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ABSTRACT

Creating incentives for cooperation is a challenge in natural and ar-
tificial systems. One potential answer is reputation, whereby agents
trade the immediate cost of cooperation for the future benefits of
having a good reputation. Game theoretical models have shown that
specific social norms can make cooperation stable, but how agents
can independently learn to establish effective reputation mecha-
nisms on their own is less understood. We use a simple model
of reinforcement learning to show that reputation mechanisms
generate two coordination problems: agents need to learn how to
coordinate on the meaning of existing reputations and collectively
agree on a social norm to assign reputations to others based on their
behavior. These coordination problems exhibit multiple equilibria,
some of which effectively establish cooperation. When we train
agents with a standard Q-learning algorithm in an environment
with the presence of reputation mechanisms, convergence to un-
desirable equilibria is widespread. We propose two mechanisms
to alleviate this: (i) seeding a proportion of the system with fixed
agents that steer others towards good equilibria; and (ii), intrinsic
rewards based on the idea of introspection, i.e., augmenting agents’
rewards by an amount proportionate to the performance of their
own strategy against themselves. A combination of these simple
mechanisms is successful in stabilizing cooperation, even in a fully
decentralized version of the problem where agents learn to use and
assign reputations simultaneously. We show how our results relate
to the literature in Evolutionary Game Theory, and discuss implica-
tions for artificial, human and hybrid systems, where reputations
can be used as a way to establish trust and cooperation.
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1 INTRODUCTION

Cooperation is important in natural and artificial systems [2]. It
allows for agents with individual goals to reach beneficial group out-
comes, even when group and individual incentives are not perfectly
aligned [34]. If cooperation is costly but the benefits of cooperation
can be enjoyed by all agents, the temptation to pay no cost is a dom-
inant strategy and cooperation is hard to establish and maintain,
unless a specific mechanism is in place to foster cooperation [21].

One popular mechanism is direct reciprocity, which allows for
agents to meet repeatedly [10, 37], thereby creating incentives to
punish past defections, making cooperation viable via reciprocal
strategies like Tit-for-Tat [3]. When agents are anonymous or can-
not interact repeatedly, they can use a reputation mechanism to
condition their cooperative actions, e.g., cooperating only with
those that have a good reputation. This is known as indirect reci-
procity [30, 32], and allows agents to trade the immediate cost of
cooperation for the future benefits of keeping their reputation [20].

Reputation systems are common in computing, including multia-
gent systems [11, 38], but their application is not always straightfor-
ward [13, 17, 31]. Models of indirect reciprocity can be used as tools
to understand reputation-based systems [18, 24, 32, 41]. These mod-
els generally provide a mathematical description of the incentives,
coupled with a dynamic account of how groups of agents respond
to these incentives in simple but illustrative scenarios. The dynamic
features of these models are crucial, given that static models might
be insufficient in the presence of multiple equilibria [20].

The framework of indirect reciprocity typically relies on the
toolset of Evolutionary Game Theory (EGT). In EGT, agents do not
solve for equilibrium, but copy other agents that are successful in a
dynamic process inspired by evolution [34]. Agents that perform
well in a population are more likely to pass on their strategies or
policies to subsequent generations. Despite their simplicity, these
models have been successful in predicting human behavior [14] and
to contribute to our understanding of complex dynamics associated
with learning algorithms in multiagent settings [12, 33, 35, 36].

In models of reputation dynamics, agents learn how to take
into consideration the reputations of others from rewards derived
from a series of interactions with randomly chosen partners [22].
A strategy determines whether a co-player with a particular repu-
tation is worth the cost of cooperation. A coupled dynamic process
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emerges from the changing reputations in the system. Social norms
determine how agents judge interactions, updating the reputations
of other agents after each encounter. Therefore, a norm assigns
a reputation value given a combination of factors. Game theoret-
ical models show that norms that reward justified defection, as
well as cooperation with reputable agents, are particularly good at
maintaining cooperation [22, 24, 30].

Crucially, EGT models assume that the set of strategies are pre-
defined, and explored by agents in a random fashion. Instead, we
use Reinforcement Learning (RL) to model the process whereby
agents discover strategies from simpler states and actions. Agents
explore and learn strategies (i.e., policies) responding directly to
the rewards obtained during game play.

