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Abstract
In this work, we introduce novel translations of
Answer Set Programming (ASP) into Integer Pro-
gramming (IP). While building upon a previously
introduced IP translation, we revisit the translation
of acyclicity constraints essential for capturing an-
swer sets precisely. By leveraging vertex elimi-
nation graphs, we demonstrate that a new transla-
tion of acyclicity can yield integer programs with
a more restrictive linear relaxation compared to
previous methods. This enhancement enables IP
solvers to prune the search space more efficiently.
Furthermore, we show how acyclicity can be ex-
pressed more concisely in IP given any feedback
vertex set of the underlying dependency graph.
Experimental results underscore the improved ef-
ficiency of our methods over the previously im-
plemented translation. The new vertex elimina-
tion based translation with Gurobi as the back-end
solver turns out competitive against Clingo, a state-
of-the-art native ASP solver, in a number of non-
tight Answer Set Optimization (ASO) benchmarks.

1 Introduction
Answer set programming (ASP) features highly expressive,
rule-based languages for knowledge representation and rea-
soning (see, e.g., [Brewka et al., 2011] for an overview). Typ-
ically, the solutions of a search problem are captured as an-
swer sets of the respective logic program encoding the prob-
lem. Besides native answer set solvers, the search for answer
sets can be implemented (i) by translating rules into other
kinds of constraints, e.g., propositional clauses [Janhunen,
2006] or linear (in)equalities [Liu et al., 2012], (ii) by call-
ing alternative solvers capable of satisfying such constraints,
and (iii) by extracting answer sets from satisfying assign-
ments. To capture answer sets and extended rules [Simons et
al., 2002] properly, such translations must address aggregated
conditions, recursive definitions, and default negation. E.g.,
the Liu et al. [2012] translation from ASP to integer program-
ming (IP) conforms to this structure. In particular, the transla-
tion deploys level numbers to rule out self-supporting (circu-
lar) recursive definitions and, thus, essentially puts them sub-
ject to an acyclicity constraint, cf. [Bomanson et al., 2016].

One important aspect of translating complex problems into
IP is coming up with programs whose linear programming
(LP) relaxations are reasonably restrictive. Restrictive LP
relaxations are important, especially when coupled with ad-
vanced optimization techniques such as the branch-and-cut
method [Mitchell, 2002]. By relaxing integer constraints in
IP, i.e., by allowing variables to take fractional values, a cor-
responding linear programming relaxation is formulated. The
incorporation of restrictive LP relaxations, involving addi-
tional constraints or tightened versions of existing ones, be-
comes synergistic with the branch-and-cut method. This so-
phisticated optimization approach systematically explores the
solution space by iteratively branching on variables and uti-
lizing cutting planes derived from the LP relaxations. The
interplay of restrictive relaxations and the branch-and-cut
method improves the overall efficiency of optimization, en-
abling the resolution of more complex problems.

In this work, we introduce two new translations from ASP
to IP, building on the prior IP translation [Liu et al., 2012]. In
our first translation, we refine the representation of acyclic-
ity constraints using vertex elimination graphs in analogy to
[Rankooh and Janhunen, 2022]. The resulting integer pro-
grams have more restrictive linear relaxations, enabling IP
solvers to prune the search space more efficiently. In our sec-
ond translation, we improve the representation of the acyclic-
ity constraint in IP based on any feedback vertex set of the
underlying dependency graph. The latter translation is partic-
ularly effective in settings where vertex elimination becomes
computationally costly. The experimental evaluation reveals
the superior performance of the new translations in contrast
with the Liu et al. [2012] translation. The new vertex elim-
ination based translation with CPLEX is competitive against
Clingo, a leading native ASP solver, especially in non-tight
Answer Set Optimization (ASO) benchmarks.

While the focus of this paper is on improving answer set
solving, it is essential to note that the improved representa-
tions of the acyclicity constraint are not exclusive to ASP.
Consequently, these can be effectively employed to enhance
any IP problems that incorporate acyclicity constraints. This
versatility underscores the potential impact and usefulness of
the proposed techniques beyond the specific realm of ASP.

We continue with preliminaries in Section 2 and recall the
basics of translations in Sections 3 and 4. Our new transla-
tions are presented in Sections 5 and 6. Experimental evalua-
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tion in Section 7 is followed by conclusions in Section 8.

2 Preliminaries
In the sequel, weight constraint programs (WCPs) [Simons et
al., 2002] consist of rules the following three forms:

a← b1 , . . . , bn, not c1 , . . . , not cm. (1)
{a} ← b1 , . . . , bn, not c1 , . . . , not cm. (2)

a← k ≤ [ b1 = w1 , . . . , bn = wn,

not c1 = wn+1 , . . . , not cm = wn+m ]. (3)

The symbols a, b1 , . . . , bn where n ≥ 0, and c1 , . . . , cm
where m ≥ 0 occurring in the rules signify (propositional)
atoms, and the symbol “not” is employed to denote negation
by default. The bound k and the weights w1 , . . . , wn+m in
(3) are non-negative integers. Rules of the forms (1)–(3) are
classified as normal, choice, and weight rules, respectively,
as detailed in [Simons et al., 2002]. Essentially, each rule
r provides a basis for deriving its head head(r) = a if the
conditions in its body body(r) are fulfilled. In other words,
atoms involved can be either derived by other rules or not.
For a choice rule r of the form (2), the derivation of head(r)
is optional. In the case of a weight rule r of the form (3),
head(r) is to be derived when the sum of weights associated
with satisfied body conditions must be at least k.

