfies the severe hardware constraints found in many
swarms, and provides an easy-to-use programming interface. We
port our SwarmTalk prototype to two hardware swarm platforms
and two simulator-based platforms, and implement commonly-used
swarm algorithms on these four platforms. We present the design
and implementation of SwarmTalk, discuss some of the system chal-
lenges in implementation and cross-platform porting, and report
on our initial experiences as a common communication abstraction
for a community benchmarking suite.

KEYWORDS
swarm robotics; benchmarks; communication

ACM Reference Format:
Yihan Zhang, Lyon Zhang, Hanlin Wang, Fabián E. Bustamante, and Michael
Rubenstein. 2020. SwarmTalk – Towards Benchmark Software Suites for
Swarm Robotics Platforms. In Proc. of the 19th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2020), Auckland, New
Zealand, May 9–13, 2020, IFAAMAS, 9 pages.

1 INTRODUCTION
Research in the field of swarm robotics seeks to coordinate the
actions of a group of simple, physical robots. Visions of future
swarm robots imagine them solving tasks with more reliability,
adaptability, and scalability compared to traditional monolithic
robots. Swarms are expected to be tolerant to individual failures,
reconfigurable for easy adaptation to changing tasks, and scalable
to match the expanding needs of a wide range of tasks. Some of

Proc. of the 19th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2020), B. An, N. Yorke-Smith, A. El Fallah Seghrouchni, G. Sukthankar (eds.), May
9–13, 2020, Auckland, New Zealand. © 2020 International Foundation for Autonomous
Agents and Multiagent Systems (www.ifaamas.org). All rights reserved.

the exciting applications for these systems include warehouse man-
agement, space exploration, search and rescue, self-driving vehicle
navigation, crop pollination, and precision farming.

While research excitement with swarms goes as far back as the
1980s, recent advances in computing, communication, manufac-
turing and assembly are enabling researchers to realize physical
swarms much larger than before. The last few years we have seen
a growing number of swarm platforms being built with hundreds
and even thousands of robots [11, 24, 30, 33, 36].

Each of these platforms, with unique hardware designs and lim-
itations, currently requires the development of its own software
stack, from low-level drivers, such as network I/O buffering or
pulse-width modulation (PWM) for differential motors, to high-
level algorithmic implementations. Once built, these platforms are
commonly evaluated using a mostly ad-hoc set of algorithms and
home-grown implementations.

As the field matures, the value of a common benchmarking suite
to drive performance-based designs and platform comparison will
become increasingly clear. Widely used for evaluating computer
systems [39], in robotics benchmarking has so far focused on single
robot performance [1], specific types of swarm robotics tasks [6],
or on simulated robot systems [42, 44]. No current benchmarking
suite addresses the hardware challenges of various swarm platforms
in terms of computational and communication constraints. We
argue that a common benchmark suite that includes a community
agreed-upon set of benchmarks and is easily portable to any swarm
platform, will help propel the field forward by enabling side-by-side
comparisons of alternative solutions, both in terms of hardware
designs and algorithm implementations, or between subsequent
iterations of a system under evaluation.

Key to building a benchmarking system is identifying a portable
and easy-to-use programming model. There have been efforts re-
garding Domain Specific Languages for programming and manag-
ing swarm robots [2, 31, 45] as well as OS abstractions for miniature
robots [43]. Similar discussions have also happened in the Wireless
Sensor Networks community [25]. However, most of these pro-
gramming models rely on communication primitives provided by
either the OS or the firmware. Most swarm platforms trade packet
and memory size for cost and scalability, for instance by severely
limiting the maximum transmission unit for communication. This
complicates the porting of programming abstractions and algo-
rithms, potentially requiring the use of data compression or packet

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

1638

fragmentation, a far from trivial task. To the best of our knowledge,
there is currently no protocol that fits in such small packets given
the communication scenario, which will be discussed in Sec. 2.1.

As swarm behaviors are dominated by communication and sens-
ing interaction between robots, we believe that a first step towards
creating this benchmarking suite is to abstract away the commu-
nication layer of swarm platforms into a shared communication
library with a common, agreed-upon interface to low-level drivers.

In this paper, we present SwarmTalk, a minimalistic communi-
cation library for extremely hardware-constrained swarm robotics
platforms. SwarmTalk adopts a publish-subscribe communication
model [10] and supports the transmission of multi-packet messages.
Under the publish-subscribe communication model, robots wishing
to send a message register first as publishers on a virtual channel to
which other robots, interested in receiving the message, can register
as subscribers. SwarmTalk is designed for portability. For each new
hardware platform being built, the platform developers will only
need to write the minimal amount of driver interface code once and
can use the provided user interface for all future communication
programming. This library can also serve as the communication
component for the programming abstractions mentioned above.
The system is designed to have a minimal footprint, with a user con-
figurable packet header that is default to 3 bytes. We have verified
our design through an open source implementation of the library,
as well as the driver interface implementations for two physical
robot platforms - Kilobot [36] and Coachbot V2.0 [46] - and two
virtual platforms in ARGoS simulator [32] - Kilobot and Footbot [3].
All four robot environments have been tested with three canonical
swarm behaviors to examine the performance in both static and
mobile environment, as well as in time critical operations. With
only interfacing the system-unique LED and motor actuation to
a set of consistent function calls, the user code for implementing
the behaviors is identical across all four platforms. This shows
promising support for an open benchmark suite.

We envision a new phase for research in swarm robotics plat-
forms in which a research group will develop a platform, link the
low level drivers to the communication library, and automatically in-
herit all programs above the library level, such as benchmark suites
or higher abstractions. The configurable library can provide a con-
sistent base line to separate the algorithms and the hardware into
two components, so as to compare their performance independently.
Within a research community, benchmarks are a statement of the
discipline’s research goals, and they emerge through a synergistic
process of both technical knowledge and community buy-in [39].
We expect that, much as high-level languages did in the 60-70s, a
higher-level communication model may allow researchers to focus
on the problem rather than the implementation details, and thus
be able to tackle more challenging problems.