Our purpose is twofold: First, we ask how predictions of models
of reputation dynamics change, when the learning process is driven
by individual experiences like in RL, instead of social learning in
EGT models. Second, we provide a simple environment where we
test whether RL algorithms reliably learn the equilibria that lead to
sustained cooperation on the basis of public reputations.

Studies of RL and cooperation abound (see, for example [1, 8,
9, 15, 16, 19? ], but the interaction between cooperation and rep-
utation in this context has not been explored yet. The existing
EGT literature on reputation can be insightful in analyzing and
proposing solutions to this particular problem [35]. This is the first
work that bridges RL and EGT literature in the area of cooperation
and reputation dynamics. In particular, we find that in presence
of reputation mechanisms, agents need to solve two coordination
problems: learning how to coordinate actions on the basis of ex-
isting reputation indicators; and collectively agreeing on a social
norm to assign reputations to others based on their behavior. These
coordination problems exhibit multiple equilibria, some of which
effectively establish cooperation. Agents driven by standard RL
algorithms will generally fail to coordinate, converging to non-
efficient outcomes. This can be resolved by seeding a proportion of
the system with fixed agents that steer others towards good equilib-
ria or providing intrinsic rewards based on the idea of introspection,
i.e., augmenting agents’ rewards by an amount proportionate to
the performance of their own strategy against themselves.

More generally, our results can also inform the work of Al re-
searchers concerned with designing agents that can cooperate
amongst themselves [8], and with humans [7, 29]. The problem
of cooperation is also present in scenarios where artificial agents
respond to individual rewards [1, 9, 26, 27]. Because individual in-
centives are often not sufficient, intrinsic rewards [8, 15, 16] or more
complex agent architectures where the choice of the next action
is based on prediction models of the behavior of the other agents
[9, 19]. We show that, fundamentally, a reputation mechanism is
not sufficient to steer agents towards cooperation, but this can be
combined with intrinsic rewards to achieve cooperation.

The rest of this paper is organized as follows: Section 2 describes
the problem of cooperation in presence of reputation mechanisms
and the existing results based on stability solution concepts. Sec-
tion 3 shows that naive Q-learning agents converge to undesirable
equilibria. Section 4 discusses how to steer the system towards
desirable outcomes while Section 5 deals with how agents can learn
to also assign reputations in a completely decentralized fashion. In
Section 6, we discuss how our results relate to the existing literature
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in game theory, as well as implications for artificial, human and
hybrid systems, where reputation can be used as a way to establish
trust and cooperation.

2 PRELIMINARIES

2.1 Prisoner’s Dilemma

Our investigation is based on the classic Prisoner’s Dilemma (PD)
game [28]. Agents can cooperate, paying a cost ¢ to help their oppo-
nent by an amount b; or defect, bypassing the cost and potentially
reaping the benefit bestowed from cooperative co-players. The cor-

: s o b . .
responding payoff matrix is then: (_C p-c |» with the first action

being defect, and the second action cooperate. In the following
section we denote defect as action 0 and cooperate as action 1. With
b > ¢ > 0, selfish agents will play defect; an outcome that is not
Pareto optimal given that everyone would better off with mutual
cooperation. We will set ¢ = 1, and vary b to adjust the benefit to
cost ratio of cooperation. The amount of cooperation that emerges
will be dependent on the benefit to cost ratio of the game b/c.

2.2 Reputation Mechanisms

We investigate a setup typical of the EGT literature [22, 24]. We
consider N agents that are randomly matched with another agent,
each round, to play a game. The game is repeated for a number of
rounds, with agents being rematched in every round. An episode
lasts for a pre-determined number of rounds M.

In each round agents play the PD game described above. Agents
decide whether to cooperate or not based on the reputations of
their co-players. In our simplest model, reputations can be 0 or 1.
For the sake of clarity we will sometimes refer to 1 as Good, and 0 as
Bad; however, no meaning is ascribed to reputation values a priori.
Following [23], an agent decides whether they cooperate or not
based on their own reputation and the reputation of the opponent.
The reputation assignment is based on a social norm as discussed in
Section 2.3. Thus, we can encode how they react to the reputations
of other agents with 4 bits as shown in Table 1.

Table 1: Action rules are encoded as bitstrings of size 4. Each
bit encodes the action of the focal agent, with {D =0,C = 1}.
This action is a function of her reputation and the reputa-
tion of the opponent. There are 16 possible action rules.

