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Abstract
Multi-agent reinforcement learning (MARL) per-
forms well for solving complex cooperative tasks
when the scenarios have well-defined dense re-
wards. However, there are usually sparse reward
settings in many real-world multi-agent systems,
which makes it difficult for MARL algorithms to
successfully learn an effective strategy. To tackle
this problem, we propose a novel sequentially ac-
cumulated entropy intrinsic reward named SAEIR,
which utilizes the entropy of multi-agent system as
a bonus to accelerate learning. Specifically, the
multi-scale hypergraph critic is proposed to ob-
tain high-order system state representation, which
also enhances the ability to effectively evaluate
the action produced by the actor. Based on the
comprehensive and compact system state repre-
sentation, the orderliness of multi-agent systems
can be measured to determine the highly valu-
able states for adding entropy-based intrinsic re-
wards which leads to a highly efficient learning
process. Empirical results demonstrate that our
proposed method achieves state-of-the-art perfor-
mance in several complex cooperative multi-agent
environments with sparse reward settings.

1 Introduction
Deep multi-agent reinforcement learning (MARL) is an
active research field with its successful application to
multi-agent cooperative tasks such as multi-player video
games [Zhang and Yu, 2023], robot swarms control [Gu et al.,
2023], smart grid control [Jin and Ma, 2019], autonomous ve-
hicle coordination [Guo et al., 2023], and resource manage-
ment [Li et al., 2023]. Despite the progress in value-based
and policy-based MARL algorithms [Sunehag et al., 2018;
Rashid et al., 2018; Son et al., 2019; Wang et al., 2021;
Yu et al., 2022; Lowe et al., 2017], their efficiency relies
heavily on expert-designed dense reward feedback. How-
ever, there are only sparse reward settings in many real-world
multi-agent scenarios [Pathak et al., 2017], where non-zero
rewards are provided just when certain conditions are satis-
fied rather than at every time step. Without the guidance of
dense reward feedback, the agents require many episodes to

come across any reward and have difficulty in learning effec-
tive cooperative strategies, which restricts the application of
multi-agent algorithms. Therefore, solving cooperative tasks
with sparse rewards becomes a critical challenge for multi-
agent reinforcement learning.

A common approach to addressing this challenge in current
MARL algorithms is to apply intrinsic motivation techniques
during the training procedure, which has been shown to be ef-
fective in some cooperative tasks. Due to classical curiosity-
based methods [Pathak et al., 2017; Savinov et al., 2019;
Yang et al., 2020] performing well in single-agent scenar-
ios, some works extend the intrinsic curiosity reward to
MARL algorithms [Iqbal and Sha, 2019b; Zheng et al., 2021;
Li and Gajane, 2023; Yu et al., 2023]. There are also many
works that utilize the curiosity bonus as part of intrinsic re-
ward and introduce novel prior knowledge to improve explo-
ration, such as interaction influencing [Wang et al., 2020] and
counterfactual reasoning [Yang et al., 2021]. Besides using
the concept of curiosity to design the intrinsic reward, current
works apply effective formulations to generate the intrinsic
reward, such as the theory of mind [Ma et al., 2022], subgoal
assignment [Jeon et al., 2022; Xie et al., 2023], and causal
inference [Liu et al., 2023]. These methods combine intrin-
sic reward with the extrinsic reward provided by the environ-
ment to encourage exploration. However, the above methods
ignore the great potential for entropy, the natural property in
multi-agent systems, as an intrinsic reward.

Entropy originates from information theory, which is used
to characterize the disorder of a system. During the training
procedure, the multi-agent system transforms from stochas-
tic processes (disorder) to stationary processes (order), where
the strategies learned by agents transform from random to de-
terministic and the system entropy gradually decreases. As
shown in Fig. 1, in the case of solving a multi-agent foot-
ball game, the multi-agent system states using soccer trajec-
tory as visualization demonstrate this phenomenon. For the
visualization of different strategies, we observe that the soc-
cer trajectories implemented by early strategies are not uni-
form, which means the strategies learned in the early stages
are stochastic. On the contrary, the soccer trajectories imple-
mented by later strategies are similar, which means the strate-
gies learned in the later stages are stationary. At the same
time, we observe that early strategies do not achieve goals,
while later strategies all win the match. Based on this ob-
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(a) Early Strategies (Stochastic Process) (b) Later Strategies (Stationary Processes)

Figure 1: Visualization of the multi-agent system state under different stage strategies using soccer trajectory.

servation, we focus on the highly valuable states that result
in a decrease in the entropy of multi-agent systems. Intrinsic
rewards should be supplied to these states, substantially ac-
celerating learning when the original environmental rewards
are sparse.