We use body+(r) and body−(r) to denote the sets of
atoms b1 , . . . , bn (resp. c1 , . . . , cm) occurring positively
(resp. negatively) in body(r). The rules of a positive logic
program satisfy m = 0, i.e., are negation free. Given a
WCP P , the definition of an atom a in P is the set of rules
def(a) = {r ∈ P | head(r) = a}. The signature of a WCP
P is defined as the set of atoms At(P ) =

⋃
r∈P ({head(r)}∪

body+(r)∪body−(r)). This set comprises atoms that occur
in P . The positive dependency graph of P is represented as
DG+(P ) = 〈At(P ),�〉, where the relation a � b holds for
a, b ∈ At(P ) if head(r) = a and b ∈ body+(r) for some
rule r ∈ P . Within this graph, a strongly connected com-
ponent (SCC) is a maximal subset S ⊆ At(P ) wherein all
distinct atoms a, b ∈ S are mutually dependent (transitively)
on each other through a directed path in DG+(P ).

An interpretation I ⊆ At(P ) specifies the atoms a ∈
At(P ) that are considered true (a ∈ I) and those that are
considered false (a 6∈ I). An interpretation I ⊆ At(P )
is deemed to satisfy a rule r ∈ P in the forms (1) and
(3), denoted as I |= r, if the fulfillment of the body, ex-
pressed as I |= body(r), implies that head(r) ∈ I , i.e.,
I |= head(r). In the case of a choice rule r of form (2),
I |= r unconditionally. Furthermore, the interpretation I is
considered a (classical) model of P if I |= r holds for every
r ∈ P . For every positive program P , there exists a unique
least model denoted as LM(P ), obtained as the intersection⋂
{I ⊆ At(P ) | I |= P}, the least fix-point of TP operator.
Given an interpretation I , the reduct rI of r concerning I

is computed by partially evaluating the negative conditions
of r. In the case of a normal rule (1), rI = ∅ if ci ∈ I for
some 1 ≤ i ≤ m and rI = {a ← b1 , . . . , bn} otherwise.
For a choice rule (2), the latter case additionally necessitates
that a ∈ I . Regarding a weight rule (3), rI = {a ← l ≤

[b1 = w1 , . . . , bn = wn]}. Here, the updated bound l is de-
termined from k by subtracting wn+i for each 1 ≤ i ≤ m
such that ci 6∈ I . Finally, for an entire WCP P , the reduct
P I =

⋃
{rI | r ∈ P} and I is considered a stable model of

P if and only if I = LM(P I). It is also beneficial to dis-
tinguish the supporting rules of P with respect to I , denoted
as SRP (I) = {r ∈ P | head(r) ∈ I, I |= body(r)}. Then,
a model I |= P is supported (by P ) when I = {head(r) |
r ∈ SRP (I)}. Every stable model of P is supported by P ,
but supported models are not necessarily stable, as exempli-
fied by I = {a} for the program P = {a← a.}.
Example 1. Consider a WCP P consisting of the rules:

a1 ← a2, a3.
{a2}.
a3 ← 3 ≤ [a1 = 1, a2 = 2, not a2 = 3].

The signature At(P ) = {a1, a2, a3} and DG+(P ) has SCCs
S1 = {a1, a3} and S2 = {a2}. There are two stable models
M1 = {a2} and M2 = {a3} justified by reducts PM1 =
{a1 ← a2, a3. a2. a3 ← 3 ≤ [a1 = 1, a2 = 2].} and PM2 =
{a1 ← a2, a3. a3 ← 0 ≤ [a1 = 1, a2 = 2]}. But the model
M2 = {a1, a2, a3} is only supported, not stable. �

3 Instrumentation with Acyclicity Constraint
Our next objective is to revisit the acyclicity translation
TrACYC(P ) of a WCP P [Bomanson et al., 2016], which
employs special dependency atoms dep(a, b) to represent
the activation of the corresponding arc 〈a, b〉 ∈ DG+(P )
in the acyclicity constraint. This transformation is applied
on an atom-by-atom basis and is necessary only for atoms
a ∈ At(P ) involved in a non-trivial SCC S of P with
|S| > 1. For such an S and an atom a ∈ S, the ap-
proach is to instrument P with additional rules that capture
well-support for a (cf. [Bomanson et al., 2016]). For ev-
ery arc 〈a, b〉 ∈ DG+(P ) that is specific to S, the poten-
tial dependency of a on b is articulated through a choice rule
{dep(a, b)} ← b. In addition to the dependency atoms, spe-
cial atoms are introduced to enforce well-support for the atom
a with respect to its defining rules {r1 , . . . , rk} = def(a).
These special atoms are denoted as ws(r1) , . . . , ws(rk), and
they are utilized in a constraint that ensures well-support for
a: f ← a, not ws(r1) , . . . , not ws(rk), not f Here, f is
introduced as a new atom. Given the SCC S of a in P , it
is assumed that each body+(r) in (1)–(3) is ordered in such
a way that for some 0 ≤ l ≤ n, b1 ∈ S , . . . , bl ∈ S while
bl+1 6∈ S , . . . , bn 6∈ S. Then, if a defining rule r ∈ def(a) is
of the form (1) or (2), the rule (4) below captures well-support
mediated by r. If the defining rule r is of the form (3), then
the corresponding rule for well-support is (5).

ws(r)← dep(a, b1) , . . . , dep(a, bl), bl+1 , . . . , bn,

not c1 , . . . , not cm. (4)
ws(r)← k ≤ [ dep(a, b1) = w1 , . . . , dep(a, bl) = wl,

not c1 = wn+1 , . . . , not cm = wn+m ]. (5)

For the program TrACYC(P ) constructed in this manner,
the distinction between stable and supported models disap-
pears when we specifically consider acyclic models I . An

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3370



acyclic model I is one in which the digraph induced by the
set of arcs {〈a, b〉 | dep(a, b) ∈ I} is acyclic.