If the focal reputation is: 0 0 1 1
and the opponent reputation is: | 0 1 0 1
The focal action is given by: Bit3 | Bit2 | Bit1 | Bit 0

For example, action rule 5 is as follows: Bit 3 is 0, therefore an
agent using this rule will defect if their reputation is 0 and the
opponent’s reputation is 0; Bit 2 is 1, thus the agent will cooperate
if their reputation is 0 and the opponent’s is 1; Defect if their own
reputation is 1 and the other’s is 0, as given by Bit 1, and cooperate
when their own reputation and the co-player’s reputation is 1 as
given by Bit 0. The resulting bitwise representation is 0101,. In
a similar fashion, action rule 0 is always defect; action rule 15 is
always cooperate, and so on. As a result, we have 16 possible action
rules in total.
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2.3 Social Norms and Reputation Assignment

Now that we have described the basic setup of the game and the
concept of action rule, we can define how reputations are assigned
to agents after observing social interactions.

A social norm [40] is used to determine how agents assign repu-
tations to others [23]. A social norm is a function that translates
how the actions of the parties involved in an interaction, translate
into their future reputations [24]. An observer, sometimes central-
ized, changes the reputations of both parties, following the social
norm, after each interaction.

Table 2: Bitwise interpretation of norms. Each bit encodes
the new focal reputation given her action towards an oppo-
nent with a particular reputation. For example, norm 1 =
0001, assigns a reputation 1 only to agents that cooperate
when facing an agent with reputation 1.

If the focal action is: D D Cc C
The opponent’s reputation is: 0 1 0 1

New focal reputation is given by : | Bit3 | Bit2 | Bit1 | Bit 0

Following [23], the new reputation for an agent depends on her
action, and the reputation of the co-player. We can encode a social
norm as four bits, for a total of 2¢ norms (see Table 2). These are
known as second-order norms [22], and can be extended to depend
as well on the reputation of the focal agent (third order), or even
on the basis of previous interactions [32]. Table 3 gives some social
norm examples. We consider a small reputation assignment error
X, which occasionally flips a reputation from the original intention
on assignment. This small error allows for the reputation dynamics
to be stationary, in the sense that in the long run the effect of initial
reputations vanish.

We consider two scenarios of reputation assignment that reflect
different levels of centralization. In a semi-centralized system all
agents used a fixed exogenous norm (top-down reputation). In this
case, the system’s state is given by N action rules p;, where each
action rule is in {0..15}. Instead, in a fully decentralized system
each agent can use a different norm (bottom-up reputation) [41].
In this case, the system’s state is given by N tuples (p;, d;), where
each action rule p; is in {0..15} and each social norm d; is in {0..15}.
Section 3 and 4 will deal with top-down dynamics, and Section 5
will discuss the bottom-up case.

2.4 EGT Stability Predictions

In EGT, pairs (p, d) have been analyzed for stability [24]. Techni-
cally speaking, a norm d yields a dynamical system that determines
the proportion of “Good” individuals in the population in the long
run. This proportion is then used to compute the payoffs of specific
action rules. A norm d stabilizes cooperation, if a monomorphous
population using action rule p and norm d can resist invasions by
any mutant action rule p’. Social norms that reward justified defec-
tion, as well as cooperation with reputable agents, are particularly
good at maintaining cooperation. These results have been extended
to more realistic stochastic systems with finite populations [30].
Stability predictions show that social norms that are most suc-
cessful at cooperation share two characteristics: (i) cooperation
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with “good” agents begets a good reputation, and (ii) defection
against “bad” agents begets a good reputation [24]. A particularly
salient norm is known as “Stern Judging" [25]. The binary repre-
sentation of this is norm 9 given in Table 3. More specifically, the
combination of action rule 5 and norm 9 cannot be invaded once
established (see Tables 1 and 3).

Importantly, even with a good norm in place, defection is still
an equilibrium. Thus, it can be argued that reputation systems
transform the problem of cooperation into a simpler stag-hunt-like
problem [26], with good and bad equilibria - leading to cooperation
and defection respectively. This literature assumes that the set of
strategies are predefined, and explored by agents in a completely
random fashion. We are interested in relaxing this assumption by
using RL.

