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Abstract
Few-Shot Learning (FSL) aims to train a model
that can generalize to recognize new classes, with
each new class having only very limited training
samples. Since extracting discriminative features
for new classes with few samples is challenging,
existing FSL methods leverage visual and seman-
tic prior knowledge to guide discriminative feature
learning. However, for meta-learning purposes, the
semantic knowledge of the query set is unavailable,
so their features lack discriminability. To address
this problem, we propose a novel Multi-Attention
based Visual-Semantic Interaction (MAVSI) ap-
proach for FSL. Specifically, we utilize spatial and
channel attention mechanisms to effectively select
discriminative visual features for the support set
based on its ground-truth semantics while using all
the support set semantics for each query set sample.
Then, a relation module with class prototypes of the
support set is employed to supervise and select dis-
criminative visual features for the query set. To fur-
ther enhance the discriminability of the support set,
we introduce a visual-semantic contrastive learning
module to promote the similarity between visual
features and their corresponding semantic features.
Extensive experiments on four benchmark datasets
demonstrate that our proposed MAVSI could out-
perform existing state-of-the-art FSL methods.

1 Introduction
With a large number of annotated data, deep learning meth-
ods have achieved tremendous success in various computer
vision tasks [Chen et al., 2024; Huang et al., 2021; Huang
et al., 2022a; Huang et al., 2022b; Huang et al., 2023;
Huang et al., 2024], such as image recognition, object detec-
tion, etc. However, in many real-world scenarios, collecting
a large number of labeled samples for each class can be im-
practical or expensive [Wu et al., 2023a; Wu et al., 2023b;
Wu et al., 2024; Wang et al., 2023a; Wang et al., 2022;
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Figure 1: Visual-semantic interaction for FSL. (a) w/o semantic; (b)
w/ semantic in support set; (c) w/ semantic in both sets.

Wang et al., 2023b; Wang et al., 2021]. Therefore, Few-
Shot Learning (FSL), which requires only a small number
of samples to recognize new classes, has been receiving in-
creasing attention recently [Liu et al., 2022; Xu et al., 2023;
Cao et al., 2021]. Existing FSL approaches usually adopt
the meta-learning strategy, which simulates FSL tasks us-
ing an episodic training approach on a fully annotated base
dataset. The base dataset does not share any classes with the
test dataset. Each episode consists of a labeled support set
and an unlabeled query set, with the query set sharing the
same label space as the support set.

It could be observed that humans can quickly recog-
nize a novel category, as they could utilize semantic prior
knowledge to efficiently extract discriminative visual features
from a small number of samples. Therefore, existing FSL
methods have started using semantic knowledge to assist in
learning discriminative visual features [Chen et al., 2019;
Xing et al., 2019; Peng et al., 2019]. Although these meth-
ods have achieved promising performance, the discriminabil-
ity of visual features on the query set cannot be well guaran-
teed because semantic knowledge of the query set is unavail-
able. As shown in Figure 1, when semantic knowledge is
not considered, the feature extractor may capture features of
both the target of interest (American Redstart) and the back-
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ground (branches). In the right part of Figure 1, the first row
shows the case where neither the support set nor the query
set considers semantic knowledge, the second row considers
the semantic knowledge only on the support set, and the third
row considers semantic knowledge on both sets. It can be ob-
served that the similarity scores continuously increase when
semantic knowledge is considered. Therefore, considering
semantic knowledge in both sets is crucial for improving the
performance of FSL.

To address the problem mentioned above, we propose a
Multi-Attention based Visual-Semantic Interaction (MAVSI)
approach for FSL. As shown in Figure 2, we first obtain the
visual features of the support set, query set, and the semantic
features of the support set, through the feature encoder and se-
mantic encoder. Next, the proposed MAVSI employs Spatial
Cross-Attention (SCAVSI) and Channel Attention (CAVSI)
based Visual-Semantic Interaction modules to select discrim-
inative visual features. As there is no semantic knowledge of
the query set, we use all the semantic features from the sup-
port set for each query sample to generate visual features for
the query set, with the number of features equal to the num-
ber of semantic features. Then, based on the support set, we
calculate the class prototypes for each category and introduce
a relation module to compute the relationship scores between
each visual feature of the query sample and the corresponding
class prototype. By promoting the relationship scores corre-
sponding to the query sample’s class label, we can extract
discriminative visual features for the query set.

