
Truth Table Net: Scalable, Compact & Verifiable Neural Networks
with a Dual Convolutional Small Boolean Circuit Networks Form

Adrien Benamira1 , Thomas Peyrin1 , Trevor Yap1 , Tristan Guérand 1 , Bryan Hooi 2

1Nanyang Technological University
2National University of Singapore

{adrien.benamira, thomas.peyrin, trevor.yap}@ntu.edu.sg, guer0001@e.ntu.edu.sg,
bhooi@comp.nus.edu.sg

Abstract

We introduce “Truth Table net” (TTnet), a novel
Deep Neural Network (DNN) architecture designed
to provide excellent scalability/compactness trade-
offs among DNNs, allowing in turn to tackle the
DNN challenge of fast formal verification. TTnet
is constructed using Learning Truth Table (LTT) fil-
ters, analogous to how a Deep Convolutional Neural
Network (DCNN) is built upon convolutional fil-
ters. The differentiable LTT filters are unique by
their dual form: they are both a neural network-
based function and a small-sized truth table that can
be computed within a practical time frame. This
characteristic guarantees, by design and indepen-
dently of the overall architecture, the ability to prac-
tically extract an efficient (in terms of the number
of logical gates) and functionally equivalent Con-
junctive Normal Form (CNF) Boolean logic gate
implementation. This CNF circuit is even optimal
when the LTT truth table’s input bit size n ≤ 12.
In particular, TTnet architecture is the first differ-
entiable DNN with as dual form a compact logic
gate representation that can scale to datasets larger
than CIFAR-10: we achieve an accuracy of 41% on
the ImageNet dataset while ensuring that each LTT
filter truth table is fully computable within 216 op-
erations. We further compare the compactness and
scalability performances of TTnet Boolean logic cir-
cuit representation to state-of-the-art differentiable
logic DNNs across tabular, MNIST, and CIFAR-10
datasets. We emphasize that TTnet is the first solu-
tion to the open problem of designing differentiable
convolutional neural networks with an exact dual
logic gate circuit representation, bridging the gap
between symbolic AI and trainable DCNNs. Finally,
as improving DNNs compactness in Boolean logic
circuit form reduces the complexity of their formal
verification, we demonstrate TTnet effectiveness in
exact sound and complete formal verification. No-
tably, our model achieves robustness verification in
≈ 10ms vs ≈ 100s for traditional state-of-the-art
DNNs solvers.

1 Introduction
DNNs’ success in various machine learning tasks has been
remarkable [Goodfellow et al., 2016], but their opacity has
raised concerns about their security [AI, 2023; Commission,
2021], necessitating the development of formal verification
processes to ensure safety and reliability [Driscoll, 2020]. For-
mal verification employs mathematical techniques to prove
that a system satisfies predefined properties; however, the
complexity of DNNs poses significant challenges for veri-
fication [Wang et al., 2021; Brix et al., 2023]. Traditional
DNNs struggle to simultaneously achieve scalability, verifia-
bility, and compactness in terms of logic gates [Petersen et al.,
2022]. Ideally, a natural goal is to design a DNN that can be
transformed into a compact Boolean logic circuit without sac-
rificing high accuracy on large-scale datasets. This approach
holds the potential to enhance the compactness of DNNs and
facilitate their verification processes [Jia and Rinard, 2020].

Our approach. DNNs, similar to ciphers, represent complex
black-box functions that must be trustworthy. Drawing inspira-
tion from a popular design principle of symmetric-key encryp-
tion algorithms (so-called Substitution-Permutation Networks
or SPN [Daemen and Rijmen, 2002]), our paper proposes com-
pact and small learnable filter Convolutional Neural Networks
(CNNs) equivalent by design into small truth tables (from 6
to 16 bits of input). To achieve that goal, we adopt a divide-
and-conquer strategy. In the divide phase, before training, we
reduce the input size of each DNN building block function,
enabling the computation of its complete distribution within
a practical time, independent of its overall architecture. In
the conquer phase, after training, we compute the complete
distribution of each building function.

Therefore, our objective is to design DNNs based on func-
tions that allow for full distribution computation within a
practical timeframe, independent of the overall architecture,
all while maintaining accurate performance on large datasets.

1.1 Our Contributions And Claims
The LTT filter. To address this challenge, our paper intro-
duces a novel filter function called the Learning Truth Table
(LTT) filter. The LTT filter serves as the fundamental building
block function of TTnet, similar to how a CNN filter is uti-
lized in a DCNN. The LTT filter is defined based on three key
rules and presents six attractive properties, see Section 4.1.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

13

The TTnet architecture. LTT layers are assembled into a
TTnet in the same way that CNN filters are assembled into
DCNNs. Specifically, LTT filters are stacked together in LTT
layers, and these LTT layers are stacked together in the overall
TTnet. The final classification layer is linear.

Claim on scalability. In contrast to previous differentiable
logic DNN solutions, TTnet demonstrates remarkable scal-
ability, achieving performance comparable to other DNNs
based on Boolean functions on the ImageNet classification
task. For a fair comparison, we specifically evaluated TTnet
against XnorNet [Rastegari et al., 2016] and the Binary Neural
Networks (BNNs) original paper [Hubara et al., 2016], both
of which are also based on Boolean functions. The results
showcase that TTnet, which is a differentiable convolutional
logic gate DCNN as well as a Boolean function, can effec-
tively scale to large-scale datasets like ImageNet, achieving
competitive performance (claim 1).

Claims on compactness. TTnet stands as the pioneering
differentiable DCNN that can be transformed into a Boolean
logic circuit by design (claim 2), which was already identi-
fied as an open problem [Petersen et al., 2022]. Empirical
evaluation on small datasets like tabular datasets (Adult and
Breast Cancer) and MNIST reveals that TTnet is equivalent
to state-of-the-art differentiable logic gate DNN (Diff Logic
Net [Petersen et al., 2022]) in terms of compactness and accu-
racy (claim 2A). Furthermore, at the cost of higher complexity,
TTnet exhibits superior accuracy and training time scalability,
achieving a notable accuracy of 70.75% on CIFAR-10 with
less than an hour of training, marking an +8% improvement
and ×90 faster training compared to Diff Logic Net [Petersen
et al., 2022] (claim 2B).

