
SaSDim:Self-adaptive Noise Scaling Diffusion Model
for Spatial Time Series Imputation

Shunyang Zhang , Senzhang Wang , Xianzhen Tan , Renzhi Wang
Ruochen Liu , Jian Zhang and Jianxin Wang

Central South University
{224712166, szwang, 224712155, rzwang, 234712122, jianzhang, jxwang}@csu.edu.cn,

Abstract
Spatial time series imputation is of great impor-
tance to various real-world applications. As the
state-of-the-art generative models, diffusion mod-
els (e.g. CSDI) have outperformed statistical and
autoregressive based models in time series impu-
tation. However, diffusion models may introduce
unstable noise owing to the inherent uncertainty in
sampling, leading to the generated noise deviating
from the intended Gaussian distribution. Conse-
quently, the imputed data may deviate from the real
data. To this end, we propose a Self-adaptive noise
Scaling Diffusion Model named SaSDim for spa-
tial time series imputation. Specifically, we intro-
duce a novel Probabilistic High-Order SDE Solver
Module to stabilize the noise following the standard
Gaussian distribution. The noise scaling operation
helps the noise prediction module of the diffusion
model to more accurately estimate the variance of
noise. To effectively learn the spatial and tempo-
ral features, a Spatial guided Global Convolution
(SgGConv) module is also proposed. SgGConv ef-
fectively captures the multi-periodic temporal de-
pendencies using Fast Fourier Transform (FFT),
while also learning the dynamic spatial dependen-
cies through dynamic graph convolution. Extensive
experiments conducted on three real-world spatial
time series datasets verify the effectiveness of SaS-
Dim.

1 Introduction
Spatial time series is a type of data that describes the time
series relationship within and between locations distributed
across space, such as the traffic flow data collected from a
set of road sensors deployed in a road network [Wang et al.,
2020]. To collect the observations of spatial time series, gen-
erally, a significant number of sensors, such as cameras and
traffic sensors, are needed to be deployed. However, a com-
plete spatial time series is usually unavailable due to various
factors, including sensor malfunctions, unstable communica-
tion signals, non-uniform sensor distribution, and the stochas-
tic and dynamic nature of data, leading to data anomalies or
missing [Lim and Zohren, 2021]. Therefore, how to impute

the incomplete spatial time series data is a primary challenge
that needs to be addressed before further data analysis.

Traditionally, statistical methods such as ARIAM [Nelson,
1998] and HR [Xu et al., 2022] are adopted for modeling time
series. To further capture the spatial correlations of the time
series data collected from different locations, matrix comple-
tion, and tensor decomposition approaches are utilized [Yu et
al., 2016]. However, it is difficult for these statistical based
methods to capture the complex spatiotemporal relationships.
Recently, deep learning methods such as CNN, RNN, and
transformer have also been widely adopted for spatiotempo-
ral data imputation. The RNN-based models, such as BRITS
[Cao et al., 2018] and ASTCMCN [Wang et al., 2022a], im-
pute missing values in an autoregressive way. However, bi-
ases can accumulate within the recursive structure of RNNs,
ultimately impacting the model accuracy. CNN-based mod-
els try to capture the temporal correlations of the time series
with convolutional kernels. However, the limited receptive
field of CNN makes it difficult to capture global temporal
correlations [Hewage et al., 2020]. To address this issue,
transformer-based models such as SAITS [Du et al., 2023]
and SPIN [Marisca et al., 2022] apply attention mechanism
to capture the global temporal dependencies. To model the
multi-periodicity in time series, State Space Models (SSM)
uses Fast Fourier Transform (FFT) to project time series from
the time domain to the spectral domain, and aggregates fea-
tures with different frequencies in the spectral domain [Gu et
al., 2021; Nguyen et al., 2022]. However, SSM cannot effec-
tively learn the spatial features of spatial time series.

Recently, diffusion models have been applied for spatial
time series imputation and achieved better performance than
autoregressive based methods. As the first diffusion model-
based method, CSDI [Tashiro et al., 2021] utilizes score-
based diffusion conditioned on observed data for time se-
ries imputation. SSSD [Alcaraz and Strodthoff, 2022] further
combines diffusion models and structured state space models
to more effectively capture the long-term temporal dependen-
cies in time series data. Generally, diffusion models create a
forward process that learns a map from the ground truth to
noise and a backward process to reconstruct data from noise
to ground truth. Specifically, the forward process in diffu-
sion models introduces the Gaussian noise into the data step
by step. However, due to the uncertainty of sampling, the
distribution of sampled noise may not really follow the Gaus-
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sian distribution. This inconsistency may lead to bias, thus
ultimately causing the imputed data to deviate from the real
data. Another issue of current diffusion models is that they
are less effective to capture the complex spatial and tempo-
ral features of the spatial time series data. For example, the
multi-periodic temporal dependencies in time series are hard
to be learned by CSDI and SSSD models.