Proposition 1 ([Bomanson et al., 2016, Theorem 3.11]). Let
P be a WCP.

1. If M is a stable model of P , then TrACYC(P ) has an
acyclic supported model N such that M = N ∩At(P ).

2. If N is an acyclic supported model of TrACYC(P ), then
M = N ∩ At(P ) is a stable model of P and well-
supported by R = {r ∈ P | ws(r) ∈ N, head(r) ∈ N}.

Example 2. Consider the program in Example 1. Remember
that S = {a1, a3} is the only non-trivial SCC. Let r1 be the
defining rule for a1, and r2 the one for a3. By adding rules

{dep(a1, a3)} ← a3.
{dep(a3, a1)} ← a1.
ws(r1)← dep(a1, a3), a2.
ws(r2)← 3 ≤ [dep(a3, a1) = 1, a2 = 2, not a2 = 3].
f ← a1, not ws(r1), not f.
f ← a3, not ws(r2), not f.

we can ensure that all acyclic supported models of the pro-
gram are stable. In particular, we note that the model N =
{a1, a2, a3, dep(a1, a3), dep(a3, a1), ws(r1), ws(r2)} is sup-
ported, but not acyclic and, therefore, not stable. �

4 Translation into Integer Programming
Once the acyclicity translation TrACYC(P ) of a WCP P
is obtained, translating P to an integer program is possi-
ble. This translation has previously been done in [Liu et
al., 2012], which we review here. We proceed by breaking
down the translation into two parts: (i) translation of rules in
TrACYC(P ) and (ii) translation of acyclicity. For the rest of
this paper, we assume that DG+(P ) only includes arcs with
both ends in the same SCC. This assumption does not harm
the generality of our arguments in the sequel, as such arcs are
the only ones of value as long as acyclicity is concerned.

4.1 Translation of Rules
Given a WCP P , for the sake of simplicity, we assume that
members of At(P ) are indexed in the form of a1, ..., an.
We define a mapping V that maps every atom a ∈ At(P )
to a binary variable a, and every atom dep(ai, aj) ∈
At(TrACYC(P )) to a binary variable x〈i,j〉 to represent the
respective atoms. Also, for each rule in TrACYC(P ), we con-
sider a binary variable bdr to represent the notion of r causing
the truth of its head. We construct an integer program IPrP by
adding inequalities (6) and (7) from below. For every normal
rule r of TrACYC(P ) in the form (1), we include∑
b∈body+(r)

V(b)+
∑

c∈body−(r)

(1− V(c))−|body(r)|·bdr ≥ 0,

(6)
and

∑
b∈body+(r)

V(b)+
∑

c∈body−(r)

(1− V(c))−bdr ≥ |body(r)|−1.

(7)

Inequality (6) guarantees that if the body of r is satisfied,
bdr must be set to one. Inequality (7) is for the completion
and prevents bdr to be one unless the body holds. For every
choice rule r of TrACYC(P ) in the form (2), only inequality
(7) is needed. That is because even if the body of r is satisfied,
r may not cause its head to be in the answer set. For every
weight rule r of TrACYC(P ) in the form (3), we include∑

bi∈body+(r)

wi · V(bi)

+
∑

ci∈body−(r)

wn+i · (1− V(c))− k · bdr ≥ 0, (8)

and ∑
bi∈body+(r)

wi · V(bi)

+
∑

ci∈body−(r)

wn+i · (1− V(c))− bdr ≥ k − 1. (9)

Similarly to the case of normal rules, (8) guarantees that
if the body of r is satisfied, bdr must be set to one, and the
inequality (9) prevents bdr from being one unless the body
holds. For every atom a ∈ At(TrACYC(P )) we include∑

r∈def(a)

bdr − |def(a)| · V(a) ≤ 0, (10)

and ∑
r∈def(a)

bdr − V(a) ≥ 0. (11)

Inequality (10) guarantees that if at least one rule causes
a ∈ At(TrACYC(P )) to be in the answer set, then V(a) must
be set to one. Inequality (11) causes V(a) to be zero in the
case that no rule is causing a to be included in the answer set.

4.2 Translation of Acyclicity
For a ∈ At(P ), let SCC(a) denote the strongly connected
component of DG+(P ) = 〈At(P ),�〉 including a. We con-
struct integer program IPoP by adding for every 〈ai, aj〉 ∈ �,

xi − xj ≥ (x〈i,j〉 − 1)|SCC(ai)|+ 1. (12)

Inequality (12) is a translation of the Bellman-Ford equa-
tion [Bellman, 1958] into integer programming, which causes
every model M to set xi to the length of the longest
path reaching ai in the graph induced by {〈ai, aj〉 |
M(x〈i,j〉) = 1}. As a result every assignment causing a cy-
cle in its induced graph cannot be consistent. It should be
clear that for every variable xi, the upper bound on the value
assigned by any model to xi is |SCC(ai)|.