Claims on formal verification. As a demonstration of
its excellent scalability/compactness profile, we show that
TTnet is very well suited to support fast property verifi-
cation using generic SAT solvers (claim 3). This allows
for the formal verification of the network’s robustness in
dozens of milliseconds on MNIST and CIFAR-10, which is
about 104 times faster than α − β-Crown [Xu et al., 2020;
Wang et al., 2021], the state-of-the-art DNN verification solver
and a recent winner of the Verification Neural Network (VNN)
competition [Brix et al., 2023] (claim 3A). We also provide a
comparison with BNNs verification [Jia and Rinard, 2020;
Narodytska et al., 2019]: our method is more robust in
low-noise cases and faster to verify in all scenarios, for
MNIST/CIFAR-10 (claim 3B).

Outline. Section 2 presents a literature review on Boolean
logic gates DNN and DNN formal verification. Section 3
provides a comprehensive overview of the background in the
field of Boolean logic and formal verification. Section 4 de-
scribes the design principles and architecture of the TTnet
model. In Section 5, we provide a thorough evaluation of
the performance of our model on various datasets, carefully
demonstrating the above claims. Finally, we discuss the limita-
tions and opportunities in Section 6, and conclude in Section 7.

2 Related Works
Binary and Sparse Neural Networks. BNNs are DNN ar-
chitectures where the activations and weights within a neural
network use binary states, typically representing {−1, +1}.
This innovative technique allows for the approximation of com-
putationally expensive matrix multiplications through faster
XNOR and bitcount (popcount) operations. BNNs are char-
acterized primarily by their weights. Sparse Neural Networks
(SNNs) represent another approach to neural network design.
In SNNs, only a subset of connections is present, in contrast
to fully-connected layers. In the SNNs literature, the pri-
mary focus often revolves around distilling a sparse neural
network from a dense one, with careful consideration given to
the choice of connections. However, recent research has sug-
gested the high efficacy of using randomized and fixed sparse
connections from the outset. In our experiments, we include
BNNs and SNNs as baseline models, due to their exceptional
inference speed performance.
DNNs into compact logic gate circuit representation.
[Chatterjee, 2018] proposed a DNN based on truth tables,
but it did not scale beyond MNIST. Other works aimed to con-
vert DNNs into compact Boolean logic circuit designs, which
are essential for deploying DNNs on resource-constrained de-
vices [Wang et al., 2019]. However, the challenge in learning
logic gate networks is that they are typically non-differentiable,
making them difficult to train with gradient descent [Rumel-
hart et al., 1986]. To date, there is no family of differentiable
DCNNs logic gates, as stated by [Petersen et al., 2022]and our
LTT filter function is proposed as a possible bridge to that gap
between symbolic AI and trainable DCNNs.
Exact, complete, and sound formal verification. Formal
verification is a critical aspect in ensuring the DNN’s sound-
ness and completeness properties, particularly for safety-
critical applications [Driscoll, 2020]. Conventional verifiers
work with real-valued networks, but they face scalability chal-
lenges, e.g. hundreds of seconds to verify an MNIST image
property [Müller et al., 2022], and provide no guarantees of
correctness due to floating point errors [Jia and Rinard, 2021].
Therefore, developing an efficient DNNs verification process
is an important topic, as evidenced by the α − β-Crown pa-
per [Xu et al., 2020; Wang et al., 2021] and winner of the
VNN competition [Brix et al., 2023]. In the present work,
instead of designing a new general verification method for
DNNs, we propose the first architecture that can be efficiently
and correctly verified with any SAT solver [Roussel and Man-
quinho, 2009]. This research direction is attracting interest,
as exemplified by [Jia and Rinard, 2020], who strives to show
that BNNs [Hubara et al., 2016] are faster to verify if a spe-
cific well-crafted SAT solver is designed. Further discussion
regarding incomplete methods is given in Appendix.
Local features for accurate DNN. Recent works by [Bren-
del and Bethge, 2018] and [Agarwal et al., 2021] experimen-
tally showed that highly nonlinear functions (Resnet for the
former, expanding autoencoder for the latter) can enable a
DNN to learn high-quality local features (7× 7 floating input
pixels on image dataset for the former, 1× 1 floating input on
tabular dataset for the latter). In this work, we build upon the
idea of using highly nonlinear functions to learn local features.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

14

However, instead of processing local-dimensional floating-
point inputs, TTnet reduces the local features to binary inputs
(n ≤ 16). These two approaches legitimize our use of TTnet
on tabular and image datasets and highlight the importance of
Rule 3 in Section 4.1.

3 Background
Boolean logic. A truth table is a mathematical represen-
tation of the output of a Boolean function for all possible
input combinations. It is usable in practice when the corre-
sponding Boolean function distribution is fully computable.
Note that the Boolean function distribution of a DNN/BNN
is not fully computable, as the input size of the function is
too large. A truth table can be expressed in CNF1, being
the standard form to represent a Boolean function, especially
in formal verification. A Boolean logic circuit is a physi-
cal or mathematical representation of a Boolean function,
made up of interconnected logic gates [Arora and Barak, 2009;
Klir et al., 1997], typically AND/OR gates.
Formal verification. Our framework is built upon [Naro-
dytska et al., 2019], a theoretical exact sound and complete
framework to verify any property. Given a precondition prec
on inputs x, the property prop, on outputs o, and the SAT
relations provided by a DNN between inputs and outputs de-
noted as DNN(x, o), we assess the validity of the statement
prec(x) ∧DNN(x, o) =⇒ prop(o). To show the existence
of a counter-example to this robustness property, we search for
a satisfying assignment of prec(x) ∧DNN(x, o) ∧ prop(o)
(Eq1) with a proven SAT solver. An “unsat” result from the
SAT solver proves no noise exists for satisfying (Eq1) and
therefore no noise can attack; on the opposite, a “sat” answer
proves that there is one noise that satisfies (Eq1) to attack the
DNN. In that case, the noise is given by the SAT solver and
then tested for validation. In this paper, one distinguishes the
traditional natural accuracy from the verified accuracy, the
latter measuring the fraction of predictions that remain correct
for all adversarial attacks within the perturbation constraints.

4 Truth Table Neural Networks
First, we define LTT filters, give their properties, and illustrate
their use with an example in Section 4.1. We then explain how
these LTT filters are integrated into TTnet in Section 4.2. We
also provide a companion video in Supplementary Material.