To address the above issues, we propose a Self-adaptive
Noise Scaling Diffusion Model named SaSDim. SaSDim can
adaptively scale the sampled noise in the forward process to
make the distribution of the noise more stable, and effectively
capture the multi-periodicity temporal dependencies and dy-
namic spatial dependencies. Specifically, SaSDim contains
three major modules, the Conditional Mixture Module, the
Spatial guided Global Convolution (SgGConv) module, and
the Probabilistic High-Order Stochastic Differential Equation
(SDE) Solver Module. The Conditional Mixture Module
encodes the spatial time series data and extracts the multi-
periodicity temporal features with FFT. Inspired by SGConv
[Li et al., 2022], SgGConv explicitly models the temporal
dependencies with different time scales and captures the dy-
namic spatial dependencies. To be specific, SgGConv first
decomposes a time series into components with different fre-
quencies in the spectral domain. Then SgGConv measures the
importance of each component by linearly combining each
frequency and projects these frequencies back to the time do-
main to explicitly model the multi-periodic time series. The
frequencies are further combined with the spatial convolu-
tion, which reflects spatial correlations among the time series
generated from different locations. Finally, we use the Prob-
abilistic High-Order SDE Solver Module to scale the noise
at each time step by generating and optimizing the learnable
coefficient of high-order SDEs. The primary contributions of
this work are summarized as follows.

• We for the first time introduce a noise scaling mecha-
nism in diffusion model to address the data generation
bias issue caused by unstable noise sampling in forward
process for more accurate spatial time series imputation.

• We propose the Spatial guided Global Convolution
module named SgGConv to effectively capture the com-
plex spatial correlations as well as the multi-periodic
temporal dependencies simultaneously.

• Extensively evaluations on three real-world datasets
demonstrate that the proposed Probabilistic High-Order
SDE Solver Module can effectively enhance the noise
stability of the conventional diffusion models, and the
SgGConv module can effectively capture the spatiotem-
poral correlations.

2 Related Work
Traditionally, statistical methods were used for time series
imputation, such as K-Nearest Neighbors (KNN), Matrix
Factorization (MF) [Yu et al., 2016] and Multiple Imputa-
tion using Chained Equations. With the great success of
deep learning models in spatial and temporal feature learning,
RNN-based deep learning methods were also adopted. Deep
autoregressive models based on recurrent neural networks

(RNNs) are among the most popular approaches [Che et al.,
2018; Wang et al., 2021; Yoon et al., 2017]. BRITS [Cao et
al., 2018] is a representative model that utilizes bidirectional
RNNs for spatial time series imputation and uses a linear re-
gression layer to incorporate spatial information. Modeling
the global temporal dependency is challenging for RNN mod-
els. To address this issue, SAITS introduced self-attention to
capture the global temporal features [Du et al., 2023]. SPIN
further adopted joint attention that combined spatial and tem-
poral attention to model information exchange between dif-
ferent time series [Marisca et al., 2022]. ASTCMCN effec-
tively combined transformer with RNN to capture both tem-
poral and spatial dependencies for spatiotemporal data impu-
tation [Wang et al., 2022b].

Motivated by the great success of generative models, re-
cent works tried to impute missing data using generative-
based models. GAIN proposed to use generative adversar-
ial networks (GANs) for data imputation [Yoon et al., 2018].
GAINFilling tried to generate sequences by matching the un-
derlying data distribution [Luo et al., 2018]. CSDI proposed
to apply Denoising Diffusion Probabilistic Models (DDPM)
for data imputation [Tashiro et al., 2021]. It sequentially em-
ployed feature and temporal attention to learn the noise at
each step, while introducing conditions in the denoising pro-
cess. However, these methods suffer from the issue of param-
eter explosion as the increase of the length of the time series,
making researchers search for lightweight and more efficient
feature extractors for time series modeling.

Recently, State Space Models (SSM) [?; Nguyen et al.,
2022; Goel et al., 2022] have shown promising results in se-
quence modeling. SSM used a set of linear dynamics equa-
tions to model nonlinear and physical systems with input, out-
put, and state variables. However, these models lack heuris-
tics due to their long mathematical proof. Inspired by these
methods, [Li et al., 2022] proposed SGConv, which gener-
ated global convolution kernels by upsampling local convolu-
tion kernels before concatenating them. SGConv effectively
modeled the distance-dependent decays among nodes in a se-
quence and kept the parameter scale sublinear with respect to
the sequence length. While achieving promising results, SG-
Conv cannot well catch the spatial information among graph
nodes. This leads to limited performance improvement in
time series imputation. More recently, a Fourier Transform-
based deep method called TimesNet [Wu et al., 2022] was
proposed. It adapted the spectral characteristics of spatial
time series to capture correlations within and across periods
through multi-scale convolutions. However, limited by the
convolutional kernel, TimesNet cannot effectively capture the
spatial correlations and the multi-periodic temporal depen-
dencies simultaneously.

