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Abstract

Open Set Domain Adaptation (OSDA) aims to
transfer knowledge from a labeled source domain
to an unlabeled target domain, where known classes
exist across domains while unknown classes are
present only in the target domain. Existing meth-
ods rely on the clustering structure to identify the
unknown classes, which empirically induces a large
identification error if the unknown classes are a
mixture of multiple components. To break through
this barrier, we formulate OSDA from the view of
correlation and propose a correlation metric-based
framework called Balanced Correlation Learning
(BCL). BCL employs Hilbert-Schmidt Indepen-
dence Criterion (HSIC) to characterize the separa-
tion between unknown and known classes, where
HSIC is reformulated as the nodes’ relation on
graph. By considering the label prior as variable,
theoretical results are derived to analytically show
a sufficient condition for desired learning direction
for OSDA. Methodologically, the class-balanced
HSIC is proposed to preserve domain-invariant and
class-discriminative features. With the guarantee
of correlation learning, the entropy-based princi-
ple can effectively identify the unknown classes via
uncertainty. Empirically, BCL achieves significant
performance improvements.

1 Introduction
With large amounts of labeled data, deep neural networks
have made quite impressive progress on a variety of tasks.
However, when the trained network is deployed on a new
unlabeled dataset, the original network does not work as
well on the new dataset even though the new dataset has the
same set of labels as the training set. In general, deep neu-
ral networks have poor generalization performance over un-
seen new domains. To address this problem, a lot of work
has been done in the field of Unsupervised Domain Adapta-
tion (UDA) [Long et al., 2013; Ganin and Lempitsky, 2015],
which can transfer knowledge from a labeled source domain
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Figure 1: Schematic of the traditional OSDA method. Treating un-
known classes as single cluster structure will result in known classes
being incorrectly identified as unknown class. And fixing multiple
cluster structures will miss some unknown class cluster structures.

to an unlabeled target domain. However, existing UDA meth-
ods follow a strong assumption that both domains share the
same class space, which makes it impossible to make correct
predictions about new class samples. In real-world scenarios,
in addition to sharing the same classes as the source domain,
the target domain also has its own unique classes, which is
quite common in object detection [Scheirer et al., 2012].

In order to solve the above problems, Open Set Domain
Adaptation (OSDA) [Panareda Busto and Gall, 2017] has
been studied, which can identify novel classes in the target
domain as unknown. Recently, several OSDA approaches
have been proposed to identify unknown class in the tar-
get domain while align known classes shared by both do-
mains. Existing OSDA methods can be divided into two
main categories: methods based on adversarial learning; and
methods based on subspace learning. For instance, Saito
et al. [2018] designed a threshold-based adversarial learn-
ing module to recognize unknown class. Based on this idea,
some pioneering works [Liu et al., 2019; Jang et al., 2022;
Pan et al., 2020] are proposed from the adversarial learn-
ing perspective by setting up one or more discriminators to
identify unknown class. Wang et al. [2021a] used the pseudo
labels of the target domain data to design the adjacency ma-
trix, which is substituted into the LPP [He and Niyogi, 2003]
to implement OSDA from the graph embedding perspective.
Similarly, some works [Kundu et al., 2020; Jing et al., 2021;
Liu et al., 2023] identify unknown class by learning more
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discriminative subspace that can be used to identify unknown
class with the help of the clustering structure of the class.

While the above OSDA methods achieve great success,
they all have some shortcomings (as shown in Fig. 1). Adver-
sarial learning based methods rely on manually setting thresh-
old when identifying unknown classes. And essentially ad-
versarial learning methods identify unknown classes by the
probability vectors output by the discriminator, but the mod-
elling ignores the correlation between the feature and prob-
ability vector, so this type of method lacks a reliable basis
for directly using probability vectors to identify unknown
classes. In addition, methods based on subspace learning
identify the unknown classes from the clustering structure
of the data, which leads to the fact that when the unknown
classes have more than one clustering structure, this kind of
methods cannot capture the data structure of the unknown
classes well. And even if these methods can focus on multiple
cluster structures of unknown classes, the setting of the num-
ber of cluster structures needs to be manually adjusted. To ad-
dress these issues, we complete the identification of unknown
classes in terms of correlation. With the help of correlation
between features and labels, samples with weak correlation
with labels are identified as unknown classes.

In order to realize the identification of unknown classes and
the alignment of known classes from the perspective of cor-
relation, we design a framework based on Hilbert-Schmidt
Independence Criterion (HSIC), which is an operator norm
that evaluates the correlation of variables. In this paper, we
propose a theoretically grounded framework, Balanced Cor-
relation Learning (BCL) for OSDA, which contain correla-
tion metrics module to extract discriminative features and
align both domains, and entropy measure module to separate
known and unknown class. In the correlation metric mod-
ule, the HSIC is reformulated as the nodes’ relation on graph.
From the derived theory, by considering the label prior as
variable, a sufficient condition for desired learning direction
for OSDA have been derived. On the basis of the correlation
metric, in order to align the known classes in both domains,
we design a class-slicing based HSIC module from the per-
spective of conditional independence, which can uniformly
mix both domains data of each class within the HSIC frame-
work so that the decision boundaries of the source domain are
applicable to the target domain data. The above module es-
tablishes the correlation between features and labels on both
domains, and using this correlation we identify the unknown
classes by the probability vector corresponding to the feature.
The contributions can be summarized as follows.