4.1 Overall LTT Filter Design
General Design Criteria And Rules Of LTT Filters.
We aim to develop a novel filter function, called the Learning
Truth Table (LTT) filter, that is comparable to traditional CNN
filters in terms of computational efficiency2 but differs in com-
plexity. Specifically, we design an LTT filter such that one of

1CNF is a conjunction of disjunctions of literals, for example
Ω = (c1 ∧ · · · ∧ cm), with each clause cj = (lj1 ∨ · · · ∨ ljr) and
where (lj1, . . . , ljr) are Boolean literals.

2We define the computational efficiency in binary opera-
tions, denoted as OPs, as the total number of binary gates
(NAND/NOR/AND/OR/XOR/XNOR) required to represent the en-
tire DNN in Boolean logic gate format; and the floating-point opera-
tions counterpart denoted as FLOPs

its main characteristics is to be a grouped CNN filter: it will
be sparser in connectivity than a classical CNN filter. The LTT
filter essential criteria are:
(A) The LTT filter distribution must be entirely computable in
practical time, independently of the overall DNN architecture.
(B) Once LTT filters are assembled into a layer and layers
into a DNN, the latter should be scalable, especially on large
datasets such as ImageNet.

To achieve that, we define three LTT filter design rules:

Rule 1: Force the input bit size n of the LTT filter to be
n ≤ 16, independently of the architecture.

Rule 2: Use binary inputs/outputs, but with real-valued
weights and intermediate values.

Rule 3: Ensure that the LTT filter uses nonlinear functions in
between the Heaviside activations.

As a result, each filter in our architecture becomes a truth
table with a maximum input bit size of 16, leading to a compact
DNN represented as a Boolean logic gate circuit that is easy
to train and verify. We explore these benefits in Section 5.

Regular 2D-Convolution Filters.
We first define below a traditional 2D-Convolution filter.
Definition 1. Let an input X ∈ RCin×H×W where Cin, H ,
W represent the number of channels, height, and width of a
channel respectively. If a regular convolution filter is applied
on X with kernel size k × k, group G, stride s = 1 padding
p = 0, the output is denoted as O ∈ RCout×H×W where every
output unit oij ∈ RCout is:

oij = o1i,j ∪ · · · ∪ oGi,j (1)

with ∪ the concatenation operation and unit oγij ∈ RCout/G

representing the output in group γ at position i, j. Namely:

oγi,j = Ψωγ (xγ
i,j , . . . , x

γ
i+k−1,j+k−1) =

k−1∑
u=0

k−1∑
v=0

xγ
(i+u,j+v)ω

γ
u,v (2)

where i ∈ {1, . . . ,H}, j ∈ {1, . . . ,W}, γ ∈ {1, . . . , G},
with the input xγ

(i+u,j+v) ∈ RCin/G and the convolution filter
weights ωγ

u,v ∈ R(Cin/G)×(Cout/G).

Property 2. Given that the set of inputs (xγ
i,j , . . . ,

xγ
i+k−1,j+k−1) is encoded on q bits, the complete distribu-

tion of one 2D-CNN filter of function Ψωγ can be computed
in 2q×k×k×(Cin/G) operations. Furthermore, the weights ωγ

are real and learnable using gradient descent.

Definition of LTT filters. We aim to significantly reduce
the complexity of the 2D-CNN filter, by designing a function
whose input bit size q × k × k × (Cin/G) is smaller than 16.
We now define LTT filters as below.
Definition 3. Let an input X ∈ {0, 1}Cin×H×W where
Cin, H , W represent the number of channels, height, and
width of a channel respectively. Let the group and the ker-
nel size parameters be such that G = Cin/n and k2 ≤
16/n, n ∈ {1, 4, 16}). We define two convolutions fil-
ter weights ωγ

1 ∈ Rk1×k1×(Cin/G)×(a×Cout/G) and ωγ
2 ∈

Rk2×k2×(a×Cout/G)×(Cout/G) with both stride 1, no padding

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

15

Real intermediate values α,
amplification a = 4

Φ Input Φ Output

Truth Table, x

0 0 0 0
0 0 01

0 0 01
...

1 1 1 1

Φ

0
1
0
...

0

(a) LTT filter Φ computation and transformation into a truth table. Φ is charac-
terized by weights ω1 with parameters (input channel, output channel, kernel
size, stride) = (1, 4, 3, 1), and ω2 = (4, 1, 2, 1). Φ input bit size is 4 (i.e., brown
box) since the output feature (i.e., green box) requires 4 input entries (i.e., blue
& red hashed boxed). Equation (3) gives a formal definition.

Φ

bi
n
a
c
t

C
on

v1
D

ω
1
−

(1
,4
,3
,1
)

R
eL

U

C
on

v1
D

ω
2
−

(4
,1
,2
,1
)

bi
n
a
c
t

(b) LTT overview in one dimension. The intermedi-
ate values and the weights (ω1, ω2) are real and the
input/output values are binary. binact: Heaviside
step function defined as:
binact(x) = (1 + sgn(x))/2 with x ∈ R.

Figure 1: A Learning Truth Table (LTT) filter example in one dimension.

and such that k1 + k2 − 1 = k and a is the amplification
ratio. We also define Θ to be a nonlinear function. The LTT
output is denoted as O ∈ RCout×H×W where every output unit
oij ∈ RCout is defined as in Equation (1). Unit oγij ∈ RCout/G,
the output in group γ at position i, j is given by

oγi,j = Φωγ
1 ,ω

γ
2
(xγ

i,j , . . . , x
γ
i+k−1,j+k−1)

= binact(Ψωγ
2
(αγ

i,j , . . . , α
γ
i+k2,j+k2

)) (3)

with Ψωγ defined as in Equation (2) and αγ
i,j ∈ Ra×Cout/G as

αγ
i,j = Θ(Ψωγ

1
(xγ

i,j , . . . , x
γ
i+k1−1,j+k1−1))

where i ∈ {1, . . . ,H}, j ∈ {1, . . . ,W}, γ ∈ {1, . . . , G} and
with the input xγ

(i,j) ∈ RCin/G.

By definition, the described LTT filters validate the three
rules given previously. In Figure 1a, we provide an example
of an LTT computation in one dimension for k1 = 3, k2 =
2, k = k1 + k2 − 1 = 4, a = 4, Cin = 1, Cout = 1 and
Θ = ReLU. The architecture is depicted in Figure 1b.

LTT Filters Properties.
We point six main LTT properties. Properties P1 and P2 of
the proposed TTnet architecture offers practical benefits, in-
cluding fast and scalable filter training. Meanwhile, properties
P3, P4, P6 lead to the development of compact LTT filters and
efficient verification techniques. Figure 2 provides an example
of the two forms of P5.