3 Preliminary and Problem Definition
In this section, we will first define some terminologies, and
then give a formal problem definition.

Definition 1. Spatial graph Given the spatial distribution of
the sensors (e.g. traffic sensors) for time series data col-
lection, we construct a spatial graph G = (V,E) based
on the spatial distance between each pair of sensors, where
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Notations Descriptions

X Spatial time series data
N The number of the spatial nodes

βt, αt, α̂t Constant hyperparameters of diffusion model
ϵθ Noise prediction model
F Fast Fourier Transform
K Convolutional kernel
G Spatial graph
∆t The cost of time from a time step to its neighbor step
∇ The first order derivative operator
r The high order coefficient of SDE

Table 1: Important notations and corresponding descriptions.

V = {v1, ..., vN} is a set of sensor nodes deployed in the
space and E is the edge set connecting the sensor nodes.

Definition 2. Spatial Time Series. We denote X ∈ RN×D

as the time series observations on spatial graph G. We de-
note the incomplete and complete spatial time series at time
t as Xt ∈ RN×Dand Zt ∈ RN×D, respectively, where N is
the number of spatial nodes (e.g. traffic sensors deployed at
different locations) and D is the length of the time series.

The historical spatial time series can be represented as a
sequence X = (Xt−k, ..., Xt). To conduct the spatial time
series imputation over the locations where the data are un-
available, we also define the mask matrix of incomplete data
as follows,

Mt(vn) =

{
0, if the corresponding value is missing
1, otherwise

where vn denotes the n-th sensor node and t is the time.
Mt(vn) is a data mask matrix. We mark the element with-
out observations as 0 and the element with data as 1.

To use the FFT, we need to introduce the convolution the-
orem first, which is a communication theory as follows,

F(K ∗X) = F(K) · F(X), (1)

where ∗ is a convolution operation, · is a multiply operation.
F represents FFT, which can be used to convolve time series.
For time series X , it can be convolved by convolution ker-
nel K by using FFT, which is similar to a time convolution
operation.
Problem Definition 1. Given the spatial graph G = (V,E)
and the corresponding incomplete spatial time series X =
(X0, . . . , XT ), we aim to build a model ϵθ to impute X and
obtain a complete spatial time series Z = (Z0, . . . , ZT ).

4 Methodology
The model framework of SaSDim is shown in Figure 1,
which contains the Conditional Mixture Module (CMM), the
Spatial guided Global Convolution (SgGConv) module, and
the Probabilistic High-Order SDE Solver Module (SDEM).
CMM provides conditions to accelerate the convergence of
SgGConv. SDEM aims to adaptively scale the predicted noise

in the forward process. In summary, SaSDiM is a score-based
conditional diffusion model. SgGConv and CMM integrate
as the denoising score function, while SDEM outputs a high-
order coefficient of the map from noisy data to the ground
truth. Next, we will introduce the model in detail.

4.1 Conditional Mixture Module
In this module, we use a Conv1D encoder to embed the se-
quence relation and spatial information to guide the genera-
tion of a diffusion model. Specifically, the input data Xt in
Figure 1 which contains noise during the denoising process,
is first concatenated with a spatial time series data embed-
ding that incorporates local information, which serves as a
guidance for generation. Next, following the convolution the-
orem presented in the preliminary, the concatenated tensor is
computed to extract the frequency feature through FFT. Then
it is multiplied with convolution kernels from the SRGConv
module and calculated from frequency feather to series. Ad-
ditionally, diffusion embedding, feature embedding, and time
step embedding are included as supplementary information
and added to the tensor after this operation.

Then, the tensor goes through a layer of gated activation
units before entering the next layer of residual units. The
results of several residual layers are added to the output,
which maintains its original state through skip connections,
and then they are fed into the probabilistic high-order SDE
solver. Briefly, we learn a function f in each residual layer. f
transforms the input XL−1 to the output XL.

XL = f(XL−1), (2)

where L is the number of layers.

4.2 Spatial Guided Global Convolution Module
FFT is an effective tool to extract frequency features. In nu-
merical computing, it is known as Discrete Fourier Transform
(DFT) or FFT algorithm. DFT simplifies the numerous fre-
quencies in a sequence to a smaller set of time series length
L components. This helps us calculate their weighted sum,
similar to the convolution operation.