In this paper, we propose a novel Sequentially Accumu-
lated Entropy Intrinsic Reward (SAEIR) to address the chal-
lenge of sparse reward encountered within cooperative multi-
agent reinforcement learning. To precisely characterize the
state of the multi-agent system, the high-order state represen-
tations are extracted from the environment via the multi-scale
hypergraph critic. Based on these comprehensive and com-
pact system state representations, the change of multi-agent
system entropy in a trajectory under current policy can be
measured. Then, the accumulated system entropy is calcu-
lated as an intrinsic reward supplied to such highly valuable
states that can decrease the system entropy. We summarize
our contributions as follows:

• We propose an effective intrinsic reward, using sequen-
tially accumulated system entropy as a dense bonus to
accelerate the learning of successful strategies in multi-
agent systems with sparse reward settings.

• A multi-scale hypergraph critic is proposed to extract ac-
curate system state representations, which are used to
measure the change of multi-agent system entropy be-
tween sequential states. It also enhances the ability to
effectively evaluate the action produced by the actor.

• Empirical results in cooperative multi-agent environ-
ments with sparse rewards demonstrate our method
outperforms the state-of-the-art methods and promotes
agents to generate better cooperative policies.

2 Related Work
2.1 Intrinsic Motivation for Multi-Agent

Reinforcement Learning with Sparse Rewards
Benefiting from the significant performance of intrinsic mo-
tivation techniques in the sparse-reward SARL domain, most
MARL methods addressing the challenge of sparse rewards

have been adapted from single-agent intrinsic incentives.
Multi [Iqbal and Sha, 2019b] designs various types of count-
based intrinsic rewards by considering coordination among
agents and utilizes a hierarchical policy to dynamically se-
lect exploration modalities trained on diverse intrinsic re-
wards. EDTI and EITI [Wang et al., 2020] consider the
agents’ interactions during their training process to coordi-
nate their exploration and use information- and decision-
theoretic influence to obtain intrinsic rewards respectively.
CIExplore [Yang et al., 2021] combines a joint curiosity-
based reward and an influence reward motivated by counter-
factual reasoning as an intrinsic reward, avoiding training in-
stability and enabling agents to generate cooperative behav-
ior. Elign [Ma et al., 2022] designs an intrinsic reward in-
spired by the self-organization principle in Zoology [Couzin,
2007]. It is a simple and effective way to improve the learn-
ing ability of agents in the alternative setup of decentralized
training or sparse rewards. LIGS [Mguni et al., 2022] em-
ploys an adaptive learner to construct intrinsic rewards on-
line for performing coordinated joint behavior and achiev-
ing an efficient learning process. MASER [Jeon et al., 2022]
generates subgoals from the experience replay buffer and de-
signs individual intrinsic rewards for each agent using action-
able representations, helping agents maximize the joint ac-
tion value while achieving their subgoals. IPERS [Xie et al.,
2023] utilizes prioritized experience replay along with sub-
goals to enhance the training convergence rate in environ-
ments with sparse rewards. Subgoals are employed to pro-
vide beneficial intrinsic rewards. SAME [Xu et al., 2023b]
gets a bonus from a special structural prior on the reward
function and combines it with a count-based bonus, which
not only encourages agents to explore sub-state paces with
higher uncertainty but also preserves novel states in the full-
state space level. USM [Yu et al., 2023] is an intrinsic re-
ward that focuses on the target-related attributes of the un-
derexplored subspaces rather than the whole state space to
accelerate learning. LJIR [Chen et al., 2023] introduces a
general framework to construct a compound intrinsic reward
online by agents’ state and joint actions, which helps agents
find the best joint actions via the combination of state novelty