Example: From LTT Weights To Truth Table To CNF.
Consider a trained 1D-LTT Φω1,ω2 with input size n = 4, a
stride of size 1, and no padding. The architecture of Φω1,ω2

,
given in Figure 1b, is composed of two CNN filter layers:
the first one has parameters ω1 with (input channel, output
channel, kernel size, stride) = (1, 4, 3, 1), while the second
ω2 = (4, 1, 2, 1). The values of the weights (ω1, ω2) are given
in Figure 2. The inputs and outputs of Φω1,ω2

are binary,

and we denote the inputs as [x0, x1, x2, x3]. To compute
the entire distribution of Φω1,ω2 , we generate all 24 = 16
possible input/output pairs, as shown in Figure 1a, and obtain
the truth table in Figure 2. This truth table fully characterizes
the behavior of Φω1,ω2

. We then transform the truth table into
an optimal CNF using the Quine-McCluskey algorithm [Blake,
1938; Udovenko, 2023]. This optimal CNF fully characterizes
the behaviour of Φω1,ω2

as well and is exactly equivalent.

P1: The LTT filter weights (ω1, ω2) are trainable with gradi-
ent descent and the Straight-Through Estimator (STE) to
handle the input/output binarisation.

P2: The LTT filter preserves real-valued weights (ω1, ω2)
and intermediate values α.

P3: The entire distribution of the LTT filter can be calculated
in 2n ≤ 216 = 65, 536 operations (less than 1 ms on a
standard PC). Truth table input bit size n is independent
of the architecture.

P4: The Quine-McCluskey algorithm [Blake, 1938] can be
used to compute the optimal CNF (in terms of Boolean
logic gates) from the LTT truth table if n ≤ 12. For 12 <
n ≤ 16 a compact CNF can be computed [Udovenko,
2023].

P5: The LTT filter has two forms: neural network weights
(ω1, ω2), or a small Boolean circuit (as a truth table or as
Boolean logic gates).

P6: Under truth table or CNF form, an LTT evaluation does
not need to compute any activation function.

4.2 Overall TTnet Design
We integrated LTT filters into the neural network, just as CNN
filters are integrated into a deep convolutional neural network:
each LTT layer is composed of multiple LTT filters and there
are multiple LTT layers in total (see Figure 2). Additionally,

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

16

ω1 =

 10 -1 3
6 -5 4
4 4 -3
4 4 3


ω2 =

(-5 0 9 -5
-5 4 0 0

)
. .

x0 x1 x2 x3 Φ

0 0 0 0 0
0 0 0 1 1
0 0 1 * 0
0 1 * * 0
1 * * * 0

CNF: x3 ∧ x0 ∧ x1 ∧ x2

Floating
Input

Binary
Input

Flatten

Linear

Output

F

LTT Layer 1

LTT Layer 2

LTT
0
1
1
0
1
0

1
0
1
1
0
0

0
1
1
0
1
1

0
0
1
1
1
1

1
1
1
0
1
1

0
1
0
0
0
1

LTT
1
0
1
0
1
1

1
0
1
1
0
1

0
0
1
1
1
0

0
1
0
1
1
0

1
0
0
0
0
0

0
0
0
0
0
1

LTT
0
0
1
1
0
0

1
0
0
0
1
1

1
0
1
0
0
1

1
1
0
0
1
0

0
0
1
1
1
1

1
1
1
1
0
0

LTT
1
1
1
1
1
1

0
1
1
0
1
0

0
0
0
1
0
0

1
0
1
1
1
1

1
1
0
0
0
0

1
0
1
1
0
0

LTT
1
1
1
1
0
1

0
0
1
0
0
1

0
1
1
0
0
0

1
1
0
1
1
0

1
0
0
0
0
0

0
1
0
0
1
1

LTT
1
0
0
0
1
1

1
1
0
0
0
1

1
0
1
1
1
1

1
0
1
1
1
1

0
1
1
0
1
0

0
0
1
0
1
1

LTT
1
1
0
1
0
1

0
0
1
0
1
0

0
1
0
1
1
0

0
0
0
0
1
1

0
1
1
1
0
1

0
0
1
1
1
1

LTT
1
0
1
1
1
1

0
0
1
0
1
0

1
0
0
1
0
0

0
0
0
1
0
1

0
1
0
1
1
0

0
1
0
1
0
0

LTT
1
0
1
1
0
0

1
1
1
0
1
1

1
1
0
1
0
1

1
0
0
0
0
0

0
1
0
0
1
0

1
1
0
0
1
1

LTT
0
1
0
1
0
0

0
0
1
1
0
1

0
0
1
1
0
1

0
0
0
1
1
1

0
1
1
0
1
0

1
1
1
1
1
1

LTT
1
1
0
1
0
0

1
1
1
0
0
0

1
0
1
1
1
0

1
1
1
0
1
0

0
1
1
0
0
0

1
0
1
1
0
0

LTT
1
0
0
1
1
0

0
1
1
0
0
1

0
0
0
0
0
1

0
1
1
0
0
0

1
1
1
1
1
0

1
0
1
1
1
0

LTT 1
1
1

1
0
0

0
0
0

LTT 0
1
1

1
0
0

1
1
1

LTT 1
1
0

0
1
0

0
1
0

LTT 0
1
1

0
1
1

0
0
1

LTT 0
0
0

1
1
1

0
0
0

LTT 1
0
0

0
1
0

1
0
0

LTT 0
0
1

0
0
1

0
0
1

LTT 0
1
0

0
0
0

0
1
0

LTT 1
1
1

0
1
0

1
0
0

LTT 1
0
0

1
0
0

0
0
1

LTT 1
1
1

0
1
1

1
0
0

LTT 0
1
0

1
0
1

0
0
0

LTT 0
1
0

1
1
0

1
1
0

LTT 1
0
1

1
0
1

1
1
0

LTT 1
0
1

1
1
1

1
1
1

LTT 0
1
1

1
0
1

0
0
1

LTT 0
0
0

1
0
1

0
0
0

LTT 0
1
1

0
0
0

1
1
1

LTT 1
0
1

0
1
1

1
0
0

LTT 0
1
1

1
1
1

0
0
1

LTT 1
0
1

0
1
0

0
0
0

LTT 1
0
0

1
0
0

0
1
1

LTT 1
1
1

0
1
0

0
1
0

LTT 1
1
1

1
1
1

1
0
0

Figure 2: On the left, we present the two forms of 1D-LTT Φ given in Figure 1: on top the DNN weights (ω1, ω2), on bottom the truth table /
(optimal) CNF. The truth table uses * to denote both 0/1 possible values. On the right, we present the general architecture of TTnet with
one-channel input. The image undergoes binarization through processing F , followed by two LTT layers, flatten and linear layer.