2 SWARMTALK DESIGN
Given the event-driven, many-to-many communication approach
used in most applications of swarm robotics, SwarmTalk follows
a publish-subscribe communication model [4, 9]. An alternative
decoupled model of communication we considered is Linda-like
distributed tuples [12], which offers a similar model for publishers
and subscribers but has the added complexity of requiring support

for a distributed tuple space. Publish-subscribe has been adopted by
a wide-range of applications, from news aggregators (e.g., Twitter)
to real-time systems (e.g., XMPP) and sensor networks [19]. Under
this model, communicating nodes are referentially decoupled, that
is, nodes are not individually identified. Instead, nodes declare their
interest in particular data by subscribing to relevant topics or chan-
nels on which other nodes can publish. Furthermore, messages can
be sent on different channels completely independently from each
other. For instance, nodes can regularly publish the current value
of their clock in one channel while only occasionally publishing
externally detected events in another channel.

2.1 Design principles
The design of SwarmTalk is driven by realistic hardware require-
ments and assumptions, leveraging features unique to swarm robot-
ics. The set of high-level design principles are described as follow.

a) Minimal resource requirement: The design aspect of swarm
robotic hardware platforms usually emphasizes the cost and size
of individual robot. The building cost of individual robots, both in
terms of time and money, has limited the overall size of swarms to
the range of a few tens or, at the very most, a few hundred robots.
Only in recent years have new, low-cost miniature robot platforms
been developed that make affordable experimentation with swarm
sizes of up to a thousand robots in research labs possible. Coming
with such low cost, the hardware capabilities are very limited, both
in terms of communication and memory. In order to account for
even the least capable robots, such as the Kilobot with 9 byte packets
as the maximum transmission unit (MTU) and a 2048 KB SRAM, the
library is required to use absolutely minimal resources. The packet
headers should contain just enough information for the virtual
channel and the packet fragmentation. At the same time, it should be
as short as possible so that the already small MTU sacrifices as little
of the payload as possible. The network buffer should be bounded
by user configuration and should allocate all resources statically
at compile time as described as a common technique for memory
deficient sensor network nodes [20]. It is reasonable to assume that
the cost for digital components will decrease and impose fewer
resource constraints over time, but we envision smaller, cheaper
and more scalable platforms to be built accordingly. This dichotomy
still necessitates minimal resource requirement.

b) Dynamic Network Topology: Swarm robots are moving enti-
ties often with a very limited communication range. Using only
a broadcasting model for the underlying network layer, the set of
neighbors a robot can reach is constantly changing. The issue with
such loosely connected topology is that, without any centralized
broker similar to a DHCP server, it is at worst unfeasible and at
best inefficient for individuals to distributively come up with glob-
ally unique IDs. This imposes challenges regarding bi-directional
communication as well as packet routing. As a result, the library
should only deliver an abstraction for multi-channel broadcasting.
Summarily, the overhead should be small enough for compatibility
with even the least capable platforms, while still allowing more
complicated routing algorithms to be built upon it. To enable packet
defragmentation at the receiving end, locally unique IDs are used
instead. To account for the topology changes due to the robots’
motion, each robot should be able to quickly switch to a unique

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

1639

Figure 1: Default packet structure for SwarmTalk. Each row
denotes a byte in the packet. With a 9 bytes MTU as illus-
trated, 3 bytes will be used for header and 1 byte will be used
for checksum. The remaining 5 bytes will be used for fixed
size payload.

ID if an ID collision happens within a one hop communication
range. The size of the local ID space should be user configurable
according to the ratio between the robot communication range and
the robot radius. The ID space is recommended to be at least larger
than the number of robots in the communication radius to avoid
overwhelming ID collisions, but to be kept as small as possible to
reduce the packet header overhead. The library should also provide
multi-hop broadcasting with a decreasing Time To Live at each hop,
so that each robot both serves as a consumer and a forwarder.

c) Situated Communication: Situated communication is often used
in swarm robotics to provide sensing of the physical environment
along with the corresponding message receptions [40]. For example,
the distance between the sender and the receiver measured during
transmission is provided by most platforms and is a necessary
assumption for many algorithms. The distance is either achieved
by measuring the signal strength at the receiving end or by using
localization devices, such as GPS, to calculated the geographical
difference. There are an arbitrary amount of sensing attributes to be
measured by more capable hardware sensors, for example bearing
(the direction of the incoming message) to enable algorithms that
require direction sensitive communication [16]. To account for this
variability, the library should allow platform developers to specify
the data entries to be passed to the programmers. For multi-packet
messages, the library should only provide the sensing for the most
recently received packet.

d) Message delay overhead estimation: Any extra buffering of
packets will introduce end-to-end delay overhead. Such underlying
delay can be detrimental to time sensitive algorithms. For example,
the firefly synchronization algorithm described in [47] requires
an estimation of the delay between when a message is sent and
when it is received. Thus the library should be able to use the clock
provided by the platform to calculate the buffering delay both at the
sending and the receiving end, so that users can have the realistic
understanding of the end-to-end message delay. Since the sending
delay and the receiving delay can only be captured according to
sender’s or receiver’s local clock, the overall delay estimation can
be inaccurate due to the clock skew. The design has to make an
assumption that the captured delay would be relatively short, so
that the clock skew between the sender and receiver won’t impose
too much of a difference on the estimation.

e) Portability: This communication library must be compatible
with a wide variety of platform resources, from simplistic swarms

Figure 2: System components for SwarmTalk.

that use 9 byte packets to those using complex WiFi based com-
munication. The design should thus make only basic assumptions
about the platform drivers to make porting the library easy. The
assumption including the following functionalities - interface for
packet reception, interface for packet sending, and function for
getting system clock. Once ported to new platforms, the library
should allow existing communication programs to be run without
much effort.

f) Ease of use: The communication interface for most platforms
can be classified into two types:
(1) With a fixed size buffer for storing sending messages and a fixed
size buffer for storing receiving messages. The user will have to
update or pull the buffers regularly [3, 46].
(2) With event driven functions to provide a handler for fixed size
receiving or sending buffer. [36]
Without using the library, users will have to carefully compress
all the data to be sent, sometimes on the level of changing bits,
to fit these platform specific constraints. This greatly raises the
difficulty of porting any algorithm implementation to platforms
designed with different communication interfaces or MTU. The
library should provide a consistent communication interface and
user experience across platforms.