Based on this idea and inspired by SGConv, we propose the
spatial-guided Global Convolution. Convolutional kernels
gather information from nearby neighbors in a sequence, fol-
lowing the “closer means stronger” rule [Li et al., 2022]. For
example, spatial graph convolution groups locations based on
distances, and SGConv uses wave attenuation for temporal
kernels. We further combine temporal kernels using graph
spectrum information to build the spatial-guided global con-
volutional kernels. These represent a weighted sum of fre-
quency components underlining each node, which can explic-
itly model the temporal correlations and dynamics.

Following this idea, we propose SRGConv which includes
the Global Temporal Convolution and Dynamic Graph Con-
volution. First, the Global Temporal Convolution for model-
ing temporal correlation generates convolutional kernels Ki

that build upon the wave curves with decay. Then we sum all
the kernels as follows,

Sum(K) =
1

Z
·
Nk∑
i=0

Ki, (3)
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Figure 1: The model framework of SaSDim. The right side of the figure shows the details of the Conditional Mixture Module and the Spatial
guided Global Convolution Module. The left side of the figure is the Probabilistic High-Order SDE Solver Module. The bottom is the
explanation of symbols.

where Nk is the number of kernels. These kernels gather in-
formation from nearby elements in a time series. Following
the DFT algorithm, it convolves temporal information by a
weighted sum of the frequencies.

We next introduce the Dynamic Graph Convolution for
modeling the spatial correlations. We have

A = f(Wλ(A)), (4)
where Wλ is a scaling factor and f is the injection function
which can be written as

Wλ = F (α0, . . . , αN ), (5)

where (α0, . . . , αN ) is the scaling factor corresponding to
each node. The transformation F modifies the adjacent ma-
trix among them with scaling factor so that we can inject it to
the same size as time dimensions via injection function f . It
is a dimensionality reduction so that the adjacent matrix can
linearly combine the elements of the temporal kernel in the
time dimension.

Finally, we combine the Global Temporal Convolution and
Dynamic Graph Convolution by element-wise multiplication
to obtain the Spatial guided Global Convolution. This com-
bined operation φĀ(K) integrates the strengths of both con-
volutions, allowing for more comprehensive dynamic tempo-
ral information extraction, which can be written as

φĀ(K) = ĀK, (6)

where Ā is calculated by Pλ̄APT , P is a positive definite ma-
trix and PT is the transpose matrix of P with λ̄A representing

the eigenvalue matrix of A. According to the Convolution
Theorem and Eq(6), the theorem equation can be rewritten as

F (φĀ(K) ∗X) = F (φĀ(K)) · F (X). (7)

Based on this formula, we compute a mapping from the time
field to the spectral field and multiply them. Then we map the
result back to the time field. During the process, frequency
components are weighted and summed across nodes, where
the kernel is regarded as the weight. Finally, we send the
output from SgGConv to the Feature unit as shown in Figure
1, which can be considered as an attention to capture the
spatial correlations.

4.3 Probabilistic High-Order SDE Solver
We first introduce the traditional stochastic differential equa-
tions (SDEs) that present the forward process. Then, we
present our method that finds a new training loss to scale the
unstable noise to a proper level. To be consistent with the rep-
resentation of stochastic differential equations, X is denoted
as x in the following sections.

First, SDEs perturb data to noise with a diffusion pro-
cess governed by the following stochastic differential equa-
tion (SDE) [Yang et al., 2022]

dx = f(x, t)dt+ g(t)dw, (8)

where f(x, t) and g(t) are diffusion and drift functions of
the SDE, and w is a standard Wiener process. The forward
process of denoising diffusion probabilistic model (DDPM)
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discretizes the SDE so that it can be considered as the limit of
the following discrete form as ∆t→ 0:

xt+∆t − xt = ft(xt)∆t+ gt∆t
√
ϵ, (9)

ϵ ∼ N(0, I). (10)

For the sampling process, given t
′
= t+∆t, its discrete form

can be written as follows,

∆x = −
[
ft(xt)− g2t∇xt log q(xt)

]
∆t+ gt

√
∆tϵ. (11)

Continualizing this form, we can get

dx = [f(x, t)− g(t)2∇x log qt(x)]dt+ g(t)dw. (12)

To achieve better results, we have computed the reverse pro-
cess that includes higher-order derivatives.
Fact: The training loss function can be represented as:

ECond ∥sθ(xt, t)− (1+ r)∇xt logqt(xt|x0)∥2 .

To prove that, we need two lemmas as follows,

Lemma 1. High-order stochastic differential equation of
equation (4) can be represented as

dx = ψ(∇x)dt+ g(t)dw − 1

2
∗ βx ∗ g(t)2∇xx log qt(xt)dt,

when ∆t→ 0 and ψ(∇x) = f(x, t)− g(t)2∇x log qt(x). βx
is an upper bound of ∆x.