Accuracy TTnet16−|8 Original BNN XnorNet

top 1 41.6 % ± 0.6 27.9 % 44.2 %
top 5 65.1 % ± 0.7 50.4 % 69.2 %

Table 1: Comparison of top 1 and top 5 natural accuracy on ImageNet
(experiment has been repeated three times with different seeds).

there is a pre-processing layer and a final layer, which provide
flexibility in adapting to different applications: scalability,
formal verification, and logic circuit design.

5 Results
Experimental environment. The project code can be found
in Supplementary Material and was coded in Python with
PyTorch library [Paszke et al., 2019] for training, Numpy [Van
Der Walt et al., 2011] for testing as we infer with truth tables.
We used 4 Nvidia GeForce RTX 3090 GPUs and 8 cores
Intel(R) Core(TM) i7-8650U CPU clocked at 1.90 GHz, 16
GB RAM. We note TTnetn−k a TTnet with truth tables of
input bit size n, without pre-processing layer and a final linear
layer with weights quantized on k bits; and TTnetn−|k, with
a pre-processing layer of one CNN layer with floating weights.

5.1 Claim 1: Scalability
TTnet16−|8 shows an accuracy of 41.6% on ImageNet with
truth tables of size n = 16. These results are comparable
to those achieved by the original BNN paper [Hubara et al.,
2016] and XnorNet [Rastegari et al., 2016], see Table 1. Our
experimental results confirm that TTnet achieves high accu-
racy on a large dataset, which proves its non-trivial nature. We
emphasize that other differentiable logic gate networks did
not scale to ImageNet so far: the work done by [Petersen et
al., 2022] does not scale to larger datasets than CIFAR-10.
However, we believe there remains room for improvement
on TTnet in terms of accuracy as BNNs now can achieve
≈ 70% − 75% [Liu et al., 2018] on ImageNet. Detailed
architecture/training information are given in Appendix.

Table 2 studies the influence of the input bit size n of the
truth table on the scalability for CIFAR-10.

n 24 20 16 12 8 4

Acc. 89.1% 87.8% 86.0% 84.3% 81.2% 77.5%
± 0.2 ± 0.2 ± 0.3 ± 0.2 ± 0.4 ± 0.4

Table 2: Ablation study of TTnetn−|8 for different n on CIFAR-10.
Acc. stands for accuracy.

5.2 Claims 2: Compactness
We provide experimental evidence to support our claim of
providing easy-to-train, accurate, and compact logic gate
DCNNs. The results are presented in Table 3 for tabular
datasets (Adult and Breast Cancer) and Table 4 for image
datasets (MNIST and CIFAR-10) along with comparisons
with state-of-the-art differentiable logic gate DNN [Petersen
et al., 2022], BNNs [Umuroglu et al., 2017; Hirtzlin et al.,
2019] and SNNs [Molchanov et al., 2017; Mocanu et al., 2018;
Han et al., 2016; Zeng and Urtasun, 2018; Zhou et al., 2021].
More information on training conditions, architectures, and
additional comparisons can be found in Appendix.

A FLOP (FLoating point OPerations) is typically composed
of multiple binary operations (OPs). Float32 adders/multi-
pliers require around 1,000 logic gates or lookup tables and
have a significant delay. They are commonly implemented
in CPU and GPU hardware due to their importance. How-
ever, they are much more expensive than simple calculations
or bitwise logical operations on int64 data types. Processors
can perform 3 to 10 int64 bitwise operations per cycle, while
floating-point operations usually take a full clock cycle. Con-
verting a non-sparse model assumes a conservative estimate of
1000 OPs per 1 FLOP. Neural networks’ speeds are theoretical,
with sparse execution often being 10 to 100 times slower. In
practice, 1,000 binary OPs for 1 clear FLOP (float32) is a
conservative estimate for SNNs. It’s also a cautious estimate
for sparse float32 models. Theoretical estimates assume no
density cost and no hardware acceleration for floating-point
operations [Petersen et al., 2022].

Performances discussion - small datasets. We present a
comparison between two methods, TTnet6−4 and Diff Logic
Net, with respect to accuracy and compactness on small

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

17

Datasets Adult Breast Cancer
Acc. OPs Acc. OPs

Diff Logic Net 84.8% 1280 76.1% 640
TTnet6−4 85.3% 895 77.6% 71

Table 3: Comparison of TTnet with state-of-the-art Diff Logic
Net [Petersen et al., 2022] on Adult and Breast Cancer tabular
datasets for two models. Acc. stands for accuracy, OPs for the
number of logical gates.

datasets. Compactness is defined in terms of the number
of Boolean logic gates (NAND/NOR/AND/OR/XOR/XNOR)
used by the models, noted as OPs. Our results in Table 3
demonstrate that TTnet6−4 outperforms Diff Logic Net in
terms of accuracy for both tabular datasets, while using much
fewer gates. On the MNIST dataset, as indicated in Table 4
(top table), both models achieve comparable accuracies (10%
maximum relative error rate), but TTnet6−4 utilizes fewer
operations. In summary, our findings show that TTnet and
Diff Logic Net have similar performance on small datasets,
with TTnet offering the advantage of compactness in terms of
number of logical gates.