• Theoretically, HSIC is reformulated as the nodes’ rela-
tion on graph, which provides insights into characteriz-
ing the learning direction via the adjacency weight. Fur-
ther, to ensure the desired learning direction for OSDA,
a sufficient condition is analytically derived by taking
label prior as variable.

• A theory-guided method is proposed for OSDA. It
achieves class-balanced HSIC by the designed reweight-
ing technique, where domain-invariant and class-
discriminative features are learned simultaneously. Be-
sides, the reweighting-based method preserves the statis-

tical property of BCL, i.e., correlation metric property.
• A class slicing variants of HSIC is proposed to achieve

correlation learning at the class-conditioned level, which
permits the mixture structure of known and unknown
classes to be correctly preserved.

• Extensive experiments are conducted, where the results
show that the theoretical results are empirically valid
and BCL achieve significant improvements over SOTA
methods on standard OSDA benchmarks.

2 Related Works
OSDA needs to identify novel classes in target domain as
unknown based on the identification of shared known class.
Saito et al. [2018] first proposed deep learning algorithm for
OSDA. Some work [Fang et al., 2020; Zhong et al., 2021] an-
alyzed OSDA from theoretical perspective and optimized the
model from the perspective of error upper bounds. Recent
advances mainly focus on two streams of the research, i.e.,
adversarial learning [Liu et al., 2019; Shermin et al., 2020;
Jang et al., 2022] and subspace learning [Wang et al., 2021a;
Jing et al., 2021; Liu et al., 2023]. Similar to [Saito et al.,
2018], Liu et al. [2019] use multiple binary discriminators to
recognize unknown classes, while Jang et al. [2022] trans-
form the domain discriminator into a three-channel discrimi-
nator, where one channel is used to recognize unknown class.
Jing et al. [2021] recognize unknown class by using class
centroid on hyperspheres and Liu et al. [2023] learn more
discriminative subspace by adding multiple constraints to the
subspace. Adversarial learning-based methods rely on proba-
bility vectors to identify unknown classes, but lack the analy-
sis of correlations between feature and label, while subspace
learning-based methods do not capture multiple cluster struc-
tures of unknown classes well. To model OSDA from cor-
relation, we utilize HSIC [Gretton et al., 2005] as correla-
tion indicator. HSIC can be used to assess the correlation be-
tween variables projected onto the reproducing kernel Hilbert
spaces. Its empirical estimate is simpler than any other kernel
dependence test, so we consider using HSIC to design our
framework based on correlation metric. In the field of do-
main adaptation, there is some work on domain alignment
modelling using HSIC [Yan et al., 2017; Ma et al., 2020;
Zhai Yi-Ming et al., 2023]. These method demonstrate the
efficacy of HSIC in aligning both domains, and HSIC can
also be effective in assessing correlation between variables.

3 Method
In this section, we revisit HSIC from the perspective of graph
embedding. Combining the obtained theory with the class
property of the OSDA problem itself, class-balanced HSIC is
used to solve the OSDA problem. On this basis, in order to
better align the source and target domains, conditional HSIC
based on class slicing achieves conditional independence be-
tween features and domains. When the feature and label have
a strong correlation, we use entropy to identify the unknown
classes from an information theory perspective.
Notations. Let the source and target domains be Xs =
{(xs

i ,y
s
i )}

ns
i=1 and Xt = {(xt

i,y
t
i)}

nt
i=1, which are sampled
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Figure 2: Illustration of the effect of Class-Balanced HSIC. When
using the original HSIC to enhance the correlation between feature
and label, it ensures the transferability between both domains, but it
loses the class information of the classes when the class ratio is out
of balance. In contrast, the class-balanced HSIC can enhance the
transferability while ensuring the discriminability of the feature.

from distributions P s
XY and P t

XY , respectively; yt
i is not

available during training. With the feature extractor g(·) and
classifier C(·), we make Z = g(X) the variable correspond-
ing to feature and Y = C(Z) the variable corresponding to
the sample label. Denote Wg and WC as the parameters of
the feature transformation g(·) and the classifier C(·), respec-
tively. Let Cs be the source class space and Ct the target class
space, where Cs ⊂ Ct. In OSDA, k = |Cs| common classes
are shared by the two domains and the target domain contains
an extra class, i.e., the unknown classes. In testing protocol,
the unknown classes are considered as the (k + 1)-th class.
1n denotes the n-dimensional vector with all entries one.

3.1 Correlation Learning Meets Label Prior
Reformulation of HSIC for OSDA. HSIC, as a norm of
the covariance operator in Hilbert space, can be used as a
correlation indicator. In OSDA problems, the separation of
known classes from unknown classes is a very important goal.
So when modeling with correlation metrics, separation be-
tween classes also needs to be ensured. To ensure that HSIC
is applicable to OSDA, we reformulate HSIC in this section.
As shown in Fig. 2, using the theoretical results, we can im-
prove HSIC to make the learned features more discriminative.