2.2 System Components
With the described high level principles, we have developed the
system with a default 3 byte header per packet. As shown in fig-
ure 1, the fields for the header include - Node Id, Message Id,
Sequence Number, If End, Channel Id, and Time To Live. The
bit length of each field is empirically set for the current version
and can be configured by the user at compile time if needed. Extra
bits will be padded if the configured header is not long enough for
the payload to be byte aligned. The Node Id denotes the locally
unique robot id and the Message Id denotes the randomly gen-
erated id for each new message. Both help serve the purpose of

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

1640

identifying which packets should be composed back into a mes-
sage. The Sequence Number and the If End indicates the sequence
of packets assembling and if the current packet is the end of the
sequence. The Sequence Number field also limits the maximum
length of a message. For example, the default header only has 3
bits for the Sequence Number, meaning a maximum of 8 packets
are allowed for each message. This is still much larger than the
original maximum message size. Taking Kilobot for example, the
payload of each packet is 6 bytes (9 bytes packet - 3 bytes header)
which allows a maximum message length of 48 bytes (6 bytes per
packet * 8 packets). If, in practice, other fields can be reduced to
allow more bits for the Sequence Number with the same header
size, each extra bit will double the maximum message length. The
Channel Id specifies the virtual channel that the message is being
sent on. The Time To Live is set to be the number of hops the
packet should be forwarded. One byte of checksum is optional for
a simple data integrity check.

The main components of the communication model include
SwarmTalk, Channels, Publishers and Subscribers. As displayed
in figure 2, one SwarmTalk object is responsible for all data transfer-
ring between the lower level network IO. It keeps a list of Channel
objects with different Channel IDs, a Forward Buffer and a Cache.
Each Channel object holds a list of Subscriber objects and a list of
Publisher objects. Each Channel also manages its own Sending
Buffer and Receiving Buffer. All memory is allocated at com-
pile time and can be configured by the user. The user is required
to initialize the Subscribers and Publishers with callback func-
tions at run time for event driven programming. The Subscribers
are designed with a default distance filter to ignore the messages
received from a source too far away.

On message sending, the user can send messages of various
length through the Publisher, which will check the availability of
the Channel Sending Buffer. Only when the Sending Buffer
is empty, will the Channel fragment the message into packets and
store them into the Sending Buffer. The SwarmTalk object will use
a round-robin method to pull packets from the Forward Buffer
and the Channels when the network IO is ready to send. Each
out-sending packet header will be stored into a Cache. When all
packets in the Sending Buffer have been successfully processed,
the corresponding Sent Callback function will be invoked.

On packet receiving, the SwarmTalk will first check the packet
header against the Cache to make sure it did not recently send the
packet, to prevent broadcast storms in multi-hop broadcasting [27].
If the packet has a Time To Live larger than 0, it will be copied to
the Forward Buffer with decremented Time To Live for future
forwarding. The Channel with the corresponding Channel ID will
also obtain a copy of the packet and go through the Receiving
Buffer to check for potential message defragmentation. Once mes-
sages are formed from the packets, the Receive Callback function
will be invoked.

We have developed the Channel with an option to keep a times-
tamp to estimate the end to end delay caused by buffering on each
packet. This feature trades off extra bytes from the payload, but is
necessary for time critical operations.

2.3 User Interface
The current SwarmTalk assumes a C++ programming interface with
a setup function called at robot start and a loop function called pe-
riodically, which are very common embedded system programming
practices. This section will provide a walk through of how to build
a simple program for robots to broadcast a tuple consisting of a
randomly generated ID and the local clock. For this demonstration,
struct is used to store the tuple because it can be easily serialized
into unsigned char arrays.

Assume we have the following as local variables. Since both
random_id and clock are 64 bits, or 8 bytes, there is no trivial way
for the Kilobot to send such a tuple using a 9 bytes MTU without
using the library.
typedef s t ruc t s t a t e {

u i n t 6 4 _ t random_id ;
u i n t 6 4 _ t c l o c k ;

} s t a t e _ t ;

Channel ∗ channe l ;
P u b l i s h e r ∗ p u b l i s h e r ;
S u b s c r i b e r ∗ s u b s c r i b e r ;
s t a t e _ t my_s ta te ;

Now let’s initialize these variables in the setup function. We are
here assuming the channel ID is 0, packets are only transmitted
within one hop, no timestamp will be added to the packets, and
messages farther away than 100 (platform specific distance sensor
reading) will be filtered.
void s e t u p () {

/ / I n i t i a l i z e t h e random_id wi th rand ()
my_s ta te . random_id = rand () ;
/ / I n i t i a l i z e t h e c l o c k wi th t h e sy s t em c l o c k
my_s ta te . c l o c k = g e t _ c l o c k () ;
/ / I n i t i a l i z e t h e chann e l p o i n t e r from th e swarmta lk
/ / F i r s t pa rame t e r 0 i n d i c a t e s t h e chann e l ID
/ / S e c ond pa rame t e r 0 i n d i c a t e s t h e Time t o L i v e
/ / Th i r d pa rame t e r f a l s e means t h i s c hann e l d o e s no t pu t t imes tamp on p a c k e t s
channe l = swarmtalk−>new_channel (0 , 0 , f a l s e) ;
/ / I n i t i a l i z e t h e p u b l i s h e r w i th t h e c a l l b a c k f u n c t i o n s e n t
p u b l i s h e r = channel −>new _pub l i she r (s e n t) ;
/ / I n i t i a l i z e t h e s u b s c r i b e r w i th t h e c a l l b a c k f u n c t i o n r e c v
/ / F i r s t pa rame t e r 100 f i l t e r s ou t me s s ag e s t h a t a r e more than 100 u n i t s away
s u b s c r i b e r = channel −>n e w _ s u b s c r i b e r (1 0 0 , r e c v) ;
/ / Send t h e s e r i a l i z e d mes sage u s i n g t h e p u b l i s h e r
p u b l i s h e r −>send ((unsigned char ∗) &my_state , s i z eo f (my_s ta te)) ;

}

To keep sending the most up-to-date tuple, we can define the
sent callback to update the clock and send again.
void s e n t () {

/ / upda t e t h e c l o c k
my_s ta te . c l o c k = g e t _ c l o c k () ;
/ / s end t h e upda t ed mes sage aga in
p u b l i s h e r −>send ((unsigned char ∗) &my_state , s i z eo f (my_s ta te)) ;