3 LEARNING TO USE REPUTATIONS

3.1 Q-Learning for Learning Reputation
Mechanisms

RL algorithms learn a policy from repeated interactions with the
environment and attempt to balance exploration and exploitation
to maximize rewards. Unlike in EGT, RL agents do not choose from
a fixed set of existing strategies, but learn instead to take actions
given environment observations. Here, we train our agents with
tabular Q-learning [39]. The policy, 7; of agent i is represented
by a table of state-action values Q;(s, a). While learning how to
react to the reputations of others, states correspond to opponents’
reputations. Actions are naturally cooperate or defect.

A single episode consists of a sufficiently large number of rounds
K, where agents are randomly match to play a PD game using their
reputations. The policy of agent i is an e-greedy policy and is
defined by

—
—
~

) argmax,e # Qi(s,a) with probability 1 — €
mi(s) =
' U(A) with probability e

where U (A) denotes a uniform distribution over actions. Agents
collect a set of trajectories {(s, a,7,s")i : k = 1,..., K} by interacting
with the environment and store them in a memory buffer M;. When
learning, it updates its policy using these experiences according to

Qi(s,a) « Qis,a) + flr +y max Q; (s".d) - Qi(s.a)] (2

where s is the current state, a is the current action, r is the reward
and s’ is the next state. As agents learn over time the environment
appears non-stationary from any agent’s perspective. To account
for other agents learning, the information stored in each agent’s
memory buffer is refreshed every episode to ensure it remains
relevant to the current transition dynamics of the environment.
In this environment, agents are both matched in rounds against
other agents and must choose to cooperate or defect but must
also judge the interactions of others and label agents as “good”
or “bad”. Agents do not accrue rewards for passing judgment and
must coordinate how they assign reputation to others purely from
the rewards received when cooperating or defecting with other
agents. It might be difficult for agents to learn independently as they
must coordinate on how to interpret reputations as well as how to
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Table 3: Examples of social norms.

Norm Binary representation Meaning

0* 00002 Actions and reputations play no role - always assigns “bad” reputation.

3 00115 Cooperating with others is always “good” and defecting is always “bad”.

9* 1001, Someone who cooperates with others that are “good” and defects to

others that are “bad” is good.

11 1011, Someone is “bad” only if they refuse to cooperate with a good individual.
. Cooperation kept at a fixed value to account for the changing behavior of other
100% agents. Results are averaged over 20 different random seeds for
each parameter set. We measure the average reward in the whole
750,  Stability predictions iy population during the last half of the episodes, taking the average,

(]

Effective social norm [l

Ineffective social norm [Ji

50%
25%
0% ———T | | .
2 5 10
b/c

Figure 1: Standard Q-learning achieves substantially less co-
operation that what is predicted with stability analysis.

assign them to others based on their behavior while simultaneously
learning to cooperate or defect.

We consider two scenarios. In our first scenario, agents learn
how to react to the reputations of others, with an effective social
norm being enforced by a central party — this is discussed next.
By analyzing the Q-values learned by the agents we can repre-
sent each agent’s policy, 7;, as an equivalent strategy using the
bitwise interpretation in Table 1. In the second scenario we consider
mechanisms for learning from individual experience.

3.2 Convergence to Inefficient Equilibria

This effective norm (norm 9), combined with an action rule that
reacts to reputation (e.g., action rule 5), makes cooperation stable
(see Section 2.4). Stability predictions expect this norm to maintain
cooperation and, with social learning and stochasticity, a system
with about 10 agents will reach as much as 75% cooperation for a
benefit to cost ratio of 5 [30].

Can agents using RL learn to play the strategies that combine
with stern judging to maintain cooperation? We fix norm 9, in a
centralized system and allow agents to adjust their policies follow-
ing the algorithm described above. We start with a population of
10 agents. The reputation dynamics simulation is ran for 10.000
episodes, each one comprising K = 200 random encounters in the
population. We set the reputation assignment error to y = 1x 1073
and, fixing the cost of cooperation to ¢ = 1, vary the benefit. The
learning rate is setto f = 1 x 1072,y = 0.99 and € = 107! € is

118

weighted by b, as the level of cooperation achieved. The results are
shown in Figure 1.