Let D := {(x1,y1), · · · , (xn,yn)} contain n i.i.d. sam-
ples drawn from PXY . Given separable RKHSs H,G,
then the empirical expression of HSIC takes the following
form [Gretton et al., 2005]:

HSIC(D,H,G) = (n− 1)−2 tr(KXHKY H), (1)

where KX ∈ Rn×n, KY ∈ Rn×n with entries KX(i, j) =
k(xi,xj), KY (i, j) = k(yi,yj), and H ∈ Rn×n is the cen-
tering matrix H = In − 1

n1n1
T
n . In fact, with an appropriate

kernel choice such as the Gaussian k(x,y) ∼ exp(− 1
2∥x −

y∥2/σ2), KX defines the similarity or the opposite of the
distance among xi. Define the following adjacency matrix:

W = HKY H. (2)
Next, Eq. (1) can be rewritten as follows:

HSIC(D,H,G) = (n− 1)−2 tr(KXW)

= (n− 1)−2
∑
i,j

KX(i, j)Wij .
(3)

Thus it is only necessary to analyze the adjacency matrix W
to determine the learning direction. For the adjacency matrix,
we derive the following theorem. The proof is provided in
the appendix, from which it is shown that this theorem can be
similarly extended to other universal kernel function.
Theorem 1. Suppose the number of classes in D is c, and the
proportion of each class is pi(i = 1, .., c), then when yi = yj
and xi belongs to the t-th class, for Eq. (2) we have:

Wij

n2
=

(
1− 2pt +

c∑
m=1

p2m

)[
1− exp(− 1

σ2
)

]
. (4)

When yi ̸= yj and xi belongs to class a and xj belongs to
class b, for Eq. (2) we have:

Wij

n2
=

(
c∑

m=1

p2m − (pa + pb)

)[
1− exp(− 1

σ2
)

]
. (5)

From the above theorem, HSIC is reformulated as the
nodes’ relation on graph, based on which we can know that
the graph structure of HSIC is determined by the adjacency
weights. Furthermore, the adjacency weights are mainly di-
vided into two types: intra-class and inter-class, and are de-
termined by the label prior, i.e., class ratio.
Separability of HSIC. For the correlation metric, when
we enhance the correlation between features and labels, we
want to achieve both separation between different classes. To
achieve this, using the graph embedding theory of HSIC de-
scribed above, we have the following definition:
Definition 1 (Separability). The HSIC meets the separation
property if it satisfies that:
(a) The intra-class adjacency weight is positive, i.e., Wij > 0
for any yi = yj .
(b) The inter-class adjacency weight is negative, i.e., Wij < 0
for any yi ̸= yj .

With the separation property, we can enhance the correla-
tion between feature and label while clustering samples from
the same class and separating samples from different classes.
Next, by considering the class ratio as variable, we can derive
a sufficient condition for separability of HSIC. For samples
of the same class, from Eq. (4), we have:

1− 2pt +

c∑
m=1

p2m = (1− pt)
2 +

∑
m ̸=t

p2m > 0. (6)

From this inequality, we can get the following inference.
Corollary 1. When yi = yj and xi belongs to the t-th class,
then Wij > 0 and the adjacency weights Wij are determined
by their corresponding class proportions pt.

From the above inference, we can know that when we in-
crease the correlation between features and labels by maxi-
mizing HSIC(x,y), since KX defines the negative distance
between features, and the intra-class adjacency weight is
greater than 0, samples of the same class will be uncondi-
tionally narrowed, thus ensuring the intra-class compactness
of features. While for samples belonging to different classes,
from Eq. (5) we can know that maximising HSIC(x,y) will
bring samples belonging to different classes closer together
when the class proportions are out of balance. For OSDA
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problems, the proportion of unknown classes is often large
and the proportion of certain known classes is small, which
makes the application of HSIC(x,y) to OSDA weaken the
discriminability of the features and is not conducive to the
optimisation of the model. From Thm. 1 we can see that the
inter-class adjacency weights are determined by the class pro-
portions, and from that point, in order to make all inter-class
adjacency weight negative, we explore the nature of the HSIC
when the class proportions are balanced. For Eq. (5), when
the class proportions are balanced, we have:

c∑
m=1

p2m − (pa + pb) =

c∑
m=1

1

c2
− 2

c
= −1

c
< 0. (7)

So for samples belonging to different classes, we can obtain
the following conclusion.
Corollary 2. When the class ratios are balanced, i.e., uni-
form label prior p = 1

c1c, and yi ̸= yj , then Wij < 0.
From the above corollaries, we can learn that class balance

is a sufficient condition for separability. In addition, when
the class ratios are balanced, the adjacency weights for each
class will be equal, and will not result in Wij in Eq. (4) getting
smaller values in classes with larger class proportions.
Class-Balanced HSIC. Using the above analytical results,
this paper designs class-balanced HSIC for OSDA. In the cal-
culation of HSIC, the empirical distribution of samples in the
empirical form of HSIC is p = 1

n

∑
i δxi

. To allow HSIC
to be computed on a class-balanced dataset, we weight the
empirical distributions of the samples so that the class pro-
portions are balanced. At this moment the weight of sample
xi is 1

cnpi
, where n is the total number of samples and pi is

the proportion of class corresponding to yi. The HSIC calcu-
lated after the samples have been weighted is as follows:

HSICB(X,Y ;A) = tr(KXAKY A) (8)

where A = diag(a) − aaT . a ∈ Rn and a(i) is the weight
corresponding to sample xi. By weighting the HSIC, we can
achieve the effect of class balancing. In this case, the class-
balanced HSIC meets the separation property. And we can
enhance the discriminability of the features while preserving
the statistical property of HSIC. Unlike [Wang et al., 2021b],
we do not destroy the metric nature of the tools used.