It has been shown that the union of IPrP and IPoP is a correct
IP translation of P .

Proposition 2 ([Liu et al., 2012]). Let P be a WCP.

1. IfM is a stable model of P , then IPrP ∪ IPoP has a model
N such that if x ∈M then N(V(x)) = 1.

2. IfN is a model of IPrP ∪ IPoP , thenM = {x|N(V(x)) =
1} ∩At(P ) is a stable model of P .
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5 Acyclicity via Vertex Elimination
The concept of vertex elimination graphs, originally in-
troduced by Rose and Tarjan [1975], has been recently
shown effective for guaranteeing acyclicity in constraint pro-
grams with underlying graphs [Rankooh and Rintanen, 2022;
Rankooh and Janhunen, 2022; Zhou et al., 2023]. Here, we
show that using vertex elimination graphs, one can produce
IP translations of answer set programs with more restrictive
LP relaxations compared to that of IPrP ∪ IPoP . Furthermore,
we prove that a feedback vertex set (a subset of vertices that
contains at least one vertex from every cycle in the graph) of
a graph can be obtained as a byproduct of the vertex elimina-
tion process. We later use the obtained feedback vertex set to
improve the IP encoding (12) of the Bellman-Ford equation.

5.1 Vertex Elimination Graphs
Given a digraph G = 〈V,E〉, an ordering of V is a bijection
α : {1, . . . , n} → V . The fill-in F (v) for a vertex v in a di-
rected graph is essentially the set of arcs that, if added, would
form a complete neighborhood around the vertex v. In other
words, it is the set of arcs from the in-neighbors of v to the
out-neighbors of v, formally defined as

F (v) = {〈x, y〉 | 〈x, v〉 ∈ E, 〈v, y〉 ∈ E, x 6= y}. (13)

The v-elimination graph of G is obtained by removing the
vertex v from G, and adding the fill-in of v to the re-
sulting graph. Formally, it is represented as G(v) =
〈V \ {v}, E(v) ∪ F (v)〉, where E(v) = {〈x, y〉 | 〈x, y〉 ∈
E, x 6= v, y 6= v}.

Given a digraph G and an ordering α of its vertices, the
elimination process of G according to α is the a sequence
denoted as G = G0,G1, . . . ,Gn−1, where Gi is the α(i)-
elimination graph of Gi−1 for i = 1, . . . , n − 1. This elimi-
nation process is performed iteratively for each vertex in the
specified ordering α. At each step, a vertex is eliminated, and
the associated fill-in arcs are added to the graph, resulting in
a sequence of graphs.

The fill-in of the digraph G according to the ordering α,
denoted by Fα(G), is the set of all arcs added to G in the
vertex elimination process. Formally, Fα(G) is defined by
(14) where f(v) is the fill-in of v = α(i) in the graph Gi−1:

Fα(G) =
⋃
v∈V

f(v). (14)

The vertex elimination graph of G according to α, denoted
by G∗α, is defined as the union of all graphs produced in the
elimination process of G according to α:

G∗α = 〈V,E ∪ Fα(G)〉. (15)

The elimination width of α [Hunter and Kreutzer, 2008]
is defined by the maximum number of outgoing arcs of ver-
tex α(i) in Gi−1, for i = 1, ..., |V |. The asymptotic number
of arcs in G∗α is then O(|E| + δ|V |), where δ is the elimina-
tion width of α. The problem of finding the optimal ordering
function, one with the smallest elimination width, has been
shown to be NP-complete [Rose and Tarjan, 1975]. Never-
theless, there are effective heuristics for finding empirically

useful orderings. Examples are the minimum fill-in and min-
imum degree that accordingly choose a vertex for removal at
each step during the elimination process. An important prop-
erty of the vertex elimination process is that if the original
graph G has a directed cycle, then G∗α will have a cycle of
length 2. This property is independent of the specific order-
ing α and is inherent to the nature of the elimination process
in the presence of directed cycles.
Theorem 1. Let G = 〈V,E〉 be a digraph, α an ordering of
its vertices, and G∗α the vertex elimination graph of G accord-
ing to α. For every cycle v1, ..., vk, v1 in G, there exists some
vi, vj ∈ {v1, ..., vk} such that arcs 〈vi, vj〉 and 〈vj , vi〉 are
both present in G∗α.

Proof. We give the proof by induction on k. For the case of
k = 2, we have the cycle v1, v2, v1. The conclusion holds
because G is a subgraph of G∗α. Now assume that the con-
clusion holds for every cycle of length k. Let v1, ..., vk+1, v1
be a cycle of length k + 1 in G. Let vl be the first mem-
ber of {v1, ..., vk+1} that is eliminated according to α. As-
sume without loss of generality that 1 < l < k + 1 (oth-
erwise we can always reorder indices of the cycle to make
this assumption hold). Now v1, ..., vl−1, vl+1, ..., vk+1, v1,
produced after eliminating vl, is a cycle of length k in
G∗α. By the induction hypothesis, there exist some vi, vj ∈
{v1, ..., vl−1, vl+1, ..., vk} such that arcs 〈vi, vj〉 and 〈vj , vi〉
are both present in G∗α.