Strikingly, RL agents fail to reliably achieve cooperation, even in
the presence of an effective social norm. Only when cooperation is
very cheap, at a benefit to cost ratio of 10, a small 40% cooperation is
maintained. At a benefit to cost ratio of 5, the differences between an
effective social norm, and an ineffective social norm are negligible.
This is in stark contrast to what is expected from stability analysis
[24], or even stochastic predictions relying on social learning. For a
system with 10 agents, at a benefit to cost ratio of 5, a model based
on EGT techniques predicts as much as 70% cooperation based on
the same social norm.

This result can be explained by the fact that defection is still
an equilibrium, even with an effective social norm. Agents in this
setup reliably fail to use the reputation information, converging
on a purely defecting strategy that ignores reputation. Effectively,
the reputation system transforms a difficult prisoner’s dilemma
into stag-hunt like game with efficient (cooperation) and inefficient
equilibria. It has been reported before that in these situations, RL
algorithms can fail to converge to desirable equilibria in the absence
of intrinsic rewards or changes to the environment [26].

This outcome also reflects what typically happens when RL
agents are trained to play with one another in a social dilemma: (i)
learning does not account for potential changes in other agents’
strategies and so defection is seen as more valuable if the envi-
ronment were to remain unchanged, and (ii) agent behaviors are
initially volatile and so observations are not fully representative of
agent strategies. This remains the case, even with a coordination
system such as that introduced by the reputation mechanism, and
even with a simple game with binary reputations.

More generally, the fact that agents trained with Q-learning
cannot learn cooperation even with an effective social norm indi-
cates a gap between social and individual learning. We propose
two solutions to this problem to improve agent coordination on the
meanings of reputation labels and encourage cooperation through
introspective rewards. These are discussed next.

4 STEERING AGENTS TOWARDS EFFICIENT
EQUILIBRIA

We now set to design a mechanism to steer agents towards the
efficient equilibrium, while retaining the main feature of learning
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from individual experience. To do this, we take cues from the co-
operation literature in EGT [21], where cooperation is enabled by
correlated interactions, allowing cooperative types to meet each
other more frequently. This guarantees that the benefits of cooper-
ation are disproportionately shared only among those cooperating.
We propose two implementable ways to achieve this in the case
of reputations. These ideas are discussed in Sections 4.1and 4.2, re-
spectively. In the remaining experiments we analyse the outcomes
using a challenging value b/c = 5.

4.1 Seeding Agents to Improve Coordination

Seeding agents with reciprocal strategies has the potential to in-
crease the reward to autonomous cooperative ones. This approach
has been studied before in norm-emergence scenarios [6, 33]. In
particular, [33] considers a simpler case where norms are equivalent
to strategies and only two norms are available. In our case, norms
are coordination devices through reputation. This setup is richer
because more than two norms are available — clearly making the
problem more difficult.

To alleviate the burden of coordination, we look to encourage
agents to coordinate around a specific equilibria by introducing
fixed agents into the population that play action rule 5 (i.e., 01013):
I cooperate only when my co-player has a good reputation. Com-
bined with social norm 9, an agent that plays action rule 5 is guar-
anteed to always have a good reputation. By specifically rewarding
agents with good reputations and penalizing agents with bad repu-
tations, it encourages agents to play strategies that, in turn, give
them good reputations, thereby facilitating coordination.

We now vary the number of seeds k, i.e., we fix k agents using
action rule 5 (i.e., 01013), in an environment where N — k agents
are learning. For k = N we recover a simple single-agent learning
problem. We will show that a small proportion of seeds k is enough
to successfully promote cooperation. We run experiments with
N = 10 agents that learn for 50.000 episodes. We focus on the
challenging problem where b/c = 5, and vary the number of seed
agents k, expressed as proportion of the whole population. To
benchmark the effects of seeding agents, we consider the effective
social norm (9), as well as norm 0, which completely disregards the
value of reputations. Other RL parameters are kept as above. The
results are summarized in Figure 2.