Lemma 2. Given the traditional sampling equations

∆x = −
[
ft(xt)− g2t∇xt log q(xt)

]
∆t+ gt

√
∆tϵ,

we can get sampling equations of lemma1

∆x = −
[
ft − (1 + r)g2t∇xt log q(xt)

]
∆t+ gt

√
∆tϵ.

For more details of the two lemmas, one can refer to the
Appendix.

By using stochastic differential equations to present the
forward and backward process, we can calculate the score
function ∆xt log p(xt|x0) (which can also be written as ϵθ or
sθ) which is equivalent to approximate ϵ. This is also called
score matching [Song et al., 2020]. Thus the coefficient of
the score function can be written in Algorithm 1, line 7.

Regarding the range of r according to lemma2, we adopt
a probabilistic sampling approach by sampling several points
from a Gaussian distribution. Among these points, one is se-
lected as the initial value for r. Considering that the mag-
nitude of higher-order derivatives is smaller than that of the
first-order derivative, the values of r are confined within a
window on the Gaussian distribution.

During the training process, the noise predictor ϵθ is opti-
mized to predict the noise each step with the help of the high
order score function. Then we gain a high order coefficient
r after each epoch optimizition. While selecting t in uniform
distribution (Algorithm 1, line 3), its mathematical expecta-
tion is the average of all r. The mathematical expectation is
varied according to the unstable noise. As a result, it scales
down the intensity.

Algorithm 1 Training of SaSDiM

1: Input: Distribution of training data q(x0), the number of
iterationN , the sequence of noise levels {αt}, high order
coefficient r initialized as a variant;

2: Output: Trained denoising function ϵθ and a list of co-
efficient R;

3: for i = 1 to N do
4: t ∼ Uniform({1, . . . , T}), x0 ∼ q(x0), R initialized

as a list;
5: ϵ ∼ N (0, I);
6: Calculate noisy xt = ᾱtx0 + β̄tϵ;
7: Take gradient step on ∇θ||(ϵ − (1 + r)ϵθ)||22 , where

ϵθ = ϵθ(xt, t | x̂0);
8: R[i] = r;
9: end for

Algorithm 2 Imputation (Sampling) with SaSDiM

1: Input: Trained denoising function ϵθ, high order coeffi-
cient list R;

2: Output: Imputed missing values x0;
3: r =

∑N
i=1Ri ∗ (1/N);

4: xT ∼ N (0, I), where the dimension of xT corresponds
to the missing indices of x̂0;

5: for t = T to 1 do
6: Sample xt−1 by using the sampling equations pre-

sented in lemma2;
7: end for

4.4 Implementation Details
The initialization of coefficient r of high-order SDE is in the
range from 0 to 0.2. We set the maximum noise level to 0.02
and the layer of block to 4. The model is implemented us-
ing Pytorch and trained in an end-to-end manner using Adam
with a learning rate of 0.001. We introduce the setting details
in Table ??.

5 Experiment
5.1 Datasets
We evaluate the performance of our model on three spatial
time series datasets, METR-LA, AQI-36, and PEMS-BAY.
METR-LA is a dataset used in traffic flow prediction and im-
putation. It contains 207 traffic sensor nodes in Los Angeles
County Highway with a minute-level sampling rate. AQI-
36 is collected from 36 AQI sensors distributed across the
city of Beijing. This dataset serves as a widely recognized
benchmark for imputation techniques and includes a mask
used for evaluation that simulates the distribution of actual
missing data [Yi et al., 2016]. For a specific month, such as
January, this mask replicates the patterns of missing values
from the preceding month. Across all scenarios, the valid ob-
servations that have been masked out are employed as targets
for evaluation. PEMS-BAY is an open dataset used for traf-
fic flow prediction and analysis, primarily covering the trans-
portation network of the Bay Area in California, USA. The
dataset comprises 325 sensor nodes with a sampling interval
of 5 minutes, and it contains a total of 16,937,700 data points.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

2565



Description AQI-36 METR-LA PEMS-BAY

Batch size 16 16 16
Time length L 24 24 24

Epochs 200 200 200
Learning rate 0.001 0.001 0.001

Channel size d 64 64 64
Minimum noise level β1 0.0001 0.0001 0.0001
Maximum noise level βT 0.5 0.2 0.2

Diffusion steps T 50 50 50

Table 2: The settings of SaSDiM for the three datasets.

In total, each dataset will be artificially masked 25% or
50% values at random. For the two datasets METR-LA and
PEMSBAY, we partition the entire data into training, valida-
tion, and testing sets by a ratio of 8 : 1: 1. We evaluate our
model performance under two metrics Mean Absolute Error
(MAE) and Root Mean Square Error (RMSE).