Theorem 1 shows how every cycle of a directed graph can
be represented by a pair of vertices in it. As a result, by choos-
ing one vertex out of each of such pairs, one can obtain a
feedback vertex set.
Corollary 1. Let G = 〈V,E〉 be a digraph, α an ordering of
its vertices, and G∗α the vertex elimination graph of G accord-
ing to α. Let F be the set of all vertices v ∈ V such that for
some u ∈ V ordered by α after v, arcs 〈v, u〉 and 〈u, v〉 are
both present in G∗α. Then F is a feedback vertex set of G.

5.2 Vertex Elimination Based Translation
Let α be an ordering of vertices of DG+(P ), and
G0, . . . ,Gn−1 the elimination process of DG+(P ) according
to α. We produce the IPveP by adding the following. For every
arc 〈ai, aj〉 in DG+(P ), we add

x′〈i,j〉 ≥ x〈i,j〉. (16)

For every 〈ai, aj〉 ∈ f(ak), we add

x′〈i,j〉 ≥ x
′
〈i,k〉 + x′〈k,i〉 − 1, (17)

and for every i and j with 〈ai, aj〉 ∈ G∗α and 〈aj , ai〉 ∈ G∗α,

x′〈i,j〉 + x′〈j,i〉 ≤ 1. (18)

Let Var(X) denote the set of variables in an integer/linear
program X . Considering Proposition 1, Theorem 2 shows
that there is a correspondance between the set of stable mod-
els of P and the set of integer models of IPrP ∪ IPveP .
Theorem 2. If IPrP ∪IPveP has a modelM , then the restriction
of M on Var(IPrP ) is an acyclic model of IPrP . If N is an
acyclic model for IPrP , then there is an extension of N that is
a model for IPrP ∪ IPveP .
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Proof. Let M be a model for IPrP ∪ IPveP . Then M is a
model of IPrP . Assume M is not acyclic. Without loss
of generality (regarding the indices of vertices) assume that
the graph induced by {〈ai, aj〉 | M(x′〈i,j〉) = 1}, denoted
by H, has a cycle a1, ..., ak, a1. According to Theorem 1,
there are vertices ai and aj such that 〈ai, aj〉 and 〈aj , ai〉 are
both present in H∗α. However, because H is a subgraph of
G = DG+(P ), H∗α is clearly a subgraph of G∗α, and by (16)
and (17), we have: M(x′〈i,j〉) = 1 andM(x′〈j,i〉) = 1. There-
fore, M(x′〈i,j〉) +M(x′〈j,i〉) = 2 that contradicts (18).

Let N be an acyclic model for IPrP . We construct a
model N ′ for IPrP ∪ IPveP as an extension of N by letting
N ′(x) = N(x) for x ∈ Var(IPrP ). The graph induced by
{〈ai, aj〉 | N(x〈i,j〉) = 1}, denoted byD is acyclic, and there
is a topological total ordering β of vertices of DG+(P ) ac-
cording toD. We setN ′(x′〈i,j〉) to 1, for arcs 〈ai, aj〉 inD∗α if
and only if ai is ordered before aj according to β. We show
that N ′ satisfies (16) to (18), by these settings.

• If N(x〈i,j〉) = 1, then there is an arc from ai to aj in
D, and therefore aj is ordered after ai according to β.
Thus, N ′(x′〈i,j〉) = 1 and inequality (16) is satisfied.

• For every 〈ai, aj〉 ∈ f(ak), if either N ′(x′〈i,k〉) = 0 or
N ′(x′〈k,i〉) = 0, then inequality (17) is trivially satisfied.
However, if N ′(x′〈i,k〉) = 1 and N ′(x′〈k,i〉) = 1, then ai
is ordered before ak, and ak is ordered before aj accord-
ing to β. Therefore, ai is ordered before aj according to
β. Thus, N ′(x′〈i,j〉) = 1 and inequality (17) is satisfied.

• For every i and j such that 〈ai, aj〉 ∈ G∗α, ifN ′(x′〈i,j〉) =
1, then ai is ordered before aj according to β, and
N ′(x′〈j,i〉) = 0. We conclude that (18) is satisfied.

We now show that the linear relaxation of our vertex elim-
ination based translation is at least as restrictive as the linear
relaxation of the translation introduced by Liu et al. [2012].

Lemma 1. Let LPveP be the LP relaxation of IPrP ∪ IPveP , and
v1, ..., vk, vk+1 = v1 be a cycle in G∗α. If M is a model for
LPveP , then

∑
i=1,...,kM(x′〈i,i+1〉) ≤ k − 1.

Proof. We give the proof by induction on k. For k = 2,
the conclusion holds because M satisfies constraint
(18). Assume that the conclusion holds for any cycle
of length k. Let v1, ..., vk+1, vk+2 = v1 be a cycle in
G∗α of length k + 1. Assume the vj is the first vertex in
this cycle eliminated according to the ordering α. Then
v1, ..., vj−1, vj+1, ..., vk+2 = v1 must be a cycle of length
k in G∗α. Therefore

∑
i=1,...,j−2,j+1,...,k+1M(x′〈i,i+1〉) +

M(x′〈j−1,j+1〉) ≤ k − 1. However, since according to (17),
M(x′〈j−1,j〉) + M(x′〈j,j+1〉) − 1 ≤ M(x′〈j−1,j+1〉),
we have

∑
i=1,...,j−2,j+1,...,k+1M(x′〈i,i+1〉) +

M(x′〈j−1,j〉) + M(x′〈j,j+1〉) − 1 ≤ k − 1, and there-
fore,

∑
i=1,...,k+1M(x′〈i,i+1〉) ≤ k

Let LPveP and LPoP be the LP relaxation of IPrP ∪ IPveP and
IPrP ∪ IPoP , respectively. Assume that LPveP has a feasible

modelM . We produce LPo,MP , by replacing (12) in LPoP with

xi − xj ≥ (M(x′〈i,j〉)− 1)(|SCC(ai)|) + 1. (19)

Lemma 2. For every model M of LPveP , LPo,MP has a model
N such that N(a) =M(a) for every a ∈ Var(IPrP ).