To further enhance the discriminability of the support set,
we design a Visual-Semantic Contrastive Learning (VSCL)
module. As shown in Figure 2, we perform a concatenation
operation between the visual and semantic features in the sup-
port set. We calculate the visual-semantic similarity through
a comparison network and aim to prompt the similarity be-
tween the visual features and their ground-truth semantic fea-
tures. Our main contributions are summarized as follows,

• We propose a Multi-Attention based Visual-Semantic
Interaction (MAVSI) approach for FSL, which con-
tains two distinct modules, SCAVSI and CAVSI, and
prompts discriminative visual features from both spatial
and channel perspectives.

• We propose to utilize the semantic knowledge from the
support set to guide the visual-semantic interaction on
the query set with a relation module and introduce a
VSCL module further to enhance the feature discrim-
inability of the support set.

• Extensive experiments on four FSL benchmark datasets
demonstrate that the proposed MAVSI outperforms
state-of-the-art FSL approaches.

2 Related Work
FSL learns new concepts with only one or a few anno-
tated samples and has gained extensive attention in recent
years. Existing FSL methods mostly employ the meta-
learning strategy, which aims to transfer knowledge from
an auxiliary base dataset to new tasks. Meta-learning-based
FSL methods can generally be categorized into the following

three types: optimization-based methods [Finn et al., 2017;
Ravi and Larochelle, 2017; Rusu et al., 2019; Baik et al.,
2020], metric-based methods [Vinyals et al., 2016; Snell et
al., 2017], and data augmentation-based methods [Wang et
al., 2018; Zhang et al., 2019; Wang et al., 2020]. The pro-
posed approach belongs to a metric-based FSL.

In recent years, semantic information has played a crucial
role in tasks such as image-text matching [Ji et al., 2021] and
zero-shot learning [Zhao et al., 2023]. Particularly, in sce-
narios with scarce visual samples, semantic information is a
preferable choice to assist model training, and existing FSL
methods that utilize semantic information could be summa-
rized into three categories.

The combination of visual features and semantic features.
For instance, Xing et al. propose a mechanism that can adap-
tively combine information from both modalities (visual and
semantic) according to novel classes to be learned. Further-
more, Schwartz et al. combine visual features with multiple
and richer semantic information such as category labels, at-
tributes, and natural language descriptions. Peng et al. pro-
pose a semantic-visual mapping network to conduct knowl-
edge inference for novel categories from base categories.

Employing semantic information to synthesize visual fea-
tures, to mitigate the deficiencies in visual features. For
example, Chen et al. propose directly synthesizing instance
features by leveraging semantics using a novel auto-encoder
network. Xu and Le propose using a conditional variational
autoencoder model to generate visual samples based on se-
mantic embeddings.

Utilizing semantic information to refine visual features,
to enhance discriminability of visual features. For in-
stance, Yang et al. use the semantic knowledge to guide the
visual perception about what visual features should be paid
attention to when distinguishing a category from the others.
As such, the feature embedding of the novel class, even with
few samples, can be more discriminative. Afham et al. force
the prototypes to retain semantic information about the class
description, improving their generalization to novel classes at
inference. Xu et al. propose to highlight pivotal local visual
information with attention mechanism and align the attentive
map with semantic information to refine the extracted visual
features. Li et al. develop a class-relevant additive margin
loss and a task-relevant additive margin loss with semantic
information to prompt discriminative visual features.

The proposed approach belongs to the third category.
Given the effectiveness of attention mechanisms in cross-
modal tasks, many FSL methods employ them to facilitate in-
teractions between semantic and visual features, thereby en-
hancing the discriminability of visual features, such as [Yang
et al., 2023], [Yang et al., 2022], [Xu et al., 2022], and
[Wang et al., 2020]. However, these methods only consider
interactions between semantic and visual features within the
support set. In contrast, this paper simultaneously consid-
ers semantic-visual interactions in both the support and query
sets. Moreover, we introduce a multi-attention mechanism
that operates in spatial and channel dimensions to enhance
discriminative visual features more effectively.
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Figure 2: The whole pipeline of MAVSI. 1) We employ visual and semantic encoders to extract features from the support and query sets. 2)
We utilize the MAVSI module, which consists of both spatial (SCAVSI) and channel (CAVSI) attention mechanisms, to select discriminative
visual features. 3) We employ the relation module, utilizing class prototypes from the support set to guide the selection of discriminative
visual features for the query set. 4) We further enhance the discriminability of the support set by introducing the VSCL module.