}

We can define the recv callback to parse the message and check if
the values are correct by printing them out. Data_t is defined by the
user to encompass all the sensing data for situated communication.
void r e c v (unsigned char ∗ msg , in t s i z e , in t t t l , Da ta_ t ∗ s e n s i n g) {

/ / D e s e r i a l i z e t h e mes sage
s t a t e _ t ∗ r e c v _ s t a t e = (s t a t e _ t ∗) msg ;
/ / P r i n t t h e ID f i e l d o f t h e t u p l e
s t d : : cou t << " ID : ␣ " << r e c v _ s t a t e −>random_id << s t d : : e n d l ;
/ / P r i n t t h e c l o c k f i e l d o f t h e t u p l e
s t d : : cou t << " Clock : ␣ " << r e c v _ s t a t e −> c l o c k << s t d : : e n d l ;
/ / P r i n t t h e measured d i s t a n c e p r o v i d e d by t h e l owe r l e v e l d r i v e r
s t d : : cou t << " D i s t a n c e ␣ from ␣ s e n d e r : ␣ " << meta−> d i s t << s t d : : e n d l ;

}

3 IMPLEMENTATION
We have implemented the SwarmTalk system in C++ with a small
set of benchmarking algorithms as an open source project. The

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

1641

source code is public and hosted at: https://github.com/shzhangyihan/
SwarmTalk.

There are currently four supported environments: Kilobot, Coach-
bot V2.0, simulated Kilobot in ARGoS simulation and simulated
Footbot in ARGoS simulation (see figure 3). To integrate SwarmTalk
to new platforms, it is as easy as implementing four function han-
dles: (1) a function to pull out-sending packet from SwarmTalk
when network IO available; (2) a function to notify SwarmTalk on
packet reception; (3) a function for random number generation; (4)
and a function for local clock.

Figure 3: The robots of the four evaluated platforms.

3.1 Kilobot
Kilobot is the first platform to demonstrate experiments with 1024
robots performing self-assembly algorithms, and shows the possi-
bility of creating affordable large scale robot platforms [37]. Each
Kilobot costs $14 of parts and 5 minutes of assembling, significantly
lower than any counterparts at the time [36].

The robot-to-robot communication is achieved by each robot
broadcasting packets to neighbors (up to 6 robot radii) using in-
frared transmitters and photodiode receivers in a CSMA/CA man-
ner. The bandwidth of such communication channel is often reduced
due to the collisions when the density of robots within communi-
cation range increases. Such hardware characteristics lead to the
communication stack with 9-byte long packets that, by default,
attempts to send messages twice per second.

3.2 Coachbot V2.0
Coachbot V2.0 is a more powerful platform that uses a Raspberry
Pi 3b+ with dual-band 802.11ac wireless LAN for each robot. To
achieve robot-to-robot communication, layer 2 broadcasting (i.e.
MAC address based broadcasting) is used to avoid having a cen-
tralized base router. The MTU for Ethernet frames, 1500 bytes by
default, is significantly larger than that of its counterparts, so we
limit it to have the same MTU size as the Kilobot for demonstration
purposes with fair comparisons. Each robot has sensors to receive
infrared signals from the ceiling mounted HTC vive lighthouse
for localization. The position information of the sending robot is
embedded in the data packets for the receiving robots to calculate
the distance [46]. For the simplicity of explanation, the Coachbot
V2.0 will be referred as Coachbot for the rest of the paper.

3.3 ARGoS
ARGoS is a realistic physics-based multi-robot simulator that splits
robots into their component actuators and sensors. Despite having
different designs, many robots have similar actuators and sensors,
such as motors powering wheels, LED’s, and infrared sensors. By
taking these common components and assembling them in different
ways, ARGoS can simulate a wide variety of real robots. [32]

The two simulated robots we are considering here are the Kilo-
bot and the Footbot. The simulated Kilobots provide an identical
programming interface as well as very similar experimental perfor-
mances compared to the physical ones. The Footbot, or the MarXbot,
is another swarm platform with more advanced battery manage-
ment and an omnidirectional camera [35]. The simulated Footbot
communicates with its neighbors using a range-and-bearing com-
munication device proposed in [3], that uses infrared with a default
packet size of 10 bytes as MTU. The two platforms will be refered
as Argos Kilobot and Footbot for the rest of the paper.

4 EVALUATION
We identify a starting set of fundamental algorithms or primitives
commonly used in the field, and add the implementations to a
benchmarking suite prototype. We implement three algorithms -
hop count, firefly synchronization and relative motion - each with
identical user program across the platforms. We select these al-
gorithms as our initial set as they are representative of the type
of primitives used as building blocks for more elaborate solutions
like shape formation. Each of the algorithms is implemented us-
ing SwarmTalk to demonstrate the different functional aspects of
the library. To ensure fair comparison among the platforms, all
of them are configured to the same packet format - 9 bytes MTU
with 3 bytes header and 1 byte of checksum, leaving 5 bytes for
the payload. The result is evaluated in terms of (1) if the task can
be accomplished with straightforward user code and (2) if the per-
formance is consistent for the four platforms, demonstrating the
potential of SwarmTalk serving as the building block for benchmark
suites. All experiments are performed successfully 10 times each
without failing. Videos of the recorded experiments can be found
at: https://vimeo.com/373516798

4.1 Hop Count
The hop count algorithm is frequently used in swarm robotics
to measure network distance (and therefore an approximation of
physical distance). In this simple algorithm, all robots in the swarm
measure the minimum number of re-transmissions (or hops) re-
quired for a message to reach it. This is implemented by having a
single seed send out a message to its neighbors with a hop value
equal to 0. All other robots keep track of the lowest hop value they
receive and update the local hop count with the minimal value +
1. All robots keep sending its hop count to all the neighbors. This
simple algorithm propagates messages from robot to robot and
measures the minimum number of hops for each robot to the seed.
This algorithmic primitive is used in a wide variety of behaviors,
including allowing motion without network disconnection [37],
trilateration based localization [26], group motion control [38], and
group event detection [13].