MNIST Acc. # Param. OPs FLOPs
Traditional Linear Regression 91.60% 4K (4M) 4K

models Neural Network 98.40% 22.6M (45G) 45M

Boolean DNNs

Diff Logic Net (small) 97.69% 48K 48K -
Diff Logic Net 98.47% 384K 384K -
TTnet6−4 (small) 97.44% 37K 34K -
TTnet6−4 (big) 98.32% 203K 188K -

BNNs FINN 98.40% - 5.28M -

SNNs M17 98.08% 4K (8M) 8K
SET-MLP 98.74% 89.8K (180M) 180K

CIFAR-10 Acc. # Param. OPs FLOPs

Boolean DNNs

Diff Logic Net (small) 51.27 % 48K 48K -
Diff Logic Net (medium) 57.39 % 512K 512K -
Diff Logic Net (large) 60.78 % 1.28M 1.28M -
Diff Logic Net (large x2) 61.41 % 2.56M 2.56M -
Diff Logic Net (large x4) 62.14 % 5.12M 5.12M
TTnet6−4 50.10 % 565K 565K -
TTnet12−4 70.75 % 189M 189M -
TTnet12−|4 84.63 % 1.2G 1.2G -

BNNs H19 91.00% 23.9 M 87.4G -

SNNs

PBW (ResNet32) 38.64 % - (140M) (140K)
MLPrune (ResNet32) 36.09 % - (140M) (140K)
ProbMask (ResNet32) 76.87 % - (140M) (140K)
SET-MLP 74.84 % 279K (558M) 558K

Table 4: Comparisons on MNIST (top table) and CIFAR-10 (bot-
tom table) of TTnet with state-of-the-art Diff Logic Net [Petersen
et al., 2022], traditional models, Binary Neural Networks (BNNs:
FINN [Umuroglu et al., 2017] and H19 [Hirtzlin et al., 2019]) and
Sparse Neural Networks (SNNs: M17 [Molchanov et al., 2017], SET-
MLP [Mocanu et al., 2018], PBW [Han et al., 2016], MLPrune [Zeng
and Urtasun, 2018] and ProbMask [Zhou et al., 2021]). Estimated
operations (OPs or FLOPs) are provided in brackets. Note that for
MNIST we did not count the number of gates needed to perform the
final layer (360K for TTnet6−4 (small) and 2.9M for TTnet6−4

(big)), as in [Petersen et al., 2022].

Performances discussion - large dataset. We compare
again TTnet6−4 and Diff Logic Net, but on the CIFAR-10
dataset, specifically focusing on scalability in terms of accu-
racy, training time, and model compactness. As shown in
Table 4 (bottom table), for the small model, Diff Logic Net
exhibits higher compactness with comparable accuracy than
TTnet. On the other hand, when considering larger models,
TTnet achieves an accuracy of 70.75% while Diff Logic Net
shows a maximum of 62.14%. The superior scalability of
TTnet in terms of accuracy is achieved at the cost of a more
complex Boolean logic circuit.

To investigate the impact of relaxing the compactness con-
straint, we demonstrate that TTnet12−|4 can achieve an accu-
racy of 84.63% with 1.2G OPs. As the dataset gets larger and
more complex, the complexity of the Boolean circuit needs to
increase as well to maintain high accuracy. This is achievable
with TTnet due to its scaling training properties.

Indeed, TTnet is notably easier to train than Diff Logic
Net: TTnet6−4 achieves an accuracy of 70% in under 1 hour
of training and TTnet12−|4 reaches 84.63% after 20 hours
(on an NVIDIA GeForce RTX 3090 GPU), while the Diff
Logic Net requires 90 hours of training (on a single NVIDIA
A6000 GPU) to reach a 62.14% accuracy. We note these
two GPUs are equivalent in terms of image training time, see
Supplementary Material. The accuracy achieved by TTnet on
CIFAR-10, along with its effective training, underscores its
potential as a differentiable CNN logic gate architecture.

5.3 Claim 3: Complete, Sound Formal Verification
Greater Boolean logic compactness in circuit design can aid
formal verification by reducing the complexity of the verifica-
tion process. Therefore, we applied TTnet to formal verifica-
tion, where two strategies are common: either using a specific
solver to verify ReLU based-DNN like β-Crown [Wang et al.,
2021], or using a specific architecture that allows a generic
verification method. We compared both methods based on
natural accuracy, verified accuracy for l∞-norm bounded in-
put perturbations (formal definition in Appendix.For a fair
comparison, we note that our pre-processing layer and training
configuration are the same as [Jia and Rinard, 2020]. More
results and discussions can be found in Appendixee.

General DNN + α-β-Crown
[Xu et al., 2020]

[Wang et al., 2021]

TTnet9−1 + General SAT
verification pipeline

Verif. time (s) Timeout (%) Verif. time (s) Timeout (%)
MNIST 96 13 0.06 (×1600) 0
CIFAR-10 175 27 0.14 (×1250) 0

Table 5: Comparison of verification strategies: usage of a general
DNN to verify with α−β-Crown [Xu et al., 2020; Wang et al., 2021]
or using specific TTnet with a general SAT verification method. The
comparison is based on the 7 benchmarks from the VNN competition,
and the results are presented as an average, full results are given in
Appendix. TTnet has no pre-processing, n = 9, k = 1.

Strategy 1: Comparison with general DNN solvers. In
Table 5, we present a comparison of our proposed verification
strategy, which utilizes the TTnet architecture and classical
verification tools, against the state-of-the-art α − β-Crown

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

18

method, the winner of the VNN competition 2021. The com-
parison is based on the 7 benchmarks from the VNN competi-
tion, and the results are presented as an average. Our approach
demonstrates a significant improvement in verification time,
with an average speed-up of 1250x for CIFAR-10 and 1600x
for MNIST, at the same noise level. Additionally, a higher
verified accuracy (+4% and +7%) was observed on the ci-
far_10_resnet benchmark in Appendix.Also, our approach did
not encounter any timeouts, whereas α − β Crown had an
average of more than 10% of timeouts.

It should be noted that our strategy cannot be directly com-
pared to the VNN competition as the competition focuses
on novel DNN verification algorithms/pipelines, whereas we
propose a new DNN family (TTnet) that can be easily ver-
ified using classical verification tools. However, the results
presented demonstrate the competitiveness of our approach.
One can use our strategy to verify the robustness property
on CIFAR-10, 1K images, standard DNN with α− β-Crown
which takes 2 days, whereas it takes 14 seconds if one chooses
to verify TTnet.

Dataset Complete Accuracy Verif. Timeout(noise) method Verif. Nat. time (s)

MNIST
(ϵtest = 0.1)

TTnet9−1 95.12% 98.33% 0.012 0
JR20 91.68% 97.46% 0.1115 0
N+19 ∗ 20.00% 96.00 % 5 0

MNIST
(ϵtest = 0.3)

TTnet9−1 66.24% 97.43 % 0.065 0
JR20 77.59% 96.36% 0.1179 0

CIFAR-10
(ϵtest = 2/255)

TTnet9−1 32.32% 49.23% 0.06 0
JR20 30.49% 47.35% �0.1750 0

CIFAR-10
(ϵtest = 8/255)

TTnet9−1 21.08% 31.13% 0.04 0
JR20 22.55% 35.00% 0.1781 0

∗ results given on the first 1K images of the test set. Moreover, the authors only authorize a maximum
of 20 pixels to switch.