Proof. From M , we construct a model N for LPo,MP . For
every variable a ∈ Var(IPrP ), let N(a) = M(a). Let GM
be a weighted graph with the same vertices as in DG+(P ).
For every arc 〈ai, aj〉 in DG+(P ), we add 〈ai, aj〉 to GM
with weight (−M(x′〈i,j〉) + 1)|SCC(ai)| − 1, denoted by
w〈i,j〉. We show that there is no simple directed cycle with
negative total weight in GM . Assuming the necessary re-
naming of variables, let a1, ..., ak, ak+1 = a1 be a sim-
ple directed cycle in GM . Then a1, ..., ak, ak+1 = a1
is also a simple directed cycle in G∗α, the vertex elimina-
tion graph of DG+(P ). Therefore, according to Lemma 1
we have

∑
i=1,...,kM(x′〈i,i+1〉) ≤ k − 1. On the other

hand, we have:
∑
i=1,...,k w〈i,i+1〉 = −k + k|SCC(ai)| −

|SCC(ai)|
∑
i=1,...,kM(x′〈i,i+1〉) ≥ −k + k|SCC(ai)| −

(k − 1)|SCC(ai)| = |SCC(ai)| − k ≥ 0. Now, let N(ai)
be the minimum total weight over all simple paths leading to
ai in GM . Since there is no simple directed cycle with neg-
ative total weight in GM , N is well-defined. Moreover, for
every 〈i, j〉 in DG+(P ), since there is an arc with weight
(−M(x′〈i,j〉) + 1)|SCC(ai)| − 1 from ai to aj , we have
N(xi)−N(xj) ≥ (M(x′〈i,j〉)− 1)(|SCC(ai)|) + 1.

Theorem 3. If LPveP is feasible, so is LPoP .

Proof. We construct LPo,MP , where M is a model of LPveP .
According to Lemma 2, LPo,MP has some model N such
that N(a) = M(a) for every a ∈ Var(IPrP ). Therefore,
(6) to (11) are satisfied by N . According to (16), for all
arcs 〈i, j〉 of DG+(P ), we have M(x′〈i,j〉) ≥ M(x〈i,j〉) =

N(x〈i,j〉). Therefore, for every arc 〈ai, aj〉 in DG+(P ), we
have N(xi)−N(xj) ≥ (M(x′〈i,j〉)− 1)(|SCC(ai)|) + 1 ≥
(N(x〈i,j〉)− 1)(|SCC(ai)|) + 1. Thus N satisfies (12).

Theorem 3 shows that LPveP is at least as restrictive as LPoP .
Moreover, Lemma 2 shows that if LPveP is feasible, then for
every single model M of LPveP , the linear program LPo,MP ,
which is at least as restrictive as LPoP , is feasible. This sug-
gests that using IPrP ∪ IPveP could often result in a more effi-
cient pruning of the search space compared to IPrP ∪ IPoP . By
an example we demostrate how LPveP could easily be strictly
more restrictive than LPoP .

Example 3. Consider the program presented in Example
2. Since the positive dependency graph of P has only two
arcs 〈a1, a3〉 and 〈a3, a1〉, the vertex elimination process
does not add any other arcs. Let M(x〈1,3〉) = 0.5 and
M(x〈3,1〉) = 0.6. Because of inequalities (16) and (18),
M cannot be a model for LPveP . Since there is no other
node in the same SCC, then M can neither be a model for
LPoP . However, if there was one other node a4 in the same
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SCC, then, regardless of the values assigned by M to vari-
ables relevant to x4, inequalities in the form of (12) become
x1 − x3 ≥ −0.5 and x3 − x1 ≥ −0.2, which can be satisfied
by lettingM(x1) =M(x3) = 0. From this example it should
also be clear how larger SCCs weaken the linear relaxation
of inequality (12) even more. �

6 Acyclicity via Feedback Vertex Sets
As mentioned in Section 5, the asymptotic number of arcs
added by vertex elimination is O(δ|V |), where δ and V rep-
resent the elimination width and the number of vertices, re-
spectively. In cases where both δ and |V | are high, our vertex
elimination based method may generate integer programs of
considerable size, potentially negating the benefits of its more
informative linear relaxation.

To address this issue, we introduce an alternative method in
this section. This approach utilizes the same set of variables
as in LPoP but imposes (implicit) constraints on the domains
of variables involved in cycle detection. We achieve this by
taking advantage of feedback vertex sets (FVSs). FVSs have
previously been used in SAT-based ASP to reduce the num-
ber of variables while guaranteeing that number of models
remains fixed [Hecher and Kiesel, 2023]. Here, however, we
use FVSs to restrict the possible values of integer variables,
while maintaining the satisfiability (or optimal value of the
objective function) of our translation.