To extract domain invariant features, similar to [Ma et al.,
2020], we add class-balanced HSIC to the information bottle-
neck [Tishby et al., 2000]. The balanced HSIC bottleneck is
used to extract domain invariant features:

min
Wg

LHB = αHSICB(Z,X;A)− βHSICB(Z, Y ;A) (9)

The above balanced HSIC bottleneck is carried out on the
basis of class balancing, which achieves the extraction of
domain-invariant and class-discriminative features.

3.2 Class Conditional HSIC
To better align features of known classes in both domain, we
implement cross-domain learning of the model in terms of
conditional independence. Similar to [Fukumizu et al., 2007],
we consider the form of the conditional HSIC. We can assess
conditional independence between variables by the condi-
tional cross-covariance operator VY X|Z = VY X − VY ZVZX .
Similar to the definition of HSIC, the conditional HSIC can

Source Sample Target Sample

Transferability

HSICB

Discriminability

Wij>0,
Increase Scatter

Wij<0,
Reduce distance

Class Proportion

Class Balance 
under Weighting

Figure 3: Illustration of the effect of LC. The distance between sam-
ples from different domains is reduced while increasing the scatter
of samples within the domain, thus better mixing both domain sam-
ples together and realizing the alignment of both domains.

be defined as the operator norm of VY X|Z . Since we are try-
ing to preserve the discriminative information in the aligned
source and target domains, the corresponding conditional
HSIC should be HSIC(Z,D|Y ). Since the values of Y are
discrete and finite, we consider conditional HSIC based on
the class slice form. In addition, the slice-based form also
reduces the effect of class proportions on the experimental
results while preserving the class information when aligning
the source and target domain. The form of HSIC(Z,D|Y )
based on class slicing is as follows:

min
Wg

LC =

k∑
i=1

HSIC(Zi, Di), (10)

where Zi contains the features of the samples belonging to
the i-th class, and Di is the set consisting of the domain la-
bels corresponding to the samples in Zi. We achieve domain
alignment by minimising the above loss to enable strong inde-
pendence between sample features and domains in each class.
As shown in Fig. 3, using the result of Thm. 1, we can also
revisit the loss Eq. (10) in terms of graph embedding. In the
process of minimizing LC, due to the existence of only two
domains in the OSDA problem, for Eq. (5), we have:

2∑
i=1

p2i −(p1+p2) = p21+(1−p1)
2−1 = 2p1(p1−1) < 0, (11)

where p1 and p2 are the ratios of source and target domain
samples. This means that the same class samples between
different domains are brought closer together and the scatter
of the samples of the same class within the domain will be
increased. Similar to [Xu et al., 2019], alignment of the sam-
ples in each class is achieved by allowing the samples of the
same class within the domain to maintain a certain degree
of scatter that can facilitate the model to mix the samples
from different domains more evenly, which can be verified
by our experiments. When samples of the same class in two
domains can be uniformly mixed, the decision boundaries of
the source domain model can apply well to the target domain
data. Meanwhile, the final learned features of each class can
also maintain a certain tightness due to the presence of LHB.

3.3 BCL for OSDA
Uncertainty-Based Identification. In the OSDA problem,
the identification of unknown classes is crucial to achieve
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open set domain adaptation. Since our method guarantees
a strong correlation between the features and labels of known
class samples, the uncertainty of the known class samples is
weak. In contrary, since the correlation of the unknown class
samples is not guaranteed and there are no unknown class of
samples in the source domain to be trained, it can be assumed
that the unknown class samples possess a strong uncertainty.
The relationship between entropy and uncertainty has been
well studied in traditional statistics [Seidenfeld, 1987], so we
utilise entropy in this section to achieve identification of un-
known classes. The uncertainty measure based on entropy
can then identify the unknown class samples with strong un-
certainty. Denote the corresponding probability vector for xi
as qi and the entropy can be calculated as follows:

Ei = −
∑
j

qi(j) log(qi(j)). (12)

For Ei, we can assume that larger values represent greater
the uncertainty of the sample. So in this paper, we use en-
tropy as the basis for identifying the unknown classes. Un-
like other methods that rely on threshold setting, we use a
clustering algorithm on Ei to classify the samples into three
sets XL,XM ,XH . Assuming that there are three class centres
obtained from the clustering results as c1 > c2 > c3, then

XH = {xi| argmin
j

d(xi, cj) = 1},

XM = {xi| argmin
j

d(xi, cj) = 2},

XL = {xi| argmin
j

d(xi, cj) = 3}.