Figure 3A shows how k/N affects cooperation in the long run. It
measures the average cooperation in the last half of the episodes, as
measured by the proportion achieved of the maximum cooperation
payoff. There is a sudden shift, when 20% of the agents are fixed
reciprocators, steering the population towards cooperation reliably.
Typical learning trajectories are shown in Figures 3B and 3C, for
the effective social norm, and the norm that disregards reputations
respectively. The results for a norm that ignores reputation shows
that the seeding helps coordination when an effective norm is in
place. We note that the role of fixed reciprocators is to both regulate
the amount of defection that learning agents can “get away with”,
while also also stabilizing the learning process by reducing the
variance in the outcomes. We need about 20% of the population to
be reciprocators in order to converge to cooperative outcomes when
the other 80% of the agents are learning using Q-learning — this
result holds for different population sizes, at the same proportion
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of fixed agents. This is intuitive since the threshold that biases the
random matching to guarantee reciprocation needs to stay constant
when the system size is increased.

Many policies can represent strategies resulting in widespread
cooperation. An obvious outcome is that agents just cooperate all
the time regardless of what their opponents strategy is (action rule
15). This would ultimately lead to maximizing the total reward if
all agents stick to unconditional cooperation This is crucially not
the case when seeding reciprocators. With an effective social norm,
cooperating with agents who have bad reputations will beget a
negative reputation. Thus, unconditional cooperators are not stable.
Instead, agents learn to play in a way that warrants them a positive
reputation, in turn maximizing the reward, i.e, using a reciprocal
strategy. Figure 3 shows how in the long term, in the presence
of fixed agents, RL agents converge to a policy equivalent to the
reciprocal strategy that matches the fixed agents being seeded.
Without seeding, unconditional defection is the prevalent outcome.

In summary, assuming an exogenous effective social norm, seed-
ing reciprocal agents (with action rule 5) helps those learning to
coordinate on the “good” label. Evidence of this is that the mirror
action rule 10, that coordinates by limiting cooperation to those
with label 0, is not present in the long run. While 20% may not
be a high demand in the proportion of seeded agents in certain
circumstances, there may be scenarios where the level of decen-
tralization does not allow for the system to have a predetermined
number of fixed good agents e.g., when they are required to be
physically present. However, there are many scenarios where it
may be cheap given their impact such as instantiating software bots
in a virtual environment. We next discuss an alternative solution
based on intrinsic rewards.

4.2 Introspective Rewards

The idea of intrinsic rewards incorporates psychological insights
from motivation into learning, by considering not only the external
rewards provided by the environment, but also rewards that are
intrinsic to agents [4]. This idea has been used before in cooperation
problems with reinforcement learning, by endowing agents with a
taste for curiosity [16] or with other-regarding preferences [15].
Here, we use a simple principle for intrinsic rewards. Agents
care about what their policy would do to an agent like themselves.
Therefore, we consider this as a form of introspection. Thus, the
extrinsic reward and the value of introspection are weighted with
a linear combination with parameter a. An agent’s i reward is then

Ri=aUi+ (1 -a)S;

where, U; is their payoff in a particular encounter, and S; refers to
the payoff they would get facing themselves. The intuition for this
is that agents would prime policies that would be effective when
playing against agents like themselves. The parameter «, in [0, 1],
is used to represent the level of introspection.

While the self-encounter leading to the intrinsic reward S; still
uses the agent’s reputation as an input, the actions the agents taken
in during self-play do not affect their reputations. This “simulated
self-encounter” does not contribute to the state of the game, but it
is only used to generate the intrinsic reward.
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Figure 2: Seeding agents to promote cooperation. Panel A shows the average cooperation in the last half of the episodes, as
measured by the proportion achieved of the maximum cooperation payoff. Panel B shows typical learning trajectories for the
population of agents using an efficient social norm, highlighting the average trajectory in bold. Panel C shows the results for

norm 0.
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Figure 3: Learned policies with seeding — counting the fre-
quency of strategies equivalent to the policies the algorithm
has converged to.

Aside from the intuition of introspection, this mechanism also
has a justification previously explored in the EGT literature. Pa-
rameter « can also be conceived as regulating the matching, and
priming interactions among alike types; i.e., assortative matching
[5]. If meetings between agents are “random”, those defecting will
on average get higher rewards than cooperators; but when match-
ing is assortative, cooperators are more likely to meet cooperators
than defectors — therefore, the cost of cooperation is repaid by a
higher probability of playing against a cooperating opponent [37].
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The results are summarized in Figure 4. Parameters are as dis-
cussed above, but noting a larger variance in the rewards distribu-
tion we allow the learning to run for a larger number of episodes.
Panel A shows how different levels of introspection affect cooper-
ation in the long run, for an effective and ineffective social norm.
For b = 5, the benefits of the intrinsic reward kick in, raising the
level of cooperation. Crucially, this curve is close to 0.5 at & = 1,
since the maximum level of introspection completely drowns out
the signal from the environment. Cooperation peaks at & = 0.8. We
have a decline in cooperation for larger values, driven by the noise
associated with overemphasizing the intrinsic feature of the reward.
Panels B, C and D show typical learning trajectories for agents in an
environment with the effective social norm. The average trajectory
is shown as a dotted line.