Let F be any feedback vertex set of DG+(P ). We con-
struct integer program IPfP by adding for every ai ∈ F and
〈ai, aj〉 ∈ DG+(P ), the inequality

xi − xj ≥ (x〈i,j〉 − 1)(|F ∩ SCC(ai)|) + 1, (20)

and for every ai /∈ F and 〈ai, aj〉 ∈ DG+(P ), the inequality

xi − xj ≥ (x〈i,j〉 − 1)(|F ∩ SCC(ai)|). (21)

Theorem 4. If IPrP∪IPfP has a modelM thenM is an acyclic
model of IPrP . If N is an acyclic model for IPrP then there is
an extension of N that is a model for IPrP ∪ IPfP .

Proof. Let M be a model for IPrP ∪ IPfP . Then M is a
model of IPrP . Assume that M is not acyclic. Then, assum-
ing the necessary renaming of variables, the graph induced
by {〈ai, aj〉 | M(x〈i,j〉) = 1} has a cycle a1, ..., ak, a1, and
thus, M(x〈1,2〉) = ... = M(x〈k,1〉) = 1. Since F is a feed-
back vertex set for DG+(P ), at least one of a1, ..., ak, say
aj , must be in F . We can assume that j 6= k, otherwise we
reorder the indices to make this assumption hold. According
to (20), M(xj) > M(xj+1) and according to (20) and (21),
M(x1) ≥ M(x2) ≥ ... ≥ M(xk) ≥ M(x1). We conclude
that M(x1) > M(x1), a contradiction.

Let N be an acyclic model for IPrP . We construct a model
N ′ for IPrP ∪ IPfP as an extension of N by letting N ′(a) =
N(a) for a ∈ Var(IPrP ). Let GN be a weighted graph with
the same vertices as in DG+(P ). For every arc 〈ai, aj〉 in
DG+(P ), we add 〈ai, aj〉 to GN iff N(x〈i,j〉) = 1. Every
arc 〈ai, aj〉 of GN is assigned a weight of one if aj ∈ F ,
and a weight of zero otherwise. Since N is acyclic, GN is

a weighted DAG, and therefore, the set of all directed paths
leading to any given vertex is finite. Now, for every vertex
xi we set N ′(xi) to the maximum total weight over all di-
rected paths leading to ai in GN . We show that N ′ satisfies
inequality (20) and (21). If N(x〈i,j〉) = 0, (20) and (21) are
satisfied because, (i) if N ′(ai) = 0, ai has no incoming arc
in GN , and no path to aj can have a total weight greater than
|F ∩SCC(ai)|−1; and (ii) by the definition of N ′, for every
vertex ai ∈ F we have: 0 ≤ N ′(xi) ≤ |F ∩ SCC(ai)|. On
the other hand, if N(x〈i,j〉) = 1, there is an arc in GN from
ai to aj . Then N ′ satisfies inequality (20) because if aj ∈ F ,
the weight of 〈ai, aj〉 is one. Similarly, inequality (21) holds
because if aj /∈ F , the weight of 〈ai, aj〉 is zero.

From the proof of Theorem 4, it should be clear that for ev-
ery modelM of IPrP ∪ IPfP , M(xi) is at most |F ∩SCC(ai)|,
which is a lower bound of |SCC(ai)|, the bound necessary
in IPrP ∪ IPoP for xi.

7 Empirical Evaluation
We have taken the Acyc2solver tool from the ASPTOOLS
collection1, and incorporated our encoding methods into it.
With the exception of acyclicity encoding, all other fea-
tures of the Acyc2solver tool remain unaltered in our imple-
mented translators. Consequently, the translation results for
all ASP rules in both our translators’ outputs and the original
Acyc2solver tool’s output are identical. We have added the
resulting translators to the ASPTOOLS collection.

All experiments were conducted on a Linux cluster fea-
turing Intel Xeon 2.40 GHz CPUs, employing a timeout of
600 seconds per problem and a memory limit of 8 GB. For
our vertex elimination based method, the order of elimination
was determined using the minimum degree heuristic. This in-
volves eliminating a vertex with the minimal total number of
incoming and outgoing arcs in the graph produced after elim-
inating previously processed vertices. In our feedback vertex
set based method, we utilized the feedback vertex set gener-
ated by an implementation of Corollary 1.

We assess our two translations: the vertex elimination
based translation VE and the feedback vertex set based trans-
lation FVS. Our opponents include the original implementa-
tion of the Acyc2solver tool (A2S) and Clingo 5.4.0 [Geb-
ser et al., 2019], a prominent native ASP solver, using
both Branch and Bound (BB) and Unsatisfiable Core (USC)
guided optimization strategies of Clingo for optimization
problems. Additionally, we employ Gurobi Optimizer ver-
sion 11.0.02 and IBM ILOG CPLEX Optimization Studio
20.13 as IP solvers, known for their efficiency. The number of
available threads has been set to one for all solvers. Although
both Gurobi and CPLEX offer a variety of parameters to con-
trol the search, we only use the default ones. Therefore, the
solvers’ parameters have not been tuned to produce the best
performance for our new methods.