3 Proposed Approach
In this section, we first provide problem formulation for FSL.
Then, we detail the proposed multi-attention based visual-
semantic interaction and visual-semantic contrastive learning
modules. Finally, we introduce the relation network and our
overall training loss.

3.1 Problem Formulation
During the training phase, we generally have a base dataset
for meta-learning purposes, and each class has abundant sam-
ples. Then, N novel classes do not overlap with the base
dataset during testing. Additionally, each novel class has only
K labeled samples (support set), resulting in a total of N×K
samples, referred to as the N -way K-shot setting.

Following [Xing et al., 2019], we adopt the episodic train-
ing with the base dataset, performed with episodes that simu-
late the testing setup. Generally, our model is trained in an N -
way K-shot setting, where each episode consists of N classes
from the meta-training set, divided into two parts: K labeled
samples in the support set and several unlabeled samples in
the query set. The support set contains N ×K labeled sam-
ples with semantic knowledge.

In one episode, we have a support set Xs and a query set
Xq . Then, we use a Convolutional Neural Network (CNN) to
embed them into a visual space: Z = Gθ(X) ∈ RC×H×W ,
where θ represents a learnable parameter set. Moreover, C,
H , and W are the channel, height, and width, respectively.
Notably, we can regard r = H ×W as the spatial resolution
of an image. Each C-dimensional vector corresponds to a po-
sition and represents a local region of an image, where some
of these local regions may contain important features of the

target object of interest.

3.2 Multi-Attention Based Visual-Semantic
Interaction

Inspired by the self-attention mechanism, we propose a
Multi-Attention based Visual-Semantic Interaction (MAVSI)
approach that operates at both spatial and channel levels.
With semantic knowledge, MAVSI could mitigate the nega-
tive impact of background noise by selecting discriminative
visual features. Specifically, MAVSI consists of a Spatial
Cross-Attention (SCAVSI) and a Channel Attention (CAVSI)
based Visual-Semantic Interaction modules.

Spatial Cross-Attention Visual-Semantic Interaction
SCAVSI aims to explore the relationship between local re-
gions and semantics with labels of support set. It selects local
regions highly correlated with semantic knowledge, avoiding
introducing irrelevant background noise at the spatial level.
Due to the limited exploration of the relationship between se-
mantics and local features by a single-head attention mech-
anism, we choose multi-head attention to find more highly
correlated local features. For simplicity, we illustrate our pro-
posed SCAVSI with only one attention head in Figure 3.

Let si0 ∈ Rd0 denotes the semantic from class i by seman-
tic extractor. We transform the semantic to the same dimen-
sion as the visual feature through a semantic encoder. Specif-
ically, we first pass si0 through a Multilayer Perceptron (MLP)
layer to obtain si1 = MLP (si0) ∈ RC . Then, we dupli-
cate si1 in the spatial dimension to obtain Si = repeat(si1) ∈
RC×H×W , where repeat is a replication operation.

As shown in Figure 3, we use three 1×1 convolution ker-
nels ω1, ω2, and ω3 with learnable parameter sets to linearly
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Figure 3: The proposed SCAVSI. We pass visual and semantic fea-
tures through three 1×1 convolution kernels, followed by a series
of flattening and replication operations. Next, we obtain an atten-
tion map through visual and semantic information interaction, from
which the spatially corrected visual feature Z̃ is derived.

transform the visual feature Zs,i
j of the j-th sample from class

i in support set, and the semantic Si of class i. We denote
the transformed semantic as a key ω3(Si), and denote the
transformed visual feature as a query ω2(Zs,i

j ) and a value
ω1(Zs,i

j ). As mentioned before, each C-dimensional vector
corresponds to a position and represents a local region of an
image. Thus, we reshape them into the size of RC×(HW ).
Then, the transpose of ω3(Si) is multiplied with ω2(Zs,i

j ).
This matrix multiplication calculates the similarity between
the spatial feature of each semantic channel in ω3(Si) and all
visual channel features in ω2(Zs,i

j ), establishing the relation-
ship between semantic information and visual features in the
spatial level.