(13)

XL denotes samples with low entropy values, i.e., samples
with high confidence, generally representing samples that are
clearly identified as known classes or unknown classes. XM
denotes samples with medium confidence and can represent
samples that are relatively close to the decision boundary. XH
denotes samples with high uncertainty and can represent sam-
ples that are detached from the respective decision boundary.
So, we treat XH as unknown classes. Regarding the set XH ,
we design the following cross-entropy function for unknown
classes to ensure the recognition rate of the unknown classes:

min
Wg,WC

LU(XH) = −
nu∑
i=1

log qi(k+1), (14)

where nu is the total number of samples in the set XH and
qi(k+1) denotes the value of the predicted probability vector
for the i-th sample in XH in the (k + 1)-th dimension. We
achieve the identification of unknown classes by minimiz-
ing the cross-entropy of XH and continuously adding sam-
ples that are out of the decision boundary to unknown classes.
This process avoids the setting of threshold and the interfer-
ence of the number of unknown classes clustering structures.
Overall Flow of the Algorithm. The exact flow of the al-
gorithm is shown in Alg. 1. In the pre-training phase, we train
the model using the following cross-entropy loss:

min
Wg ,WC

LCE(Wg,WC) =

k+1∑
i=1

ns∑
j=1

−ys
j (i) log ŷ

s
j (i), (15)

where ŷsj = C(g(xs
j)) and

∑k+1
i=1 ŷsj (i) = 1. ŷsj (i) is the

prediction probability of xs
j belonging to the i-th class. ys

j is

Algorithm 1 Balanced Correlation Learning for OSDA
Input: Source Xs = {(xs

i ,y
s
i )}

ns
i=1, target Xt = {xt

i}
nt
i=1

Parameter: regular term coefficient (α, β), β1 and β2, max-
imum iteration N , Pre-training iteration Npre

Output: Network parameters (Wg,WC) and predictions of
target domain samples {ŷt

j}
nt
j=1

1: for t = 1, . . . , Npre do
2: Update the parameter of g and C following Eq. (15).
3: end for
4: for t = 1, . . . , (N −Npre) do
5: Calculate the entropy of the target domain samples us-

ing Eq. (12) and get the set XL,XM ,XH .
6: Use the set XH to compute the loss LU.
7: Use the output of the classifier to label the samples in

the set {XL,XM}, and calculate the loss LHB together
with the source domain samples.

8: Take the known class samples in {XL,XM} and calcu-
late loss LC together with the source domain samples.

9: Update the parameter of g and C following Eq. (16).
10: end for

the ground truth label of xs
j . After the pre-training phase, the

overall optimization objective is shown below:

min
Wg ,WC

L(Wg,WC) = LCE + LHB + β1LC + β2LU. (16)

4 Experiments
We evaluate our method on three datasets, i.e., Office-
31 [Saenko et al., 2010], Office-Home [Venkateswara et al.,
2017] and VisDA [Peng et al., 2017]. BCL is compared with:
(1) OSDA methods: OSBP [Saito et al., 2018], STA [Liu et
al., 2019], PGL [Luo et al., 2020], ROS [Bucci et al., 2020],
cUADAL [Jang et al., 2022], ANNA [Li et al., 2023]; (2)
UniDA method: DANCE [Saito et al., 2020], GCL [Qu et
al., 2023]. The results of the experiments were all averaged
over five randomised trials. Details of datasets and imple-
mentations are provided in appendix.

4.1 Results and Analysis
Office-31. Comparison results on Office-31 are shown in
Tab. 1. As shown in Tab. 1, our method achieves the best
average UNK (93.0%) and HOS (92.1%) over all 6 tasks,
outperforming STA, ROS and ANNA with 28.2%, 7.2% and
3.0% UnK and 19.6%, 6.2% and 3.5% HOS, respectively.
Compared with the state-of-the-art OSDA work ANNA, our
method comprehensively surpasses it with 3.7% OS∗, 3.0%
UnK and 3.5% HOS, respectively. In addition, our method
outperforms other algorithms in terms of HOS metrics for all
six tasks on Office-31, which verify the effect of our method.
Office-Home. We report the comparison results of Office-
Home in Tab. 2. Our method achieves the best results in 4
sub-tasks for the HOS comparison and outperforming STA
and ROS with 14.3% and 4.5% UnK and 8.7% and 4.4%
HOS, respectively. Compared to the latest UniDA method
GCL, our method outperforms by 0.8% in average HOS.
Compared to the latest OSDA method ANNA, Our method
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Method A→W A→D D→A D→W W→A W→D Avg