Two sets of experiments are conducted to demonstrate the ca-
pability of multi-channel communication and the advantage of
channel-based event-driven programming. All pictures are recorded
using a ceiling camera for physical platforms, or through screen
captures for simulated platforms, 10 seconds after the program
starts running to capture the converged state. For the first set of ex-
periments, 36 robots are placed to form a compact square shape for
all four platforms, with the upper left robot as the only seed. Only

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

1642

https://github.com/shzhangyihan/SwarmTalk
https://github.com/shzhangyihan/SwarmTalk
https://vimeo.com/373516798

Figure 4: Gradients generated using the hop count algo-
rithm, with a single seed robot placed in the upper left cor-
ner for each platform. The color displayed by each robot’s
LED represents the hop count, where red means the hop
count is an even number and the blue means otherwise.
The lines were manually added to the images and denote
approximate single-hop boundaries. Although communica-
tion range and shape differs from robot to robot, a uniquely
distinct gradient forms on all four platforms.

one channel is used in this experiment for broadcasting robots’ hop
count from the seed. The user level program can be implemented
as following, where the sent() and the recv() are the set of func-
tions registered as callbacks for the publisher and the subscriber of
the only channel.
typedef s t ruc t custom_message {

in t hop ;
} cus tom_message_t ;
Channel ∗ channe l ;
P u b l i s h e r ∗ p u b l i s h e r ;
S u b s c r i b e r ∗ s u b s c r i b e r ;
cus tom_message_t my_message ;

void s e n t () {
/ / a f t e r s e n d i n g t o chann e l 1 f i n i s h e d , s t a r t new send t o chann e l 1
p u b l i s h e r −>send ((unsigned char ∗) &my_message , s i z eo f (my_message)) ;

}

void r e c v (unsigned char ∗ msg , in t s i z e , in t t t l , Da ta_ t ∗ s e n s i n g) {
/ / upda t e t h e hop and t h e LED
cus tom_message_t ∗ r ece ived_msg = (cus tom_message_t ∗) msg ;
i f (rece ived_msg −>hop < my_message . hop) { my_message . hop = rece ived_msg −>hop ; }

}

void l oop () { }

void s e t u p () {
my_message . hop = 1 0 0 ;
channe l = swarmtalk−>new_channel (0 , 0 , f a l s e) ;
p u b l i s h e r = channel −>new _pub l i she r (s e n t) ;
s u b s c r i b e r = channel −>n e w _ s u b s c r i b e r (2 5 0 , r e c v) ;
p u b l i s h e r −>send ((unsigned char ∗) &my_message , s i z eo f (my_message)) ;

}

As shown in figure 4, clear gradients, as alternations between
red and blue LEDs, are displayed for all platforms, showing the
convergence of the hop count algorithm with one seed.

For the second set of experiments, robots are with the same
placement, but with two seeds instead. Assume one seed at the

Figure 5: Two-seed gradients generated on all platforms us-
ing the hop count algorithm. The seeds are placed in the up-
per left and lower left corners of the array in all cases. The
LEDhas four different colors to present four states -with red
meaning the hop counts from seed_1 is odd and from seed_2
is even; yellow meaning the hop counts from both seed_1
and seed_2 are odd; blue meaning the hop counts from both
seed_1 and seed_2 are even; green meaning the hop counts
from seed_1 is even and from seed_2 is odd. The red lines
denote the single-hop boundaries from seed_1 and the cyan
lines denote the boundaries from seed_2.

upper left corner as the seed_1 and the other seed at the lower left
corner as the seed_2. The previous implementation can be easily
modified to have two channels for the robots to communicate the
hop count from different seeds separately. The sent_1() and the
recv_1() functions are the callbacks for one of the channels to
communicate the hop counts from seed_1, while the sent_2()
and the recv_2() are for the other channel for hop counts from
seed_2.
/ / a f t e r s e n d i n g t o chann e l 1 f i n i s h e d , s t a r t new send t o chann e l 1
void s e n t _ 1 () { }
/ / a f t e r s e n d i n g t o chann e l 2 f i n i s h e d , s t a r t new send t o chann e l 2
void s e n t _ 2 () { }

/ / upda t e t h e hop and t h e LED from s e e d _ 1
void r e c v _ 1 (. . .) { }
/ / upda t e t h e hop and t h e LED from s e e d _ 2
void r e c v _ 2 (. . .) { }

void l oop () { }
void s e t u p () { }

The result is shown in figure 5, with all robots accurately keep
track of two distance values, showing the reliability and accuracy
of dual SwarmTalk channels. The hop count convergence from
seed_1 and from seed_2 are essentially parallel operations that
are independent of each other. That means adding more parallel
communication tasks is as simple as adding more channels with
pairs of event-driven functions. Without using the library, the same
programming task can be achieved by adding differentiators in the
packet payload and using conditional logic at the receiving end to

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

1643

Figure 6: Time series graphs showing convergence patterns
for the firefly algorithm across all four platforms. Here, the
X axis is experiment time, and the Y axis is the number of
robots "firing" during that time. Initially, robots start out
of synchronization, but as the experiment progresses robots
synchronize and fire all at nearly the same time.

identify the content. However, this method adds extra complexity
for programmers, especially when the types of messages increase.

4.2 Firefly Synchronization
A wide range of swarm behaviors such as locomotion [38, 48],
shared-channel communication [7], and distributed decision mak-
ing [8], all rely on synchronization in time between robots through-
out the swarm. One commonly used approach to create the time
synchronization is using the synchronization of pulse-coupled bio-
logical oscillators [23, 29]. Here robots can synchronize their clocks
by sending “synchronization” messages to their neighbors on “flash-
ing”. These neighbors then update their period length, trying to
match the next “flashing” of their neighbors. Since the firefly syn-
chronization requires good estimation of the delay between when
the “firing” takes place, i.e. the message sent, and when the neigh-
bors “perceive” it, i.e. the message reception [47], it is a great exam-
ple to examine the timestamp delay measurement method used by
SwarmTalk. To manually increase the delay to make this test more
challenging, each robot is sending a dummy message with 4 bytes
using a channel with 4 bytes of timestamp. As each packet only has
1 byte remaining (5 bytes of payload - 4 bytes of timestamp), each
“flashing” message will require 4 packets to be delivered.