Next, we apply the softmax function on the resulting ma-
trix to perform spatial normalization, obtaining the visual-
semantic attention map As,i

1 ∈ RHW×HW :

As,i
1 = softmax(ω3(Si)⊤ · ω2(Zs,i

j )/
√
γ), (1)

where γ is a scaling factor.
After obtaining the semantic-visual attention map, the next

step is to perform a matrix multiplication between the value
ω1(Zs,i

j ) and the transpose of the attention map. The re-
sulting matrix is then reshaped back to its original size, i.e.,
RC×H×W . Finally, the spatially modified feature is obtained
by element-wise addition of the spatially corrected visual fea-
ture with the original input feature:

Z̃s,i
j = ω1(Zs,i

j ) · As,i
1 + Zs,i

j , (2)

where Z̃i
j denotes the modified features in spatial level. As we

have no semantic knowledge of the query, we obtain its mod-
ified features with all semantics of the support set, with the
number of features being equal to the number of semantics.
Then, we use the relation module introduced in the follow-
ing subsection, to select the modified feature with the highest
score for each query sample.

Channel Attention Visual-Semantic Interaction
As some background noise may also affect discriminative in-
formation in the channel dimension, we propose a CAVSI
module as a complement to SCAVSI, further enhancing the

Figure 4: The proposed CAVSI. We pass the semantic feature
through GAP and MLP, and perform channel selection on the spa-
tially corrected visual feature to obtain the final modified visual fea-
ture of Z̃ in channel level.

discriminative power of visual features in the channel level,
as shown in Figure 4.

Given the spatially modified feature Z̃s,i
j ∈ RC×H×W of

the j-th sample from i-th class and the semantic si for the i-th
class, where we use the Global Average Pooling (GAP) layer
to transform Si ∈ RC×H×W to si ∈ RC . Then, we use a
two-layer MLP network as the channel attention generator to
produce the attention weights ai

2 ∈ RC . The final layer of
the MLP is a sigmoid function, ensuring that ai

2 consists of
values in the range [0,1]:

ai2 = σ(W2σ(W1si + b1) + b2). (3)

We duplicate ai2 in the spatial dimension to enable it have
the same dimension as the visual feature (i.e., Ai

2), and con-
duct element-wise product with the spatially modified feature
Z̃s,i
j . Then, we obtain modified features of Zs,i

j in channel
level as the following equation,

Zs,i

j = Ai
2 ⊙ Z̃s,i

j , (4)

where W1, W2, b1, and b2 are the parameters of the MLP
network, and σ is the activation function sigmoid. Similar
to the modified features at the spatial level, we could obtain
modified features for each query sample at the channel level.

3.3 Visual-Semantic Contrastive Learning
To further enhance the feature discriminability of the support
set, inspired by contrastive learning techniques [Badamdorj et
al., 2022], we propose a Visual-Semantic Contrastive Learn-
ing (VSCL) module. Since the visual and semantic features
are not embedded in the same space, it is impossible to com-
pute the similarity between them directly. Therefore, we in-
troduce a comparison network F to deal with this problem,
which aims to minimize the following equation,

Lce(Z
s
, S) =

1

NK

NK∑
j=1

− log
e(F (Zs

j ,S
+)/τ)∑N

i=1 e
(F (Zs

j ,Si)/τ)
, (5)

where Zs
is the modified feature of support set by the pro-

posed MAVSI. N and K are the class number and sample
number of each class in one episode. S+ is the semantic cor-
responding to the ground-truth of Zs

j , and τ > 0 is a temper-
ature parameter. Equation (5) enables the similarity between
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Method Semantic Backbone miniImageNet tieredImageNet
1-shot 5-shot 1-shot 5-shot