OS* UnK H OS* UnK H OS* UnK H OS* UnK H OS* UnK H OS* UnK H OS* UnK H
OSBP 86.8 79.2 82.7 90.5 75.5 82.4 76.1 72.3 75.1 97.7 96.7 97.2 73.0 74.4 73.7 99.1 84.2 91.1 87.2 80.4 83.7
STA 86.7 67.6 75.9 91.0 63.9 75.0 83.1 65.9 73.2 94.1 55.5 69.8 66.2 68.0 66.1 84.9 67.8 75.2 84.3 64.8 72.5
PGL 82.7 67.9 74.6 82.1 65.4 72.8 80.6 61.2 69.5 87.5 68.1 76.5 80.8 61.8 70.1 82.8 64.0 72.2 82.7 64.7 72.6
ROS 88.4 76.7 82.1 87.5 77.8 82.4 74.8 81.2 77.9 99.3 93.0 96.0 69.7 86.6 77.2 100 99.4 99.7 86.6 85.8 85.9
DANCE 98.7 50.7 66.9 96.5 55.9 70.7 85.3 53.6 65.8 100 66.8 80.0 83.7 60.6 70.2 100 73.7 84.8 94.0 60.2 73.1
cUADAL 85.5 95.1 90.1 85.6 90.4 87.9 74.2 87.8 80.5 98.7 97.7 98.2 65.6 87.8 75.1 99.3 99.4 99.4 84.8 93.0 88.5
GCL - - - - - - - - - - - - - - - - - - - - 89.0
ANNA 82.8 88.4 85.5 93.2 76.1 83.8 75.4 91.1 82.5 99.4 99.6 99.5 76.0 87.9 81.6 100 96.8 98.4 87.8 90.0 88.6
BCL 95.6 89.4 92.4 91.5 85.3 88.3 81.1 89.0 84.8 99.4 99.6 99.5 80.2 94.8 86.9 99.3 100 99.7 91.2 93.0 92.1

Table 1: Accuracy (%) on Office-31 (ResNet-50).

Method Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar

OS* UnK H OS* UnK H OS* UnK H OS* UnK H OS* UnK H OS* UnK H OS* UnK H
OSBP 50.2 61.1 55.1 71.8 59.8 65.2 79.3 67.5 72.9 59.4 70.3 64.3 67.0 62.7 64.7 72.0 69.2 70.6 59.1 68.1 63.2
STA 50.8 63.4 56.3 68.7 59.7 63.7 81.1 50.5 62.1 53.0 63.9 57.9 61.4 63.5 62.5 69.8 63.2 66.3 55.4 73.7 63.1
PGL 63.3 19.1 29.3 78.9 32.1 45.6 87.7 40.9 55.8 85.9 5.3 10.0 73.9 24.5 36.8 70.2 33.8 45.6 73.7 34.7 47.2
ROS 50.6 74.1 60.1 68.4 70.3 69.3 75.8 77.2 76.5 53.6 65.5 58.9 59.8 71.6 65.2 65.3 72.2 68.6 57.3 64.3 60.6
DANCE 54.4 53.7 53.1 84.0 35.4 49.8 89.8 25.3 39.4 72.9 28.4 40.9 76.3 32.8 45.9 83.9 18.4 30.2 70.7 43.9 54.2
cUADAL 55.0 75.6 63.6 69.4 73.9 71.6 82.2 73.3 77.5 53.8 82.0 65.0 61.1 77.4 68.3 69.3 76.3 72.6 50.9 82.4 62.9
GCL - - 65.3 - - 74.2 - - 79.0 - - 60.4 - - 71.6 - - 74.7 - - 63.7
ANNA 61.4 78.7 69.0 68.3 79.9 73.7 74.1 79.7 76.8 58.0 73.1 64.7 64.2 73.6 68.6 66.9 80.2 73.0 63.0 70.3 66.5
BCL 56.6 74.3 64.3 71.8 79.5 75.4 77.0 81.2 79.0 57.1 70.8 63.1 64.7 76.3 70.0 70.0 77.1 73.4 62.1 70.8 66.2

Method Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg VisDA

OS* UnK H OS* UnK H OS* UnK H OS* UnK H OS* UnK H OS* UnK H OS* UnK H
OSBP 44.5 66.3 53.2 76.2 71.7 73.9 66.1 67.3 66.7 48.0 63.0 54.5 76.3 68.6 72.3 64.1 66.3 64.7 50.9 81.7 62.7
STA 44.7 71.5 55.0 78.1 63.3 69.7 67.9 62.3 65.0 51.4 57.9 54.2 77.9 58.0 66.4 63.4 62.6 61.9 62.4 82.4 71.0
PGL 59.2 38.4 46.6 84.8 27.6 41.6 81.5 6.1 11.4 68.8 0.0 0.0 84.8 38.0 52.5 76.1 25.0 35.2 - - -
ROS 46.5 71.2 56.3 70.8 78.4 74.4 67.0 70.8 68.8 51.5 73.0 60.4 72.0 80.0 75.7 61.6 72.4 66.2 45.8 64.8 53.7
DANCE 48.2 67.4 55.7 86.5 27.1 41.2 79.2 16.7 27.5 60.1 41.3 48.3 86.2 29.6 44.0 74.4 35.0 44.2 61.3 72.9 66.5
cUADAL 41.2 80.7 54.6 71.2 83.4 76.8 66.8 79.6 72.6 51.8 71.1 59.9 77.8 75.6 76.7 62.5 77.6 68.5 58.5 87.6 70.1
GCL - - 63.2 - - 75.8 - - 67.1 - - 64.3 - - 77.8 - - 69.8 - - 72.5
ANNA 54.6 74.8 63.1 74.3 78.9 76.6 66.1 77.3 71.3 59.7 73.1 65.7 76.4 81.0 78.7 65.6 76.7 70.7 - - -
BCL 54.5 73.5 62.5 74.0 81.0 77.3 63.3 77.6 69.7 56.9 75.1 64.7 77.9 86.7 82.1 65.5 77.0 70.8 60.9 94.4 74.1

Table 2: Accuracy (%) on Office-Home and VisDA: S→R (ResNet-50).

also outperforms the previous best result with 70.8% HOS.
VisDA. The comparative results of VisDA are shown at
the end of Tab. 2. Our method achieves the best UNK
(94.4%) and HOS (74.1%), outperforming STA, DANCE and
cUADAL with 12.0%, 21.5% and 6.8% UnK and 3.1%, 7.6%
and 4.0% HOS, respectively. Our method also outperforms
the previous best result with 74.1% HOS.