Table 6: Application of TTnet to complete adversarial robustness
verification for low and high noise bounded by l∞. We tabulate
results of verified accuracy, natural accuracy, and mean verification
time on MNIST and CIFAR-10 datasets in comparison to state-of-
the-art SAT methods (JR20 stands for [Jia and Rinard, 2020] and
N+19 for [Narodytska et al., 2019]). The best verified accuracy and
verification time are displayed in bold.

Strategy 2: comparison with BNNs. We compared our
work with the state-of-the-art of exact verification for BNNs
[Jia and Rinard, 2020; Narodytska et al., 2019]. As shown
in Table 6, our verified accuracy is competitive to the one of
BNNs in all cases. In low noise case, we slightly outperform
BNNs [Jia and Rinard, 2020] in terms of verified accuracy
and verification time. For high noise, we offer a trade-off: a
slightly better verification time for a slightly lower verified
accuracy. In addition, we experienced a better resolution
time than BNNs while using a general SAT solver, namely
MiniCard [Liffiton and Maglalang, 2012]. We highlight that
in [Jia and Rinard, 2020] the SAT solver is custom-made
and specific to their problem, while in our case we can use a
general one. We tested 9 SAT solvers [Ignatiev et al., 2018]
on MNIST high noise: the best one is MiniCard (0.0008s), the
worst is MapleCM (0.0033s); while MiniSat takes 0.242s for
BNNs in [Jia and Rinard, 2020].

6 Limitations And Future Works
Overall limitations. The main limitation of TTnet is closely
related to the maximum input bit size n, so that the truth table
can be fully enumerated practically. Additionally, users cannot
pre-set the final number of gates or complexity before starting
the training process. Also, as mentioned in Section 2, it has not
yet been shown that the aggregation of local features learned
by non-linear functions can provide good performances for
another dataset than images and tabular.

Limitations on scaling. While TTnet has shown promising
results, its performance falls behind state-of-the-art computer
vision models on larger datasets. Improving the natural accu-
racy of the model without increasing n is an area for future
investigation [Liu et al., 2018; Bello et al., 2021].

Limitations on compactness. TTnet achieves better com-
pactness than previous methods on tabular and MNIST
datasets, but its compactness on CIFAR-10 and accuracy on
MNIST could be improved. Further research is needed to ad-
dress this limitation and explore the use of CNNs with Boolean
logic circuits for larger datasets such as ImageNet.

Limitations on formal verification. While TTnet has
demonstrated promising results in terms of verification, it
may be less effective in the presence of high noise. Further
research is needed to increase the model’s verified accuracy,
especially in noisy environments. This includes exploring the
use of dedicated robustness training techniques.

Future works. The TTnet architecture presents several op-
portunities for future research. These include exploring its
application on time series or graph-based datasets, develop-
ing better LTT architectures and training methods to achieve
higher accuracy on ImageNet, and creating heuristics for con-
verting truth tables to optimized CNF for larger n, which
would in turn help the scaling. TTnet could also be a good
candidate for the VNN competition.

7 Conclusion
This work is a step towards more scalable, compact, and verifi-
able DNNs while linking symbolic AI and learning AI. There
is room for improving TTnet, and we hope that it will inspire
further explorations into the use of truth tables as a tool for
applying DNNs to critical applications. We provide more
discussions on TTnet in Appendix.

References
[Agarwal et al., 2021] Rishabh Agarwal, Levi Melnick,

Nicholas Frosst, Xuezhou Zhang, Ben Lengerich, Rich
Caruana, and Geoffrey E Hinton. Neural additive models:
Interpretable machine learning with neural nets. Advances
in Neural Information Processing Systems (NeurIPS), 2021.

[AI, 2023] NIST AI. Artificial Intelligence Risk Management
Framework (AI RMF 1.0). 2023.

[Arora and Barak, 2009] Sanjeev Arora and Boaz Barak.
Computational complexity: a modern approach. Cam-
bridge University Press, 2009.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

19

[Bello et al., 2021] Irwan Bello, William Fedus, Xianzhi
Du, Ekin Dogus Cubuk, Aravind Srinivas, Tsung-Yi Lin,
Jonathon Shlens, and Barret Zoph. Revisiting resnets: Im-
proved training and scaling strategies. Advances in Neural
Information Processing Systems (NeurIPS), 2021.

[Blake, 1938] Archie Blake. Corrections to Canonical ex-
pressions in Boolean algebra. Journal of Symbolic Logic,
1938.

[Brendel and Bethge, 2018] Wieland Brendel and Matthias
Bethge. Approximating CNNs with Bag-of-local-Features
models works surprisingly well on ImageNet. In Inter-
national Conference on Learning Representations (ICLR),
2018.

[Brix et al., 2023] Christopher Brix, Mark Niklas Müller,
Stanley Bak, Taylor T Johnson, and Changliu Liu. First
three years of the international verification of neural net-
works competition (VNN-COMP). International Journal
on Software Tools for Technology Transfer, 2023.

[Chatterjee, 2018] Satrajit Chatterjee. Learning and memo-
rization. In International conference on machine learning
(ICML), 2018.

[Commission, 2021] European Commission. Proposal for
a regulation laying down harmonised rules on artificial
intelligence. Official Journal of the European Union, 2021.

[Daemen and Rijmen, 2002] Joan Daemen and Vincent Rij-
men. The Design of Rijndael: AES - The Advanced Encryp-
tion Standard. Springer, 2002.

[Driscoll, 2020] Michael Driscoll. System and method for
adapting a neural network model on a hardware platform,
2020. US Patent App. 16/728,884.

[Goodfellow et al., 2016] Ian Goodfellow, Yoshua Bengio,
and Aaron Courville. Deep learning. MIT Press, 2016.

[Han et al., 2016] Song Han, Huizi Mao, and William J Dally.
Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding.
In International Conference on Learning Representations
(ICLR), 2016.

[Hirtzlin et al., 2019] Tifenn Hirtzlin, Bogdan Penkovsky,
Marc Bocquet, Jacques-Olivier Klein, Jean-Michel Portal,
and Damien Querlioz. Stochastic computing for hardware
implementation of binarized neural networks. IEEE Access,
2019.