The experiment is conducted with the same robot placement as
the hop count one, with 36 robots forming a square and starting
to flash randomly. Each time a robot flashes, it will send the 4-
packet dummy message to all of its near neighbors. Upon message
reception, neighboring robots will estimate their clocks by the time
the message was actually sent, by subtracting the message buffering
delay provided by SwarmTalk to the current clock, and adjust their

Figure 7: Comparison of convergence between Kilobots us-
ing the estimated buffering delay to mitigate message delay
(left) and Kilobots not mitigating message delay (right). The
Kilobots not notmitigating the delay never converge as well
as the ones doing so.

period length accordingly. The video is recorded by a ceiling camera
or using screen capture. The result is evaluated by counting the
number of robots flashing at any given time, as shown in figure 6.
The higher the number of robots flashing at the same time, or the
y-axis value, the better the swarm is synchronized. Starting from a
randomly flashing state, indicated by the noisy beginning of each
plot, all four platforms successfully converged to a synchronized
state as indicated by the clean vertical spikes at the end of the plot.
Since clocks are skewed among robots, a few robots will still flash
slightly out of sync. Therefore the curves realistically never reach
36, the total number of robots.

In order to determine the effectiveness of the estimated buffer-
ing delay, we also conduct a comparison experiment between the
baseline implementation that uses the buffering delay to mitigate
the message delay (same as the previous implementation) and the
implementation that ignores the buffering delay. Both experiments
use the same 36 physical Kilobots and send 4-packet messages when
flashing, thus having the same amount of buffering delay. However,
when the receive callback functions are invoked with the buffering
delay as argument, the baseline implementation subtracts the delay
from the current clock, while the implementation without delay
mitigation just uses the unchanged current clock. From figure 7,
the baseline implementation stays shorter at the randomly flashing
state, where as the other one exhibits noisy curves until almost 10
seconds, and converges better, with higher y-axis values than that
of the other one. From our observation of the video, without any
delay mitigation, the message delay cause flashing “waves” that
move across the robots and stop the robots from synchronizing, in
comparison to the baseline implementation where the flashing are
synchronized good enough to not see any wave.

4.3 Relative Motion
Individuals within a swarm are often required to move in position
relative to their neighbors, for example in reconfiguration [48] or
during shape formation [37]. This is often further complicated by
the lack of global position sensing available to individuals. As a re-
sult, robots within the swarm frequently control their motion based
on sensing relative information about their neighbors, such as head-
ing and distance. This behavior is manifested in many different ap-
plications and approaches, from flocking, where aerial vehicles [17]

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

1644

Figure 8: Red and blue lines mapping the paths of robots
from all four platforms for the edge following algorithm.
All images were taken after tracking robot movement for
five complete revolutions.
or ground robots [18] maintain distance and heading to neighbors,
to shape motion of individuals in shape formation [5, 37, 41].

The task for relative motion is defined as edge following. There
are four seed robots placed in the middle as stationery anchors and
two follower robots trying to go clockwise around the seeds at a
fixed distance. Only distance sensing is provided during communi-
cation. Each seed can not talk to other seeds, and each follower
can not talk to other followers. To avoid collision, each seed can
only be followed by one follower while other followers trying to
follow the same seed stop and wait. This edge following behavior
can test the performance of SwarmTalk under a dynamic network
topology as well as the ability to provide situated communication.

The implementation of this algorithm is achieved by creating two
channels, one for the followers to send their states to the seeds
and the other for the seeds to send the states to the followers. This
implementation demonstrates the use case of having two unidirec-
tional channels for two types of agents, with each only publishing
to one of the channels and subscribing to the other. The experiment
video is recorded using a ceiling camera or with screen capture for
at least 5 complete revolutions. The video is then mapped with red
and blue lines indicating the path of two followers as in figure 8.
The resulting path graphs show successful edge following behavior,
with clear similarities among the four platforms.

5 RELATEDWORK
There have been works in the field of robotics and sensor network
for system level abstractions trying to hide lower level details for
easier and platform independent user experience. Some of the most
prominent systems include ROS [34] and TinyOS [21]. ROS is the
most commonly used robotics middleware and uses a topic based

publish-subscribe model for communication. However, ROS is not
suitable for fully distributed swarm platforms due to its centralized
nature. ROS2 is a recent advancement to address the increasing
need for the distributed multi-agent scenarios using the Real-Time
Publish-Subscribe protocol (RTPS) by the OMG Data-Distribution
Service as the new underlying communication architecture [28].
Even with a decreased hardware requirement, neither ROS2 nor its
underlying RTPS protocol can fit onto hardware as simplistic as,
for example, the Kilobot.

TinyOS is an event-driven operating system for embedded wire-
less devices. TinyOS uses nesC language to statically link all call-
backs at compile time to achieve fully non-blocking operation [14].
However, TinyOS is rarely used in robotics platforms where actua-
tion appears to be much more common than seen in the wireless
sensor nodes. The default communication formats used by TinyOS
are also too heavy to be fit onto the Kilobot. Other operating sys-
tem abstractions include OpenSwarm [43], which provides a multi-
threading abstraction to allow more complex programs and to make
better use of the computational resources.

6 CONCLUSIONS AND FUTUREWORK
We presented SwarmTalk, the first communication library for highly
resource-constrained and mobile swarm robotics platforms. We
have demonstrated the portability of SwarmTalk and its easy-to-
use API. SwarmTalk-based implementations of different canonical
algorithms perform almost identically across different platforms,
making the case for SwarmTalk as the basis for a cross-platform
benchmark suite.

While SwarmTalk has proven to be powerful for the problems
we have tackled thus far, there are a number of open questions. In
our current design, there are two types of channels - the general-
purpose channel and the time channel with buffering delay estima-
tion. A few commonly-used and purpose specific channels, such
as debug or data harvesting channels, may prove useful and offer
a good trade-off between generality and efficient implementation.
Swarm-level operations, such as group re-program, or complicated
network protocols, such as routing, should also be explored to see
if they should be implemented as specialized channels or if they
are orthogonal to the communication model.

It would be valuable to investigate more complicated algorithms
for potential inclusion in the benchmark suite, such as leader elec-
tion and generating coordinate system. Leader election allows a
swarm of homogeneous decentralized robots to use a leader to make
a centralized decision, coordinate actions [15], or seed a distributed
coordinate system [41]. Coordinate systems, on the other hand, are
frequently used in tasks that require precise global control, such
as shape formation [37], [13], message routing [22], or providing
robot-to-robot sensing [17]. Current packet and memory config-
urations have thus far been empirically determined; we plan to
evaluate different settings to further relax the hardware constraint
and improve performance.