MAML ([Finn et al., 2017]) No ConvNet 48.70±1.84 63.11±0.92 51.67±1.81 70.30±1.75
MatchingNet ([Vinyals et al., 2016]) No ConvNet 43.56±0.84 55.31±0.73 - -
RelationNet ([Sung et al., 2018]) No ConvNet 50.44±0.82 65.32±0.70 54.48±0.93 71.32±0.78
ProtoNet ([Snell et al., 2017]) No ConvNet 49.42±0.78 68.20±0.66 53.31±0.89 72.69±0.74
Dynamic-FSL ([Gidaris and Komodakis, 2018]) No ResNet12 62.81±0.27 78.97±0.18 78.97±0.18 83.09±0.12
DeepEMD ([Zhang et al., 2020]) No ResNet12 66.50±0.80 82.41±0.56 72.65±0.31 86.03±0.58
Neg-Cosine ([Liu et al., 2020]) No ResNet12 63.85±0.81 81.57±0.56 - -
MBSS ([Cheng et al., 2023]) No ResNet12 65.79±0.20 81.90±0.14 71.74±0.23 86.34±0.15
KTN ([Peng et al., 2019]) Yes ConvNet 64.42±0.72 74.16±0.56 63.43±0.21 74.32±0.58
TriNet ([Chen et al., 2019]) Yes ResNet18 58.12±1.37 76.92±0.69 - -
AM3 ([Xing et al., 2019]) Yes ResNet12 65.30±0.49 78.10±0.36 69.08±0.47 82.58±0.31
SEGA ([Yang et al., 2022]) Yes ResNet12 69.04±0.26 79.03±0.18 72.18±0.30 84.28±0.21
MultiSem ([Schwartz et al., 2022]) Yes ResNet12 67.30 82.10 62.18±0.18 78.54±0.27
LPE ([Yang et al., 2023]) Yes ResNet12 68.28±0.43 78.88±0.33 72.03±0.49 83.76±0.37
MAVSI (Ours) Yes ResNet12 69.74±0.21 82.23±0.41 74.61±0.18 87.45±0.46

Table 1: Average accuracy (%) comparison on miniImageNet and tieredImageNet in 5-way 1-shot and 5-way 5-shot settings.

a visual feature and its ground-truth semantic larger with the
comparison network F , so discriminative visual features of
the support set are further promoted.

3.4 Relation Network Module for Classification
Following [Sung et al., 2018], the visual prototype Pi

for
class i could be obtained by Zs,i

in support set as below,

Pi
=

1

K

K∑
j=1

Zs,i

j . (6)

Then, we concatenate each class prototype with each query
set and calculate the similarity score as below,

ri,j = R(Pi
,Zq

j), (7)

where R consists of two convolutional layers and one MLP.
Moreover, we utilize the loss of Mean Square Error (MSE) to
train the model,

LMSE =
1

N ×m

N∑
i=1

m∑
j=1

(ri,j − 1(i == yqj ))
2, (8)

where m denotes the sample number of the query set. Differ-
ent from [Sung et al., 2018], we compute the relation scores
between the prototypes of the support set and query samples.

After introducing the modules in our proposed model, we
could obtain the overall loss function as below,

Loverall = LMSE + λLce, (9)

where λ is a hyper-parameter used to balance the importance
between the two losses.

4 Experiments
In this section, we validate the effectiveness of our proposed
model on four benchmark datasets for FSL.

4.1 Datasets
miniImageNet [Vinyals et al., 2016] consists of 100 classes.
These classes are divided into 64, 16, and 20 for training, val-
idation, and testing. tiredImageNet [Ren et al., 2018] con-
tains 608 classes, split into 351, 97, and 160 for training, val-
idation, and testing. CIFAR-FS [Bertinetto et al., 2019] con-
sists of 100 classes. These classes are divided into 64, 16, and
20 for training, validation, and testing. CUB-200-2011 [Wah
et al., 2011] contains images from 200 bird species, where
200 species are divided into 100, 50, and 50 for training, val-
idation, and testing, respectively.

4.2 Implementation Details
Similar to previous works [Xing et al., 2019; Schwartz et al.,
2022; Yang et al., 2022], we utilize ResNet-12 as the back-
bone network, and modify the number of convolutional filters
from [64, 128, 256, 512] to [64, 160, 320, 640]. In all cases,
the comparison network F is the MLP with a LeakyReLU-
activated hidden layer, and the relation network consists of
convolutional layers and the MLP. We use Glove [Pennington
et al., 2014] as the semantic extractor, which is pre-trained
on a large corpus. Our experiments are implemented under 5-
way 1-shot and 5-way 5-shot settings. The input image size
is 84×84. Following [Peng et al., 2019], we train the model
for 150 epochs, with 800 episodes in each epoch. We use the
Adam optimizer with a learning rate of 5e-3 and weight de-
cay of 5e-6. The learning rate is dropped by half every 6,000
episodes, and other parameters such as λ, γ, and the tempera-
ture parameter τ are adjusted during end-to-end training. We
conduct 5-way 5-shot and 5-way 1-shot classification tasks
on each dataset during the testing phase. The final classifica-
tion accuracy results are obtained by averaging over 10,000
episodes and we report it with a 95% confidence interval.