5.2 Baselines
We compare our model with the following baselines.

• Transformer calculates the average value of nearby
nodes based on geographic distance to impute.

• SAITS [Du et al., 2023] is a method based on
diagonally-masked self-attention (DMSA) and joint op-
timization.

• BRITS [Cao et al., 2018] utilizes bidirectional RNN and
MLP to integrate spatiotemporal features.

• TimesNet [Wu et al., 2022] is a self-organized convolu-
tion model for time series imputation.

• SPIN [Marisca et al., 2022] employs threshold graph at-
tention and temporal attention jointly to implicitly model
spatiotemporal sequences.

• GRIN [Cini et al., 2022] is a bidirectional GRU-based
method with graph neural network for multivariate time
series imputation.

• CSDI [Tashiro et al., 2021] is a probability imputation
method based on the conditional diffusion probability
model, which treats different nodes as multiple features
of the time series, and uses a Transformer to capture the
feature dependencies.

5.3 Experiment Result
The result shown in Table 3 indicates that BRITS per-
forms not well among all the baseline models because the
MLP model cannot effectively capture the spatial correlations
and the higher-order relationships between nodes without a
good spatial encoding. SAITS shows slightly better perfor-
mance, indicating that Diagonally-Masked Self-Attention can
alleviate the impact of self-redundant information and im-
prove temporal prediction performance. SPIN outperforms
other baseline models, suggesting that the improved attention
mechanism with Hybrid Spatiotemporal Attention is effective
in enhancing the performance of the original Transformer for

25% 50%
1.9

2.3

2.7
SaSDim
SaSDiM-Gconv
SaSDim-lowO

(a) MAE

25% 50%
3.2

4.3

5.7
SaSDim
SaSDiM-Gconv
SaSDim-lowO

(b) RMSE

Figure 2: Performance comparison between SaSDiM and two vari-
ant models on the point data missing scenarios on METR-LA
dataset.

spatial time series. The result of TimesNet results is slightly
lower than those of SPIN from 1% to 10%, suggesting that
while models that adaptively organize data for temporal con-
volution can effectively capture the temporal correlations, this
convolution approach limits the ability to learn the global spa-
tiotemporal dependencies. SaSDim achieves the best results
in terms of two metrics in most cases with only three excep-
tions that achieve the second best results. Specifically, with a
missing rate of 50% on the AQI-36 dataset, the MAE of SaS-
Dim drops by 11% compared to SPIN. This confirms that the
SgGConv module can better model the dynamic global tem-
poral interaction. SaSDim achieves performance improve-
ment by 7.5% compared to CSDI. One can also see that CSDI
performs as well as SaSDim on the AQI-36 dataset but is sur-
passed by SaSDim by 20% on the METR-LA dataset. This
demonstrates the superiority of SaSDim in modeling spatial
time series compared with existing diffusion model-based ap-
proaches.

To further evaluate the performance of different methods
under very high point data missing percentages, we compare
SaSDiM against the baselines when p% = 75% and p% =
95%. The result is shown in Table 4. It demonstrates again
that SaSDiM outperforms all the baselines when the available
time series observations are very sparse.

5.4 Ablation Study
To study whether each module of SaSDim is useful to the
studied problem, we also compare SaSDim with two vari-
ants for ablation study. SaSDim-lowO is a variant of SaSDim
that removes the probabilistic high-order SDE-solver module.
SaSDim-GConv only captures the temporal global relations
without using spatial guidance.

Figure 3 shows the RMSE and MAE bars for the two vari-
ants compared to SaSDim. It shows that SaSDim-GConv per-
forms significantly worse than the other variants by 25% on
25% data missing scenario because it does not consider the
geographical correlations between locations. The Constraint
module is used to modulate the adjacency relationships be-
tween nodes.

SaSDim-lowO directly applies first-order derivatives in the
denoising process. Although SaSDim-lowO is superior to
other variants, it still performs worse than SaSDim, signifi-
cantly lagging behind SaSDim with a 15% higher RMSE and
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Model AQI-36 PEMS-BAY METR-LA
25% 50% 25% 50% 25% 50%

RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE
Transformer 29.46 16.26 31.49 17.45 2.98 1.63 3.22 1.74 7.01 2.82 7.16 2.89

BRITS 28.76 15.72 29.12 16.01 2.85 1.59 3.02 1.67 6.93 2.80 7.13 2.85
SAITS 29.85 16.24 30.97 17.18 2.34 1.35 2.57 1.42 6.23 2.66 6.51 2.73
CSDI 14.52 7.71 16.93 8.87 1.49 0.76 1.77 0.85 4.05 2.27 4.38 2.32