REFERENCES
[1] Jacky Baltes. 2000. A benchmark suite for mobile robots. In Proceedings.

2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS
2000)(Cat. No. 00CH37113), Vol. 2. IEEE, 1101–1106.

[2] Jacob Beal and Jonathan Bachrach. 2006. Infrastructure for engineered emergence
on sensor/actuator networks. IEEE Intelligent Systems 21, 2 (2006), 10–19.

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

1645

[3] Michael Bonani, Valentin Longchamp, Stéphane Magnenat, Philippe Rétornaz,
Daniel Burnier, Gilles Roulet, Florian Vaussard, Hannes Bleuler, and Francesco
Mondada. 2010. The marXbot, a miniature mobile robot opening new perspectives
for the collective-robotic research. In 2010 IEEE/RSJ International Conference on
Intelligent Robots and Systems. IEEE, 4187–4193.

[4] A. Carzaniga, M. Rutherford, and A. Wolf. 2001. Design and evaluation of a wide-
area event notification service. IEEE/ACM Transactions on Computer Systems 3,
19 (2001).

[5] Jimming Cheng, Winston Cheng, and Radhika Nagpal. 2005. Robust and self-
repairing formation control for swarms of mobile agents. In AAAI, Vol. 5.

[6] Micael S Couceiro, Patricia A Vargas, Rui P Rocha, and Nuno MF Ferreira. 2014.
Benchmark of swarm robotics distributed techniques in a search task. Robotics
and Autonomous Systems 62, 2 (2014), 200–213.

[7] Julius Degesys, Ian Rose, Ankit Patel, and Radhika Nagpal. 2007. DESYNC:
self-organizing desynchronization and TDMA on wireless sensor networks. In
Proceedings of the 6th international conference on Information processing in sensor
networks. ACM, 11–20.

[8] Danny Dolev, Cynthia Dwork, and Larry Stockmeyer. 1987. On the minimal
synchronism needed for distributed consensus. Journal of the ACM (JACM) 34, 1
(1987), 77–97.

[9] Greg Eisenhauer, Fabián E Bustamante, and Karsten Schwan. 2000. Event ser-
vices for high performance computing. In Proceedings the Ninth International
Symposium on High-Performance Distributed Computing. IEEE, 113–120.

[10] Patrick Th Eugster, Pascal A Felber, Rachid Guerraoui, and Anne-Marie Kermar-
rec. 2003. The many faces of publish/subscribe. ACM computing surveys (CSUR)
35, 2 (2003), 114–131.

[11] Nicholas Farrow, John Klingner, Dustin Reishus, and Nikolaus Correll. 2014.
Miniature six-channel range and bearing system: algorithm, analysis and ex-
perimental validation. In 2014 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 6180–6185.

[12] David Galernter and Nicholas Carriero. 1992. Coordination languages and their
significance. Commun. ACM 35, 2 (1992), 96–108.

[13] Melvin Gauci, Radhika Nagpal, and Michael Rubenstein. 2018. Programmable self-
disassembly for shape formation in large-scale robot collectives. In Distributed
Autonomous Robotic Systems. Springer, 573–586.

[14] David Gay, Philip Levis, Robert Von Behren, Matt Welsh, Eric Brewer, and David
Culler. 2014. The nesC language: A holistic approach to networked embedded
systems. Acm Sigplan Notices 49, 4 (2014), 41–51.

[15] Kyle Gilpin, Kent Koyanagi, and Daniela Rus. 2011. Making self-disassembling
objects with multiple components in the robot pebbles system. In 2011 IEEE
International Conference on Robotics and Automation. IEEE, 3614–3621.

[16] Roderich Groß, Stéphane Magnenat, and Francesco Mondada. 2009. Segregation
in swarms of mobile robots based on the brazil nut effect. In 2009 IEEE/RSJ
International Conference on Intelligent Robots and Systems. IEEE, 4349–4356.

[17] Sabine Hauert, Severin Leven, Maja Varga, Fabio Ruini, Angelo Cangelosi, Jean-
Christophe Zufferey, and Dario Floreano. 2011. Reynolds flocking in reality
with fixed-wing robots: communication range vs. maximum turning rate. In
2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE,
5015–5020.

[18] Suranga Hettiarachchi and William M Spears. 2009. Distributed adaptive swarm
for obstacle avoidance. International Journal of Intelligent Computing and Cyber-
netics 2, 4 (2009), 644–671.

[19] C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, and F. Silva. 2003.
Directed diffusion for wireless sensor networking. IEEE/ACM Transactions on
Networking 1 (2003).

[20] Philip Levis, Samuel Madden, David Gay, Joseph Polastre, Robert Szewczyk, Alec
Woo, Eric A Brewer, and David E Culler. 2004. The Emergence of Networking
Abstractions and Techniques in TinyOS.. In NSDI, Vol. 4. 1–1.

[21] Philip Levis, Sam Madden, Joseph Polastre, Robert Szewczyk, Kamin Whitehouse,
Alec Woo, David Gay, Jason Hill, Matt Welsh, Eric Brewer, et al. 2005. TinyOS:
An operating system for sensor networks. In Ambient intelligence. Springer,
115–148.

[22] Martin Mauve, Jorg Widmer, and Hannes Hartenstein. 2001. A survey on position-
based routing in mobile ad hoc networks. IEEE network 15, 6 (2001), 30–39.

[23] Renato E Mirollo and Steven H Strogatz. 1990. Synchronization of pulse-coupled
biological oscillators. SIAM J. Appl. Math. 50, 6 (1990), 1645–1662.

[24] Francesco Mondada, Michael Bonani, Xavier Raemy, James Pugh, Christopher
Cianci, Adam Klaptocz, Stephane Magnenat, Jean-Christophe Zufferey, Dario
Floreano, and Alcherio Martinoli. 2009. The e-puck, a robot designed for educa-
tion in engineering. In Proceedings of the conference on autonomous robot systems
and competitions, Vol. 1. IPCB: Instituto Politécnico de Castelo Branco, 59–65.

[25] Luca Mottola and Gian Pietro Picco. 2011. Programming wireless sensor networks:
Fundamental concepts and state of the art. ACM Computing Surveys (CSUR) 43, 3
(2011), 19.

[26] Radhika Nagpal, Howard Shrobe, and Jonathan Bachrach. 2003. Organizing a
global coordinate system from local information on an ad hoc sensor network.
In Information processing in sensor networks. Springer, 333–348.