The benchmark set comprises non-tight problem sets from
previous ASP competitions. A problem is considered non-

1https://github.com/asptools/software
2https://www.gurobi.com/solutions/gurobi-optimizer
3https://www.ibm.com/products/ilog-cplex-optimization-studio
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Gurobi CPLEX Clingo
Domain VE FVS A2S VE FVS A2S BB USC

Bayes(60) 60 44 44 44 38 38 41 32
Connect(120) 19 21 19 10 1 0 13 81
Markov(60) 52 10 9 17 6 5 32 0

TSP(30) 29 29 29 25 29 29 0 0
Valve(318) 24 23 23 22 22 22 56 25
Total(588) 184 127 124 118 96 94 142 138

Table 1: Numbers of problems solved in the optimization category

tight if its positive dependency graph has at least one non-
trivial strongly connected component. It is important to note
that for tight problems, our translations are not of partic-
ular interest, as they yield results identical to the original
Acyc2solver tool. Our evaluation encompasses both decision
and optimization problem sets.

The optimization problem sets (with their corresponding
competition year in parantheses) consist of Bayesian Net-
work Learning (2017), Connected Maximum-Density Still
Life (2015), Markov Network Learning (2017), Traveling
Salesman Problem (2017), and Valves Location Optimiza-
tion (2015), abbreviated as Bayes, Connect, Markov, TSP,
and Valve in our table presentations, respectively. The de-
cision problem sets include Combined Configuration (2015),
Knight Tour With Holes (2015), Labyrinth (2015), Maze Gen-
eration (2011), and Random NonTight (2007), shortened as
Comb, Knight, Lab, Maze, and Rand. It is important to note
that we have not included the Steiner Tree problem set from
the 2017 competitions in our experiments. This is due to
the acyc2solver tool’s inability to generate the integer pro-
grams within the specified time and memory constraints for
this benchmark. Additionally, we incorporate the Hamilto-
nian cycle encoding from [Niemelä, 1999], denoted as Ham,
which comprises 30 randomly generated planar graphs with
60, 70, . . . , 150 nodes, totaling 300 instances. The numbers of
problems solved for optimization and decision problem sets
are detailed in Tables 1 and 2, respectively.

Several observations can be drawn from our empirical re-
sults. A comparison between Gurobi and CPLEX in Tables
1 and 2 reveals that Gurobi performs better for optimiza-
tion problems, while CPLEX exhibits superior performance
for decision problems. When contrasting our translators (VE
and FVS) with A2S, a consistent trend emerges: VE outper-
forms FVS and A2S when coupled with Gurobi in optimiza-
tion problems, and with CPLEX in decision problems. An
exception to this trend is the Knight Tour With Holes prob-
lem set, where both FVS and A2S significantly outperform
VE. This anomaly is attributed to the large elimination widths
(ranging in the order of hundreds, the largest among all prob-
lem sets) and substantial SCC sizes (ranging in the order of
thousands, also the largest among all problem sets) in the pos-
itive dependency graphs of this problem set. This results in
adding hundreds of thousands of extra variables to the inte-
ger program when vertex elimination is used, explaining the
low efficiency of the solvers. Additionally, it is noteworthy

Gurobi CPLEX Clingo
Domain VE FVS A2S VE FVS A2S

Comb(99) 46 39 21 46 18 15 65
Ham(300) 170 151 151 182 153 153 199

Knight(300) 26 279 279 76 278 278 37
Lab(246) 14 12 1 120 77 10 209
Maz(50) 35 27 11 39 19 5 50
Rand(14) 4 4 4 4 3 3 14

Total(1009) 295 512 447 467 548 464 574

Table 2: Numbers of problems solved in the decision category

that FVS solves at least as many problems as A2S across all
problem sets, outperforming it in several of them.

Table 1 illustrates that VE with Gurobi as the solver ex-
hibits competitive performance compared to both BB and
USC strategies of Clingo. However, Clingo demonstrates su-
perior efficiency compared to VE and other integer program-
ming based methods when solving decision problems, as de-
picted in Table 2. The primary advantage of IP methods lies
in their exploitation of the branch and cut search strategy us-
ing linear relaxation. However, this strategy is less advan-
tageous in integer problems without an objective function,
where linear relaxation is informative only if it is not feasi-
ble. Thus, the gains from using these methods are expected
to be less prominent in the decision problem set. This study
represents an effort to bridge the efficiency gap between these
two paradigms of solving answer set programs, leaving fur-
ther investigation in this direction for future research.

8 Conclusions
In this paper, we investigate novel translation techniques that
could be used to speed up the computation of answer sets
when logic programs are translated into integer programs and
the respective IP solvers, such as CPLEX and Gurobi, are
used for computations. The latest ASP competition results
[Gebser et al., 2017; Gebser et al., 2020] suggest that the
performance of CPLEX is quite much behind the native ASP
solvers on benchmarks in the optimization categories of the
competitions. However, based on the experimental results of
Section 7—as collected in Tables 1 and 2—the performance
gap seems to be closing. In our view, this study serves as a
validation for a key motivation behind translation-based An-
swer Set Programming, emphasizing the utilization of the
strengths from both knowledge representation and constraint
solving domains.

Besides promising experimental results, this paper has a
number of technical contributions that may turn out very use-
ful otherwise. First of all, we present new ways to encode
the acyclicity constraint when embedded in integer program-
ming, but the idea is more generic and potentially applicable
in other contexts as well. Second, the exploitation of feed-
back vertex sets in the simplification of the translation opens
up new avenues for further research. In particular, it is an
interesting generalization of [Chen et al., 2008] where loops
with only one externally supporting rule are distinguished.
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