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

4108



and joint-action novelty. The work [Xu et al., 2023a] im-
proves traditional count-based methods by introducing con-
strained joint policy diversity, making the traditional count-
based methods work well with neural networks and achieve
significant performance. PDP [Sun et al., 2023] actively
amplifies the diversity among agents’ policies during train-
ing and designs an intrinsic reward based on the diversity.
LAIES [Liu et al., 2023] defines the concept of lazy agents
in MARL and proposes two intrinsic rewards based on intrin-
sic motivation for individual diligence and collaborative dili-
gence derived from these definitions. I-Go-Explore [Li and
Gajane, 2023] integrates an intrinsic curiosity module with
the Go-Explore framework [Ecoffet et al., 2021] to address
the limitations of the intrinsic curiosity module. However,
despite SAME employing the entropy of the state distribution
to find the sub-state space with higher uncertainty, none of the
above methods explicitly considers mapping the state entropy
as an intrinsic reward, which is a natural property in multi-
agent systems and a suitable intrinsic motivation that does
not require domain knowledge. We aim to exploit the state
entropy to facilitate learning coordinated policies in complex
cooperative multi-agent environments with sparse rewards.

2.2 Enhanced Critic for Multi-Agent
Reinforcement Learning with Sparse Rewards

The reliable and accurate critic can improve the performance
of MARL algorithms [Foerster et al., 2018; Iqbal and Sha,
2019a; Liu et al., 2022]. Therefore, some works focus on uti-
lizing the enhanced critic to address the challenge of sparse
reward. IRAT [Wang et al., 2022] introduces a framework
that assists the team policy learning from critic with sparse re-
ward by the individual policy learned using critic with dense
reward. SN-MAPPO [Mehta et al., 2023] utilizes the spec-
tral normalization technique to regularize the plain critic. It
enables agents to quickly and stably learn from the setup of
sparse rewards. Our method develops an enhanced critic via
the multi-scale hypergraph network, which not only enhances
the ability to effectively evaluate the action produced by the
actor but also extracts the accurate high-order system state
representations.

3 Preliminaries
3.1 Problem Formulation
The multi-agent cooperation problem can be formulated as
a decentralized partially observable Markov decision process
(Dec-POMDP) [Oliehoek and Amato, 2016]. Generally, it
is defined as a tuple < N ,S,A,O, T ,R, γ >, where N is
the set of n agents indexed by 1, 2, . . . , n; S is the finite set
of environment states; A = A1 × A2 × . . . × An is the set
of joint actions and Ai represents the set of actions available
for agent i (i ∈ N ); O = O1 × O2 × . . . × On is the set
of joint observations and Oi denotes all possible observation
of agent i on S; T : S × A → S formulates the transition
probability function, and at each time step, the agents select
actions a ∈ A at state s ∈ S , then reach the next new state
s′ ∼ T (s, a); R : S × A → Rn is the reward function. The
action policy πi : Oi×Ai → [0, 1] represents the probability

of agent i selecting an action ai ∈ Ai based on its partial ob-
servation oi ∈ Oi. Given an initial state s, all the agents work
cooperatively to maximize the total system’s discounted cu-
mulative reward: J(τ) =

∑∞
t=0 γ

t rt, where rt is the reward
obtained by agents at time step t according to the police πi,
γ ∈ [0, 1] is a discount factor.

3.2 Multi-agent Reinforcement Learning
Algorithms

The Actor-Critic method is widely used in the multi-agent
deep reinforcement learning framework [Lowe et al., 2017;
Foerster et al., 2018; Yu et al., 2022]. The most AC methods
commonly use advantage function Aπ to optimize policy π:

Aπ(st,at) := rt + γV π(st+1)− V π(st) (1)
and the policy objective function is:

J =
N∑
i=1

Est,at∼π[∇logπ(ait|oit)A(st,at)] (2)

3.3 Multi-Agent Proximal Policy Optimization
IPPO [de Witt et al., 2020] trains an independent PPO-
learned [Schulman et al., 2017] strategy with a parameter-
sharing technique [Gupta et al., 2017] for each agent in the
multi-agent system. MAPPO [Yu et al., 2022] extends the in-
dependent critics of IPPO to a centralized value function ac-
cepting global information, which shows the significant per-
formance in various cooperative multi-agent tasks. It opti-
mizes the policy network θ by maximizing the following ob-
jective:

J (θ) =
N∑
i=1

E[min (ηit(θ)Â
i
t, clip (η

i
t(θ), 1± ϵ) Âi

t)] (3)

where ηit(θ) =
πθ(a

i
t|τ

i
t )

πθold
(ai

t|τ i
t )

denotes the probability ratio.