[Hubara et al., 2016] Itay Hubara, Matthieu Courbariaux,
Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Bi-
narized neural networks. Advances in Neural Information
Processing Systems (NeurIPS), 2016.

[Ignatiev et al., 2018] Alexey Ignatiev, Antonio Morgado,
and Joao Marques-Silva. PySAT: A Python Toolkit for
Prototyping with SAT Oracles. In International Conference
on Theory and Applications of Satisfiability Testing (SAT),
2018.

[Jia and Rinard, 2020] Kai Jia and Martin Rinard. Efficient
exact verification of binarized neural networks. Advances in
Neural Information Processing Systems (NeurIPS), 2020.

[Jia and Rinard, 2021] Kai Jia and Martin Rinard. Exploiting
verified neural networks via floating point numerical error.
In International Static Analysis Symposium, 2021.

[Klir et al., 1997] George J Klir, Ute St. Clair, and Bo Yuan.
Fuzzy set theory: foundations and applications. Prentice-
Hall, Inc, 1997.

[Liffiton and Maglalang, 2012] Mark H Liffiton and Jor-
dyn C Maglalang. A cardinality solver: More expressive
constraints for free. In International Conference on Theory
and Applications of Satisfiability Testing (SAT), 2012.

[Liu et al., 2018] Zechun Liu, Baoyuan Wu, Wenhan Luo,
Xin Yang, Wei Liu, and Kwang-Ting Cheng. Bi-real net:
Enhancing the performance of 1-bit cnns with improved
representational capability and advanced training algorithm.
Proceedings of the European Conference on Computer Vi-
sion (ECCV), 2018.

[Mocanu et al., 2018] Decebal Constantin Mocanu, Elena
Mocanu, Peter Stone, Phuong H Nguyen, Madeleine
Gibescu, and Antonio Liotta. Scalable training of artificial
neural networks with adaptive sparse connectivity inspired
by network science. Nature communications, 2018.

[Molchanov et al., 2017] Dmitry Molchanov, Arsenii
Ashukha, and Dmitry Vetrov. Variational dropout sparsifies
deep neural networks. In International conference on
machine learning (ICML), 2017.

[Müller et al., 2022] Mark Niklas Müller, Gleb Makarchuk,
Gagandeep Singh, Markus Püschel, and Martin Vechev.
PRIMA: general and precise neural network certification
via scalable convex hull approximations. Proceedings of
the ACM on Programming Languages, 2022.

[Narodytska et al., 2019] Nina Narodytska, Hongce Zhang,
Aarti Gupta, and Toby Walsh. In search for a SAT-friendly
binarized neural network architecture. In International
Conference on Learning Representations (ICLR), 2019.

[Paszke et al., 2019] Adam Paszke, Sam Gross, Francisco
Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in Neural
Information Processing Systems (NeurIPS), 2019.

[Petersen et al., 2022] Felix Petersen, Christian Borgelt,
Hilde Kuehne, and Oliver Deussen. Deep differentiable
logic gate networks. Advances in Neural Information Pro-
cessing Systems (NeurIPS), 2022.

[Rastegari et al., 2016] Mohammad Rastegari, Vicente Or-
donez, Joseph Redmon, and Ali Farhadi. Xnor-net: Ima-
genet classification using binary convolutional neural net-
works. Proceedings of the European Conference on Com-
puter Vision (ECCV), 2016.

[Roussel and Manquinho, 2009] Olivier Roussel and Vasco
Manquinho. Pseudo-Boolean and cardinality constraints.
In Handbook of satisfiability. IOS Press, 2009.

[Rumelhart et al., 1986] David E Rumelhart, Geoffrey E Hin-
ton, and Ronald J Williams. Learning representations by
back-propagating errors. nature, 1986.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

20

[Udovenko, 2023] Aleksei Udovenko. DenseQMC: an ef-
ficient bit-slice implementation of the Quine-McCluskey
algorithm. arXiv, 2023.

[Umuroglu et al., 2017] Yaman Umuroglu, Nicholas J Fraser,
Giulio Gambardella, Michaela Blott, Philip Leong, Magnus
Jahre, and Kees Vissers. Finn: A framework for fast, scal-
able binarized neural network inference. In Proceedings
of the ACM/SIGDA International Symposium On Field-
Programmable Gate Arrays, 2017.

[Van Der Walt et al., 2011] Stefan Van Der Walt, S Chris Col-
bert, and Gael Varoquaux. The NumPy array: a structure
for efficient numerical computation. Computing in Science
& Engineering, 2011.

[Wang et al., 2019] Erwei Wang, James J Davis, Peter YK
Cheung, and George A Constantinides. LUTNet: Rethink-
ing inference in FPGA soft logic. In Annual International
Symposium on Field-Programmable Custom Computing
Machines (FCCM), 2019.

[Wang et al., 2021] Shiqi Wang, Huan Zhang, Kaidi Xu,
Xue Lin, Suman Jana, Cho-Jui Hsieh, and J Zico Kolter.
Beta-crown: Efficient bound propagation with per-neuron
split constraints for neural network robustness verifica-
tion. Advances in Neural Information Processing Systems
(NeurIPS), 2021.

[Xu et al., 2020] Kaidi Xu, Huan Zhang, Shiqi Wang, Yihan
Wang, Suman Jana, Xue Lin, and Cho-Jui Hsieh. Fast and
Complete: Enabling Complete Neural Network Verification
with Rapid and Massively Parallel Incomplete Verifiers.
In International Conference on Learning Representations
(ICLR), 2020.

[Zeng and Urtasun, 2018] Wenyuan Zeng and Raquel Urta-
sun. Mlprune: Multi-layer pruning for automated neural
network compression. openreview, 2018.

[Zhou et al., 2021] Xiao Zhou, Weizhong Zhang, Hang Xu,
and Tong Zhang. Effective sparsification of neural networks
with global sparsity constraint. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), 2021.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

21

	Introduction
	Our Contributions And Claims

	Related Works
	Background
	Truth Table Neural Networks
	Overall LTT Filter Design
	General Design Criteria And Rules Of LTT Filters.
	Regular 2D-Convolution Filters.
	LTT Filters Properties.
	Example: From LTT Weights To Truth Table To CNF.

	Overall TTnet Design

	Results
	Claim 1: Scalability
	Claims 2: Compactness
	Claim 3: Complete, Sound Formal Verification

	Limitations And Future Works
	Conclusion