Ablation Study: As shown in Tab 3, we performed abla-
tion studies on four sub-tasks on Office-Home and obtain the
following observations. 1) When only using the HSIC bottle-
neck to increase the correlation between features and labels,
the average HOS reduced by 1.8%, which is mainly caused by
the decrease in the unknown class recognition rate. This indi-
cates that when two domains are not well aligned, the HSIC
bottleneck discards the discriminative information related to
the unknown class, which leads to the degradation of the un-

known class recognition. 2) When only using slicing HSIC
to align both domains, the average HOS increased by 3.6%,
which shows that even though this module increases the intra-
class scatter, a better identification result can still be achieved
with the cross entropy of the source domain.
Hyper-parameter Sensitivity: The results of the parameter
sensitivity are shown in Fig. 4. The values of the four param-
eters have a small effect on the HOS, which indicates that our
algorithm is stable. The values of β and β1 also have a smaller
effect on the recognition effectiveness of the unknown class,
in contrast to the values of α and β2, which have a larger ef-
fect on the recognition rate of the unknown class, although
this effect also leads to variations in the recognition effective-
ness of the known class, thus maintaining a stable HOS.
Feature Visualization: We take W→A for instance and plot
the t-SNE results in Fig. 5 to visualize the feature distribution
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LHB LC
Ar→Pr Pr→Cl Cl→Rw Rw→Ar Avg

OS* UnK H OS* UnK H OS* UnK H OS* UnK H OS* UnK H
63.2 81.2 71.0 46.1 65.4 54.0 58.8 75.5 66.0 60.6 81.9 69.6 57.2 76 65.2
65.8 64.9 65.4 46.4 62.2 53.1 58.0 77.0 66.1 61.0 79.5 69.0 57.8 70.9 63.4
71.2 75.3 73.2 54.1 68.2 60.3 66.8 78.4 72.1 64.2 76.1 69.6 60.1 74.5 68.8
71.8 79.5 75.4 54.5 73.5 62.5 70.0 77.1 73.4 63.3 77.6 69.7 64.9 76.9 70.3

Table 3: Ablation studiy results (%) on Office-Home with four different sub-tasks.
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Figure 4: Sensitivity analysis of the hyperparameter on Office-Home.

(a) OSBP (b) STA (c) Early Stage (d) Late Stage (e) BCL

Figure 5: Feature visualization. (a)-(b): SOTA OSDA methods. (c)-(d): Unweighted HSIC feature visualisation results. Red: source samples.
Blue: target known class. Yellow: target unknown classes.

Known class Unknown classKnown class Unknown class Sample Number

Figure 6: Quality of unknown classes identification. The length of
the line segment indicates the entropy value.

and make a comparison for different methods. From Fig. 5,
in contrast to other methods, our method separates each class
to ensure feature discriminability. In addition, BCL will mix
the samples of the same class from different domains more
evenly, as evidenced by the fact that the same class samples
from both domain will be evenly mixed. On the contrary,
other methods simply put the clustering structures belonging
to the same class in the source and target domains next to each
other, and cannot form a homogeneously mixed whole.
Validation of Theory: To verify the accuracy of our theory,
we conducted experiments with unweighted HSIC. In (c) and
(d) of Fig. 5 we can see the visualisation results of using un-
weighted HSIC. As shown in (c), in early stage of the al-
gorithm, there are few samples that are explicitly recognised
as unknown classes, so it leads to many known class sam-
ples mixed with unknown class samples. This results in more
known class samples being mixed with unknown class sam-

ples in the late stage of the algorithm, and the separability be-
tween different classes cannot be achieved, as shown in (d).
Unknown Class Identification: To verify the reliability of
the operation of using entropy to identify unknown classes,
we conducted numerical experiments on W→A (Office-31).
The results are shown in Fig. 6. From the figure, we can see
that although the entropy of some of the known classes will be
larger resulting in a small portion of the known classes being
recognized as unknown classes, basically the entropy of the
unknown classes is large, which explains the high accuracy
of the unknown class recognition of our algorithm.

5 Conclusion
In this work, we establish the relationship between HSIC and
graph embedding, based on which we propose a framework
for OSDA based on correlation metric, called BCL. BCL es-
tablishes the correlation between feature and label, in which
the class-balanced HSIC ensures the class-discriminative na-
ture of features while extracting domain-invariant features.
Furthermore, to better align both domains from conditional
independence, the conditional HSIC based on class slicing
implements a class-by-class alignment. Once the correlation
between feature and label is established, we can use entropy
to measure the uncertainty of the samples, thus enabling the
identification of unknown classes. Extensive experiments on
standard benchmarks verify its state-of-the-art performance.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

890



Acknowledgments
This work was supported in part by National Natural Sci-
ence Foundation of China (Grant No.62376291), in part by
Guangdong Basic and Applied Basic Research Foundation
(2023B1515020004), and in part by Science and Technology
Program of Guangzhou (2024A04J6413).