TimesNet 15.01 12.38 17.49 13.22 1.88 0.92 2.14 0.97 5.33 2.49 5.76 2.55
GRIN 12.93 7.93 15.81 9.02 1.70 0.85 1.92 0.91 4.21 2.30 4.47 2.35
SPIN 12.98 7.56 16.53 9.11 1.62 0.81 1.83 0.86 4.25 2.32 4.51 2.39

SaSDiM 12.21 7.03 14.33 8.22 1.30 0.69 1.48 0.76 3.81 2.02 4.11 2.07

Table 3: Comparison result between baselines and our method on AQI-36, METR-LA, and PEMS-BAY datasets. We report two error metrics
RMSE and MAE for two missing percents in point missing.

Model METR-LA PEMS-BAY
75 % 95 % 75 % 95 %

BRITS 3.02 5.19 2.17 3.91
SAITS 3.74 6.72 2.96 7.40
Transformer 2.71 5.13 1.13 2.70
GRIN 2.39 4.08 1.09 2.70
SPIN 2.24 2.89 1.09 2.26
SaSDiM 2.18 2.93 1.05 2.20

Table 4: MAE comparison with increasing data sparsity in the Point
missing setting.

20% higher MAE in the 25% data missing scenario. This in-
dicates that SaSDim can learn better representations by scal-
ing down the noise for denoising.

5.5 Parameter Study
To analyze the parameter used in SaSDim, the scaling factor
of the graph is initialized using a standard normal distribu-
tion. When the maximum value in the scaling factor array
is larger than one, the values in the scaling factor array that
are relatively smaller than the maximum value will become
larger. Since the scaling factor array still follows a normal
distribution, the difference between the maximum and mini-
mum values will increase under equal probability. This led to
an increase in the variance of the convolutional kernels and
an increase in uncertainty. When the minimum value in the
scaling factor array is smaller than zero, it greatly increases
the uncertainty of the graph. For an extreme example, when
all the coefficients in the scaling factor array are negative, the
adjacency matrix becomes a negative matrix, causing the ma-
trix to lose its physical meaning.

Finally, we study the effect of coefficients r of the proba-
bilistic high-order SDE solver on the mode performance. Ac-
cording to the equation in the Appendix, the absolute value
of r should be smaller than one, so we initially set the values
of r to a value in the range between -1 and 1. To better ob-
serve the trajectory and trend of r during training, we set the
initial value of r to zero. The results show that r gradually
increases after a sudden decrease and eventually stabilizes
around 0.026 as shown in Figure 3. This indicates that the

0 5 10 15 20 25 30
0.00

0.01

0.02

parameter lines of r

Figure 3: The orbit of coefficient r appeared in the loss function.
The blue point is the median value of all batches at an epoch. The
green area is the range of variance.

noise scales down step by step. Next, to determine the final
shared value of r for sampling, we conduct two experiments.
In one experiment, we set r to be the last value obtained dur-
ing optimization, and in the other experiment, we take the
average of all the optimized r values. The results show that
setting r to the last value obtained leads to significant fluc-
tuations in performance while using the average value yields
stable results. This suggests that taking the average value mit-
igates the impact of randomness.

6 Conclusion

This paper proposes a method called SaSDim inspired by
global convolution and Denoising Diffusion Probabilistic
Model learning framework for spatial time series imputation.
SaSDim employs SgGConv to capture the global dynamic in-
teractions among time steps. SgGConv models the temporal
correlations with spatial information by generating dynamic
temporal convolution kernels with spatial guidance. SaSDim
optimizes the coefficients r of the high-order SDE solver dur-
ing the training process to facilitate the generation of shared
coefficients that scale unstable noise. Experimental results
conducted on three real datasets verify the effectiveness of
SaSDim.
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A Provement
Lemma 1. High-order stochastic differential equation of
equation(4) can be represented as

dx = ψ(∇x)dt+ g(t)dw − 1

2
∗ βx ∗ g(t)2∇xx log qt(xt)dt,

when ∆t → 0 and ψ(∇x) = f(x, t) − g(t)2∇x log qt(x).
And βx is an upper bound of ∆x.

Proof. Initially, the discretized form of a high-order stochas-
tic equation can be written as

∆x = ψ(∇x)∆t + g(t)dw−

(
1

2!
∗∆x ∗ g(t)2∇xx log qt(xt) + . . . )∆t.

(13)

To go further, let’s consider the third-order item as

∆x = ψ(∇xx)∆t+ g(t)∆w−

(
1

3!
(∆x)2g(t)2∇xxx log qt(xt) + . . . )∆t.

(14)

For the terms involving third-order derivatives, we have ∆x
raised to a higher power, and ∆x is proportional to

√
t.