[27] Sze-Yao Ni, Yu-Chee Tseng, Yuh-Shyan Chen, and Jang-Ping Sheu. 1999. The
broadcast storm problem in a mobile ad hoc network. In Proceedings of the 5th
annual ACM/IEEE international conference on Mobile computing and networking.
ACM, 151–162.

[28] Gerardo Pardo-Castellote. 2003. Omg data-distribution service: Architectural
overview. In 23rd International Conference on Distributed Computing Systems
Workshops, 2003. Proceedings. IEEE, 200–206.

[29] Fernando Perez-Diaz, Stefan M Trenkwalder, Rüdiger Zillmer, and Roderich
Groß. 2018. Emergence and inhibition of synchronization in robot swarms. In
Distributed Autonomous Robotic Systems. Springer, 475–486.

[30] Daniel Pickem, Paul Glotfelter, Li Wang, Mark Mote, Aaron Ames, Eric Feron,
and Magnus Egerstedt. 2017. The robotarium: A remotely accessible swarm
robotics research testbed. In 2017 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 1699–1706.

[31] Carlo Pinciroli and Giovanni Beltrame. 2016. Buzz: An extensible program-
ming language for heterogeneous swarm robotics. In 2016 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 3794–3800.

[32] Carlo Pinciroli, Vito Trianni, Rehan O’Grady, Giovanni Pini, Arne Brutschy,
Manuele Brambilla, Nithin Mathews, Eliseo Ferrante, Gianni Di Caro, Frederick
Ducatelle, et al. 2011. ARGoS: a modular, multi-engine simulator for heteroge-
neous swarm robotics. In 2011 IEEE/RSJ International Conference on Intelligent
Robots and Systems. IEEE, 5027–5034.

[33] James A Preiss, Wolfgang Honig, Gaurav S Sukhatme, and Nora Ayanian. 2017.
Crazyswarm: A large nano-quadcopter swarm. In 2017 IEEE International Confer-
ence on Robotics and Automation (ICRA). IEEE, 3299–3304.

[34] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs,
Rob Wheeler, and Andrew Y Ng. 2009. ROS: an open-source Robot Operating
System. In ICRA workshop on open source software, Vol. 3. Kobe, Japan, 5.

[35] James F Roberts, Timothy S Stirling, Jean-Christophe Zufferey, and Dario Flo-
reano. 2009. 2.5 D infrared range and bearing system for collective robotics. In
2009 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE,
3659–3664.

[36] Michael Rubenstein, Christian Ahler, and Radhika Nagpal. 2012. Kilobot: A low
cost scalable robot system for collective behaviors. In 2012 IEEE International
Conference on Robotics and Automation. IEEE, 3293–3298.

[37] Michael Rubenstein, Alejandro Cornejo, and Radhika Nagpal. 2014. Pro-
grammable self-assembly in a thousand-robot swarm. Science 345, 6198 (2014),
795–799.

[38] Wei-Min Shen, Behnam Salemi, and Peter Will. 2002. Hormone-inspired adaptive
communication and distributed control for CONRO self-reconfigurable robots.
IEEE transactions on Robotics and Automation 18, 5 (2002), 700–712.

[39] Susan Elliott Sim, Steve Easterbrook, and Richard C Holt. 2003. Using benchmark-
ing to advance research: A challenge to software engineering. In 25th International
Conference on Software Engineering, 2003. Proceedings. IEEE, 74–83.

[40] Kasper Støy. 2001. Using Situated Communication in Distributed Autonomous
Mobile Robotics.. In SCAI, Vol. 1. Citeseer, 44–52.

[41] Kasper Stoy and Radhika Nagpal. [n. d.]. Self-repair through scale indepen-
dent self-reconfiguration. In 2004 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS)(IEEE Cat. No. 04CH37566), Vol. 2. IEEE, 2062–2067.

[42] Jose M Such, Juan M Alberola, Luis Mulet, Agustin Espinosa, Ana Garcia-Fornes,
and Vicent Botti. 2007. Large-scale multiagent platform benchmarks. LADS
(2007), 192–204.

[43] Stefan M Trenkwalder, Yuri Kaszubowski Lopes, Andreas Kolling, Anders Lyhne
Christensen, Radu Prodan, and Roderich Groß. 2016. OpenSwarm: an event-
driven embedded operating system for miniature robots. In 2016 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS). IEEE, 4483–4490.

[44] Richard Vaughan. 2008. Massively multi-robot simulation in stage. Swarm
intelligence 2, 2-4 (2008), 189–208.

[45] Mirko Viroli, Jacob Beal, Ferruccio Damiani, Giorgio Audrito, Roberto Casadei,
and Danilo Pianini. 2018. From field-based coordination to aggregate computing.
In International Conference on Coordination Languages and Models. Springer,
252–279.

[46] H. Wang and M. Rubenstein. 2020. Shape Formation in Homogeneous Swarms
Using Local Task Swapping. IEEE Transactions on Robotics (2020), 1–16. https:
//doi.org/10.1109/TRO.2020.2967656

[47] Geoffrey Werner-Allen, Geetika Tewari, Ankit Patel, Matt Welsh, and Radhika
Nagpal. 2005. Firefly-inspired sensor network synchronicity with realistic radio
effects. In Proceedings of the 3rd international conference on Embedded networked
sensor systems. ACM, 142–153.

[48] Mark Yim, Wei-Min Shen, Behnam Salemi, Daniela Rus, Mark Moll, Hod Lipson,
Eric Klavins, and Gregory S Chirikjian. 2007. Modular self-reconfigurable robot
systems [grand challenges of robotics]. IEEE Robotics & Automation Magazine
14, 1 (2007), 43–52.

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

1646

https://doi.org/10.1109/TRO.2020.2967656
https://doi.org/10.1109/TRO.2020.2967656

	Abstract
	1 Introduction
	2 SwarmTalk Design
	2.1 Design principles
	2.2 System Components
	2.3 User Interface

	3 Implementation
	3.1 Kilobot
	3.2 Coachbot V2.0
	3.3 ARGoS

	4 Evaluation
	4.1 Hop Count
	4.2 Firefly Synchronization
	4.3 Relative Motion

	5 Related Work
	6 Conclusions and Future Work
	References