References
[Bucci et al., 2020] Silvia Bucci, Mohammad Reza Logh-

mani, and Tatiana Tommasi. On the effectiveness of image
rotation for open set domain adaptation. In European Con-
ference on Computer Vision, pages 422–438, 2020.

[Fang et al., 2020] Zhen Fang, Jie Lu, Feng Liu, Junyu
Xuan, and Guangquan Zhang. Open set domain adapta-
tion: Theoretical bound and algorithm. IEEE Transactions
on Neural Networks and Learning Systems, 32(10):4309–
4322, 2020.

[Fukumizu et al., 2007] Kenji Fukumizu, Arthur Gretton,
Xiaohai Sun, and Bernhard Schölkopf. Kernel measures
of conditional dependence. Advances in Neural Informa-
tion Processing Systems, 20, 2007.

[Ganin and Lempitsky, 2015] Yaroslav Ganin and Victor
Lempitsky. Unsupervised domain adaptation by backprop-
agation. In International conference on machine learning,
pages 1180–1189, 2015.

[Gretton et al., 2005] Arthur Gretton, Olivier Bousquet,
Alex Smola, and Bernhard Schölkopf. Measuring statis-
tical dependence with hilbert-schmidt norms. In Interna-
tional Conference on Algorithmic Learning Theory, pages
63–77, 2005.

[He and Niyogi, 2003] Xiaofei He and Partha Niyogi. Lo-
cality preserving projections. Advances in Neural Infor-
mation Processing Systems, 16, 2003.

[Jang et al., 2022] JoonHo Jang, Byeonghu Na, Dong Hyeok
Shin, Mingi Ji, Kyungwoo Song, and Il-Chul Moon.
Unknown-aware domain adversarial learning for open-set
domain adaptation. Advances in Neural Information Pro-
cessing Systems, 35:16755–16767, 2022.

[Jing et al., 2021] Mengmeng Jing, Jingjing Li, Lei Zhu,
Zhengming Ding, Ke Lu, and Yang Yang. Balanced open
set domain adaptation via centroid alignment. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
pages 8013–8020, 2021.

[Kundu et al., 2020] Jogendra Nath Kundu, Naveen Venkat,
Ambareesh Revanur, R Venkatesh Babu, et al. Towards in-
heritable models for open-set domain adaptation. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 12376–12385, 2020.

[Li et al., 2023] Wuyang Li, Jie Liu, Bo Han, and Yixuan
Yuan. Adjustment and alignment for unbiased open set do-
main adaptation. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pages
24110–24119, 2023.

[Liu et al., 2019] Hong Liu, Zhangjie Cao, Mingsheng
Long, Jianmin Wang, and Qiang Yang. Separate to adapt:
Open set domain adaptation via progressive separation. In
Proceedings of the IEEE/CVF Conference on computer vi-
sion and Pattern Recognition, pages 2927–2936, 2019.

[Liu et al., 2023] Jieyan Liu, Hongcai He, Mingzhu Liu,
Jingjing Li, and Ke Lu. Manifold regularized joint trans-
fer for open set domain adaptation. IEEE Transactions on
Multimedia, 2023.

[Long et al., 2013] Mingsheng Long, Jianmin Wang,
Guiguang Ding, Jiaguang Sun, and Philip S Yu. Transfer
feature learning with joint distribution adaptation. In
Proceedings of the IEEE International Conference on
Computer Vision, pages 2200–2207, 2013.

[Luo et al., 2020] Yadan Luo, Zijian Wang, Zi Huang, and
Mahsa Baktashmotlagh. Progressive graph learning for
open-set domain adaptation. In International Conference
on Machine Learning, pages 6468–6478, 2020.

[Ma et al., 2020] Wan-Duo Kurt Ma, JP Lewis, and W Bas-
tiaan Kleijn. The hsic bottleneck: Deep learning without
back-propagation. In Proceedings of the AAAI conference
on artificial intelligence, pages 5085–5092, 2020.

[Pan et al., 2020] Yingwei Pan, Ting Yao, Yehao Li, Chong-
Wah Ngo, and Tao Mei. Exploring category-agnostic clus-
ters for open-set domain adaptation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 13867–13875, 2020.

[Panareda Busto and Gall, 2017] Pau Panareda Busto and
Juergen Gall. Open set domain adaptation. In Proceed-
ings of the IEEE International Conference on Computer
Vision, pages 754–763, 2017.

[Peng et al., 2017] Xingchao Peng, Ben Usman, Neela
Kaushik, Judy Hoffman, Dequan Wang, and Kate Saenko.
Visda: The visual domain adaptation challenge. arXiv
preprint arXiv:1710.06924, 2017.

[Qu et al., 2023] Sanqing Qu, Tianpei Zou, Florian
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