4.3 Main Results
To evaluate the effectiveness of our proposed model, we
conduct extensive experiments on miniImageNet, tieredIm-
ageNet, CUB, and CIFAR-FS. The comparison results with
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Method Semantic Backbone CUB
1-shot 5-shot

MAML ([Finn et al., 2017]) No ConvNet 54.73±0.97 75.75±0.75
MatchingNet ([Vinyals et al., 2016]) No ConvNet 60.52±0.88 75.29±0.75
RelationNet ([Sung et al., 2018]) No ConvNet 62.34±0.94 77.84±0.68
ProtoNet ([Snell et al., 2017]) No ConvNet 50.46±0.88 76.39±0.64
FEAT ([Ye et al., 2020]) No ResNet12 68.87±0.22 82.90±0.15
DeepEMD ([Zhang et al., 2020]) No ResNet12 75.65±0.83 88.69±0.50
MBSS ([Cheng et al., 2023]) No ResNet12 73.29±0.69 87.49±0.40
TriNet ([Chen et al., 2019]) Yes ResNet18 69.61±0.46 84.10±0.35
AM3 ([Xing et al., 2019]) Yes ResNet12 73.60 79.90
SEGA ([Yang et al., 2022]) Yes ResNet12 84.57±0.22 90.85±0.16
MultiSem ([Schwartz et al., 2022]) Yes ResNet12 76.10 82.90
LPE ([Yang et al., 2023]) Yes ResNet12 80.76±0.40 88.98±0.26
MAVSI (Ours) Yes ResNet12 85.21±0.42 91.56±0.25

Table 2: Average accuracy (%) comparison on CUB in 5-way 1-shot and 5-way 5-shot settings.

Method Semantic Backbone CIFAR-FS
1-shot 5-shot

MAML ([Finn et al., 2017]) No ConvNet 58.9±1.9 71.5±1.0
ProtoNet ([Snell et al., 2017]) No ConvNet 55.5±0.7 72.0±0.6
MetaOptNet ([Lee et al., 2019]) No ResNet12 72.0±0.7 84.2±0.5
RFS ([Tian et al., 2020]) No ResNet12 73.9±0.8 86.9±0.5
SEGA ([Yang et al., 2022]) Yes ResNet12 78.45±0.24 86.00±0.20
LPE ([Yang et al., 2023]) Yes ResNet12 74.88±0.45 85.30±0.35
MAVSI (Ours) Yes ResNet12 80.12±0.21 87.13±0.14

Table 3: Average accuracy (%) comparison on CIFAR-FS in 5-way 1-shot and 5-way 5-shot settings.

state-of-the-art methods are shown in Tables 1, 2, and 3.
Compared to previous methods that utilize semantic infor-
mation to address FSL problem (e.g., KTN [Peng et al.,
2019], TriNet [Chen et al., 2019], AM3 [Xing et al., 2019],
SEGA [Yang et al., 2022], MultiSem [Schwartz et al., 2022]),
our model achieves the best performance in both 1-shot
and 5-shot settings on all benchmark datasets. Particularly,
as shown in Table 1, in the 1-shot and 5-shot settings of
tieredImageNet, our method outperforms SEGA by 2.43%
and 3.17% improvements, respectively. This is because we
conduct visual-semantic interaction on both the support and
query sets, allowing us to capture more discriminative visual
features. Additionally, our proposed approach consistently
achieves the best results across almost all datasets and set-
tings compared to all methods. Due to our aim at maintaining
consistent parameters across all datasets and all FSL settings,
we do not surpass DeepEMD on the miniImageNet with the
5-shot setting. These results could verify the effectiveness
and superiority of our proposed FSL model.