As reputation mechanisms turn a PD with a single non-efficient
equilibrium (i.e., defection), into a game where potentially many
equilibria arise depending on how individuals use the reputations
for coordination. In particular, agents need to coordinate on reacting
to reputation signals. While the introspective reward encourages
cooperation, it does not help the agents to solve the signal coordina-
tion problem. Action rule 5, prominent in the results of Section 4.1,
has a mirror action rule whereby agents defect with those labeled
“good” (1), and cooperate with those labeled “bad” (0). When all
agents decide on a label, both action rules can engender coopera-
tion when combined with norm 9. Figure 5 shows that agents are
sometimes divided on these two action rules, failing to cooperate
consistently, and occasionally opening the door for unconditional
defection. While conditional strategies are used almost 90% of the
time for the optimal introspection level (alpha = 0.6), cooperation
can only go as high as 75% with introspective rewards. Combining
seeding and intrinsic rewards can have a synergistic effect, with
only 5% seeding and a = 0.6 required to guarantee at least 90%
cooperation for b/c = 5.

We have shown how intrinsic rewards can increase cooperation,
but are not enough to resolve the coordination problem behind
reputation labels. All of these results also assume that a central
enforcer administers the judgement of reputation. In other words,
the agents are assumed to stick to a social norm that is effective.
This has limitations, because it requires mechanisms to solve the
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Figure 4: Seeding agents to promote cooperation . Panel A shows the average cooperation in the last half of the episodes, as
measured by the proportion achieved of the maximum cooperation payoff as a function of the level of introspection. Panels
B, C and D show typical learning trajectories for the population of agents using an efficient social norm with different levels
of introspection a. We highlight the average trajectory as a dotted line.
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Figure 5: Learned policies with introspective rewards —
counting the frequency of strategies equivalent to the poli-
cies the algorithm has converged to.

corresponding coordination problem of reputation assignment, or
assumes levels of centralization where social norms can be enforced.
We next discuss a fully decentralized scenario, where a central
enforcer is not required.

5 LEARNING TO ASSIGN REPUTATIONS

The problem of reputation becomes harder when social norms
are no longer centralized [41]. Instead, it is assumed that each
agent can judge the reputations of other after each encounter. So
for every encounter, a third party is chosen — randomly from the
population - to judge the reputations of the two parties involved
in each interaction. This reflects a completely decentralized system
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where enforcement of the social norm is not possible. Thus, the
next step is learning to coordinate not just how to react to others’
reputations, but also how to assign reputations to other agents.
Maintaining cooperation in this case requires agents to learn to
assign reputations in a meaningful way, preserving information
about other agents’ strategies in the reputation labels.

Once again, agents do not choose from 16 available norms to
judge encounters between agents, but learn to assign a reputation
0 or 1 based on the actions agents take and the reputation of their
co-player. The dimensionality of the Q-tables increases to accom-
modate for the new states and actions but the learning rate is kept
fixed at § = 1e — 2 with € = 0.1. Agents do not accrue rewards for
judging the interactions of others and must coordinate how they
assign reputation purely from the rewards received when cooper-
ating or defecting with other agents. This is hard because agents
must rely on others to assign informative reputations to agents and
do not directly receive rewards for doing so.

Figure 6 shows results for the decentralized problem. Without in-
trospection or seeded agents to improve agent coordination, agents
do not learn to cooperate under these circumstances and converge
to inefficient equilibria. We can immediately see the impact of an
effective norm as agents quickly learn a defecting strategy that
defects unconditionally. This further complicates the problem as it
renders reputation meaningless and learning an appropriate social
norm becomes difficult.