Therefore, as ∆t approaches zero, the third-order terms be-
come higher-order infinitesimals with respect to ∆t. By scal-
ing, we can obtain

dx = [f(x, t)− g(t)2∇x log qt(x)]dt+ g(t)dw

−1

2
∗ βx ∗ g(t)2∇xx log qt(xt)dt,

(15)

where βx is the upper bound of ∆x.

Based on lemma1, we prove
Lemma 2. Given the traditional sampling equations

∆x = −
[
ft(xt)− g2t∇xt log q(xt)

]
∆t+ gt

√
∆tϵ,

we can get sampling equations of lemma1

∆x = −
[
ft − (1 + r)g2t∇xt log q(xt)

]
∆t+ gt

√
∆tϵ.

Proof. Given that q(xt|x0) = N(xt; ᾱtx0, β̄t
2
I), where β̄t is

the total noise intensity coefficient and we can get the equa-
tion below:

∇xt log q(xt|x0) = −xt − ᾱtx0

β̄t
2 = − ϵ̄

β̄t
. (16)

Then the higher-order derivatives can be represented as

∇xx log qt(xt|x0) ∗∆xt = α(
ϵ̄

βt+∆t
− ϵ̄

βt
) = r1 ∗ ϵ̄, (17)

as ∆xt ∼ O(∆(
√
t)), α is limited to a finite real number.

According to lemma1:

∆x = −
[
ft(xt)− g2t∇xt log q(xt)

]
∆t+

βx ∗ g(t)2∇xx log qt(xt)∆t+ gt
√
∆tϵ,

(18)

and we get ∇xt log q(xt) by

∇xt log q(xt) =
Ex0

[∇xtq(xt|x0)]
Ex0 [q(xt|x0)]

=
Ex0

[q(xt|x0)∇xt log q(xt|x0)]
Ex0

[q(xt|x0)]
,

(19)

then we get the result only by computing q(xt|x0). Also, in
the similar way we can compute ∇xxt

log q(xt) with the rule
of differentiation of fractions and the equation (8). Then we
get it as

∇xx log q(xt) =
Ex0

[q(xt|x0)∇xx log q(xt|x0)]
Ex0

[q(xt|x0)]
. (20)

To go further, we have

∇xt log q(xt) + βx ∗ ∇xx log qt(xt) =

Ex0 [q(xt|x0)(∇x log q(xt|x0)− βx∇xx log q(xt|x0))]
Ex0

[q(xt|x0)]
.

(21)

Finally, given sθ(xt, t) = ϵθ, then the training loss can be
presented as follows

ECond∥sθ(xt, t)− (1+ r)∇xt logqt(xt|x0)∥2. (22)

Given t
′
= t+∆t, then the sampling process can be written

as:
∆x = −

[
ft − (1 + r)g2t∇xt log q(xt)

]
∆t+ gt

√
∆tϵ.
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Ré. Efficiently modeling long sequences with structured
state spaces. arXiv preprint arXiv:2111.00396, 2021.

[Hewage et al., 2020] Pradeep Hewage, Ardhendu Behera,
Marcello Trovati, Ella Pereira, Morteza Ghahremani,
Francesco Palmieri, and Yonghuai Liu. Temporal con-
volutional neural (tcn) network for an effective weather
forecasting using time-series data from the local weather
station. Soft Computing, 24:16453–16482, 2020.

[Li et al., 2022] Yuhong Li, Tianle Cai, Yi Zhang, Deming
Chen, and Debadeepta Dey. What makes convolutional
models great on long sequence modeling? arXiv preprint
arXiv:2210.09298, 2022.

[Lim and Zohren, 2021] Bryan Lim and Stefan Zohren.
Time-series forecasting with deep learning: a sur-
vey. Philosophical Transactions of the Royal Society A,
379(2194):20200209, 2021.

[Luo et al., 2018] Yonghong Luo, Xiangrui Cai, Ying
Zhang, Jun Xu, et al. Multivariate time series imputation
with generative adversarial networks. Advances in neural
information processing systems, 31, 2018.

[Marisca et al., 2022] Ivan Marisca, Andrea Cini, and Ce-
sare Alippi. Learning to reconstruct missing data from spa-
tiotemporal graphs with sparse observations. Advances in
Neural Information Processing Systems, 35:32069–32082,
2022.

[Nelson, 1998] Brian K Nelson. Time series analysis using
autoregressive integrated moving average (arima) models.
Academic emergency medicine, 5(7):739–744, 1998.

[Nguyen et al., 2022] Eric Nguyen, Karan Goel, Albert Gu,
Gordon Downs, Preey Shah, Tri Dao, Stephen Baccus,
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