4.4 Empirical Analysis
This section provides a deeper analysis and discussion of the
proposed model.
Ablation Study. In Table 4, we record the accuracy re-
sults of our model using three proposed modules, including
SCAVSI, CAVSI, and VSCL, as well as their combinations.
It can be observed that SCAVSI, CAVSI, and VSCL are all
highly effective, with average 1-shot accuracy improvements

of 4.91%, 3.89%, and 2.58% on the three datasets, respec-
tively. Moreover, when combining them together, further im-
provements in 1-shot learning accuracy are achieved. These
results indicate that the three proposed modules all play im-
portant roles in the final performance of the model.
Analysis for Hyper-Parameter λ. λ is used to embody the
importance of our proposed VSCL module. We conduct ex-
periments on validation of miniImageNet and CIFAR-FS to
analyze its impact on the model’s performance. As shown in
Figure 5 (a), we observe that, in 5-way 1-shot setting, the op-
timal values for λ are all within the range of 0.3 to 0.6. In
comparison results, we set the value of λ as 0.5.
Analysis for Number of Attention Heads. By using differ-
ent numbers of attention heads and their corresponding scal-
ing factors [Vaswani et al., 2017], we evaluate their impact
on the performance of the miniImageNet dataset. As shown
in Table 5, the model’s performance shows a trend of initially
increasing and then decreasing. We speculate that when the
number of attention heads is too small, the model’s feature
learning capacity is insufficient. Moreover, when the number
is too large, it introduces significant redundancy.
Analysis for Temperature Parameter τ . There exists a tem-
perature parameter τ in the proposed VSCL module. We se-
lect different values of τ and assess their impact on the per-
formance of the tiredImageNet validation. As shown in Fig-
ure 5 (b), the accuracy curves remain relatively stable with
increasing values of τ in both the 1-shot and 5-shot settings.
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SCAVSI CAVSI VSCL miniImageNet tieredImageNet CUB Average
% % % 62.81 68.55 67.78 66.38
" % % 66.23 70.21 77.43 71.29
% " % 65.34 69.34 76.12 70.27
% % " 64.52 69.12 73.25 68.96
" % " 67.32 72.25 78.21 72.26
" " % 67.55 72.12 78.45 72.71
% " " 66.54 71.67 79.46 72.56
" " " 69.74 74.61 80.12 74.82

Table 4: Ablation study on three different datasets under 5-way 1-shot setting.

Heads Scaling factor miniImageNet
1-shot 5-shot

1 640 67.23 78.23
4 160 68.57 80.24
8 80 69.74 82.23

16 40 68.12 79.23
32 20 66.23 77.10

Table 5: Analysis for the number of attention heads and correspond-
ing scaling factors on miniImageNet dataset.
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Figure 5: Analysis for the parameter sensitivity.

support w/o semantic w/ semanticquery

Figure 6: Visualization results on miniImageNet dataset.

These results indicate that our proposed model is robust to the
choice of τ . In both settings, the highest accuracy results are
achieved when τ is set to 0.1.

(a) w/o semantic (b) w/ semantic

Figure 7: Feature distributions on miniImageNet dataset.

4.5 Visualization Results

We visualize four feature maps from support and query sets,
respectively. As shown in Figure 6, the visual features
without visual-semantic interaction exhibit some background
noise, which makes the visual features less discriminative. In
contrast, background noise has been almost completely elim-
inated, demonstrating that our proposed approach could ef-
fectively enhance discriminative visual features. Addition-
ally, we visualize feature distributions on the miniImageNet
dataset, as illustrated in Figure 7. Through visual-semantic
interaction, the dots representing different classes in the query
set become more distinguishable and discriminative.

5 Conclusion
We propose a novel FSL approach named MAVSI, where two
different attention modules are designed to enhance discrim-
inative visual features at spatial and channel levels. To con-
duct MAVSI on both the support and query sets, we intro-
duce a relation module and utilize the semantic knowledge
from the support set to guide the visual-semantic interaction
on the query set. Moreover, we propose a visual-semantic
contrastive learning module to promote discriminative vi-
sual features of the support set. Extensive experiments on
four benchmark datasets demonstrate that the proposed model
could outperform existing mainstream FSL approaches. In
future work, we will explore higher-quality semantic extrac-
tors, such as vision-language large models, and investigate
the cross-domain FSL problem where a distribution shift ex-
ists between base and unseen classes.
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