As mentioned previously, seeded agents encourage coordination
on the reputation signal while introspection encourages coopera-
tion. Introducing our two mechanisms independently has middling
success as neither result in cooperation consistently emerging. The
added complexity of coordinating on how to assign reputation still
results in defecting strategies being overall more rewarding for
agents and even seeding 50% of the agents only results in 30% co-
operation between RL agents. While increasing « appears to work
significantly better than seeding agents when norms are not fixed,
the strategies that agents learn are not coordinated and dominated
by the noise in the introspective reward signal as a approaches 1.

By combining these two mechanisms we can significantly im-
prove the performance of the RL agents and have them coordinate
around a social norm. Notably, with 50% seeded agents and a = 0.6,
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Figure 6: Introspective reward and seeded agents recover co-
operation for fully decentralized reputations.

agents can achieve 80% cooperation. Although a large proportion of
agents need to be seeded, we can see that this serves to curb agents
from defaulting to defecting strategies enough that they can learn
to assign meaningful reputations that are representative of agent
strategies. This is shown in Fig 7, panel B, where we can see that
75% of the time, agents successfully coordinate around social norm
3. Unlike norm 9, norm 3 looks to identify agents according to their
most recent action taken, labeling agents who have cooperated as
“good” and agents who have defected as “bad” (see Table 3). In con-
junction with norm 3, agents also learn action rule 5: cooperating
with good agents and defecting against bad agents. Similarly to
when norm 9 is used, the combination of norm 3 and action rule
5 results in a stable equilibrium that rewards cooperation while
defectors are identified and punished. Unlike norm 9, agents who
cooperate with defectors are not seen as bad agents and are not
held responsible for their opponent’s reputation. Instead an agent’s
reputation is determined exclusively by its own actions, indepen-
dent of the opponent’s reputation and is sufficient to represent each
agent’s behavior and guide RL agents towards a positive equilibria.
The right combination of seeding and introspective rewards can
recover up to 80% cooperation in the fully decentralized case. Full
coordination remains a challenge.

6 CONCLUSIONS

Reputation dynamics create difficult coordination and cooperation
problems for independent learners. Agents trained using reinforce-
ment learning fail to converge to efficient equilibria, even if an
effective social norm is imposed with a reputation system. Just like
in existing reputation systems with human actors, artificial agents
have problems coordinating the effective use reputations.

We have proposed two solutions to this problem. Our first solu-
tion is to seed fixed agents whose task is to steer others towards
coordination on the meaning of reputation labels. Specifically, a
mass of reciprocal fixed agents effectively helps RL agents to coordi-
nate on a single label. In turn, encouraging the conditional actions
that foster cooperation while protecting it from defectors.

Introspection — via intrinsic rewards — entices agents to be more
cooperative. This mechanism is theoretically grounded by models of
assortative matching in EGT. The optimal balance of introspection
and external rewards can recover a great deal of cooperation, but
does not protect agents from not coordinating on reputation labels.
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Figure 7: Introspective reward and seeded agents coordinate
around social norm 3 and action rule 5 resulting in a coop-
erative, stable equilibrium.

These mechanisms show great potential for synergistic interac-
tions. When combined, they successfully recover substantial levels
of cooperation in fully decentralized scenarios. Our results also
show that stability analysis and stochastic models of social learn-
ing, common in EGT, tend to over-estimate how much cooperation
you can expect from the presence of reputation mechanisms. EGT
models, and more generally models of human behavior, can learn
from RL methods. Specifically, RL grounds the exploration process
whereby agents discover strategies. This process is often assumed
ex-ante in evolutionary games. As shown here, this can have an
effect in model predictions. Our results further underscore the dif-
ferences between social and individual learning that are notable
in the EGT and RL communities. This work has been based on a
rather basic scenario. Future work may further explore how these
solutions apply to more complex cooperation scenarios, including
those beyond binary reputations. Grid-like worlds that are popular
benchmarks in the RL community may also be interesting testbeds
for understanding reputation.

Intelligent artificial agents are expected to be able to navigate
social interactions and recognise efficient outcomes where multiple
parties can benefit. Although a standard RL algorithm fails to con-
verge to desirable equilibria, this can be amended by introducing
successful mechanisms, which has been extensively investigated
in the EGT literature. We believe that this paper demonstrates the
largely unexplored potential of combining techniques and method-
ologies from the RL and EGT communities in order to investigate
open problems around cooperation and reputation dynamics in
artificial, human, and hybrid societies.
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