The function clip (·) removes ηit(θ
i) outside of the interval

[1 − ϵ, 1 + ϵ] parameterized by ϵ, which approximates the
KL-divergence constraint. Ât

i is a generalized advantage es-
timator (GAE) [Schulman et al., 2016]

Ât
i =

T∑
l=0

(γλ)lAt+l
i (4)

where T is the episode time horizon.

3.4 Hypergraph Neural Network
Hypergraph neural network [Feng et al., 2019] is a general-
ization of general graph neural network, in which a hyperedge
can link any number of vertices. Hence, the hypergraph can
capture high-order representations through group-wise em-
beddings instead of pair-wise ones used in the general graph,
which has proven to be effective in a wide range of applica-
tions. Mathematically, a hypergraph is defined as G = (V, E),
where V = {v1, v2, . . . , vN} denotes the set of vertices in
the hypergraph (N represents the number of vertices), and
E = {ei := (v

(i)
1 , v

(i)
2 , . . . , v

(i)
k )|i = 1, 2, . . .M} denotes the

set of hyperedges (M represents the number of hyperedges,
k represents the number of vertices in a hypergraph and k can
be different in different hyperedges).
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Figure 2: Overview of the proposed approach.

4 Method
This section describes our proposed intrinsic reward function
SAEIR for effectively addressing the challenge in cooperative
MARL with sparse reward settings. We follow the Central-
ized Training and Decentralized Execution (CTDE) frame-
work, where agents are trained with access to global infor-
mation but make decisions based on their own local infor-
mation in execution. We implement the SAEIR on the rep-
resentative Actor-Critic (AC) style CTDE algorithm, which
has a plain actor and a multi-scale hypergraph critic shown
in Fig. 2. The agent executes action sampled from the policy
learned by the plain actor (a three-layer Multi-Layer Percep-
tron with ReLU non-linearities) and interacts with the envi-
ronment. The multi-scale hypergraph critic provides the state
value for the plain actor to update. It also offers a comprehen-
sive and compact system state representation to calculate the
intrinsic reward. The sequentitally accumulated entropy in-
trinsic reward is calculated based on these system state repre-
sentations and supplied to the highly valuable states, leading
to a highly efficient learning process. We then introduce the
details of the multi-scale hypergraph critic and the calculation
of the SAEIR intrinsic reward.

4.1 Multi-Scale Hypergraph Critic
To extract the high-order system state representations and
provide the accurate state value for the plain actor, we de-
velop the multi-scale hypergraph critic (MSHG Critic) that
comprises the state feature encoder, the state representation
hypergraph network, and the state value decoder.
State Feature Encoder: The encoder is composed of a three-
layer Multi-Layer Perceptron (MLP) and a Gated Recurrent
Unit (GRU). For each agent i at time step t, the system state sti
is encoded using the MLP to create the encoded state feature
ēi,t. Then, the GRU takes the encoded state feature ēi,t and
the hidden state hi,t−1 as inputs to generate the next hidden
state hi,t as shown in Eq. 5{

ēKi,t = MLP(sti;W
K
MLP)

hK
i,t = GRU(ēKi,t, h

K
i,t−1;W

K
GRU)

(5)

where K ∈ {Individual(I), Group(G), T eam(T )}. ēKi,t
and hK

i,t respectively denote the encoded state feature and the
hidden state used for extracting the state representation at the
scale of individual, group, and team. WK

MLP and WK
GRU are the

learnable weights.
State Representation Hypergraph Network: The compre-
hensive and compact state representation is extracted under
multiple scales via the hypergraph network. Mathematically,
let V = {v1, v2, . . . , vN} denote a vertex set containing N
agents and EI = {eI1, eI2, . . . , eIN}, EG = {eG1 , eG2 , . . . , eGMs

}
and ET ={eT1 } denote three hyperedge sets with the scale of
individual, group, and team respectively, where 1 < Ms < N
and it is decided by a hyperparameter NG that denotes the
number of agents in a group. Therefore, the multiple scale
hypergraph networks are formalized as GI = {V, EI}, GG =
{V, EG} and GT = {V, ET }. The topology of each GK

can be constructed as an incidence matrix HK ∈ R|V|×|EK |,
where HK

i,m = 1 if the ith vertex is included in the mth hy-
peredge, otherwise HK

i,m = 0. Concretely, HI equals to the
identity matrix IN×N and HT equals to the vector with all
1 elements 1N×1. For HG, we first compute an affinity ma-
trix AG ∈ RN×N to measure the correlation between the ith
agent and the jth agent:

AG
i,j = hGT

i hG
j /(||hG

i ||2||hG
j ||2) (6)

Then, the hyperedges in EG are formed by searching the high-
density submatrices in the affinity matrix AG via a greedy al-
gorithm approximation, where agents in the submatrices have
high correlation with each other and form a group:

eGm = argmax
Ω⊆V

||AG
Ω,Ω||1,

s.t.|Ω| = NG; vi ∈ Ω, i = 1, 2, . . . , N
(7)

where || · ||1 denotes the matrix entrywise L1-norm. HG ∈
RN×Ms is composed of a stack of eGm(m = 1, 2, . . . ,Ms).
The obtained hyperedge contains the most correlated agents
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Figure 3: The training curves of coverage rate for our approach and baseline algorithms in Cooperative Navigation environment.

and links them together to consider the state representation
from a group perspective. According to the hyperedge sets
EK , the state representation s̄Ki is obtained through:

eKm = wK
m

∑
vi∈eKm

aKm,iFK
eKm

(vK
i )

vK
i ← FK

vi
([vK

i ,
∑

eKm∈EK
vi

eKm])

s̄Ki = FK
s̄ (vK

i )

(8)

where eKm denotes the state feature embedding from vertex
to hyperedge for the mth hyperedge in each K scale, vK

i is
the state representation for the ith agent in each K scale and
initial vK

i equals to the hidden state hK
i,t, w

K
m is the learnable

weight for weighting the state feature embedding of each hy-
peredge, aKm,i denotes the attention coefficient of each vertex
vi in eKm, FK

eKm
(·) is a three-layer MLP, FK

s̄ (·) and FK
vi
(·) are

a single-layer network respectively, [·, ·] denotes the concate-
nation of all state representations about one vertex contained
in the associated hyperedges.
State Value Decoder: The decoder uses a fully connection
(FC) layer to generate the state value vK,π

i,t for agent i at time
step t under current policy π, which takes each s̄Ki,t as the
input and is shown in Eq. 9:

vK,π
i,t = FC(s̄Ki,t;W

K
FC) (9)

The final state value is
V π
i,t =

∑
K

wK
i,tv

K,π
i,t (10)

where wK
i,t are the weight coefficient.

4.2 Sequentially Accumulated Entropy Intrinsic
Reward

To determine the highly valuable state for adding a bonus, we
utilize the entropy-based technique to characterize the disor-
der of a multi-agent system. According to the comprehen-
sive and compact system state representation obtained from

the MSHG critic, the multi-agent state is measured by the
weighted sum of state representation with attention coeffi-
cients:

ŝKi,t = 1T · aKi,t ⊙ s̄Ki,t (11)

where⊙ denotes the Hadamard product operator. In practice,
we set aK to be WK

FC to maintain consistency between the
estimation of the system state and the state value provided
by the critic. To identify the highly valuable states that lead
to a decrease in the disorder of the multi-agent system, the
sequentially accumulated entropy of the system state in a tra-
jectory is calculated as follows:

pKi,t[ŝ
K
i,t(T )] =

exp(ŝKi,t)∑T
t′=1 exp(ŝKi,t′)

êKi,t(T ) = −pKi,t[ŝKi,t(T )] log pKi,t[ŝ
K
i,t(T )]

(12)

where T ≡ t denotes the time length of the trajectory until
time step t. According to Eq. 12, the highly valuable states
that decrease the disorder of the system are searched to be
added intrinsic rewards, and the sequentially accumulated en-
tropy intrinsic reward is designed as:

rinti,t =
∑

K
wK

i,t ê
K
i,t I[êKi,t(T ), êKi,t(T + 1)] (13)

where wK
i,t are the weights for three scales of intrinsic rewards

and
∑

K wK
i,t = 1, I is an indicator function:

I(·, ·) =
{

1, êKi,t(T ) > êKi,t(T + 1);
0, otherwise.

(14)

which represents the state st decreasing the accumulated sys-
tem entropy êt within the sequentially time length T + 1 of
trajectory is identified as highly valuable state, and the bonus
should be supplied to this state. While the intrinsic reward is
obtained according to Eq. 13, the augmented reward for agent
i at time step t is:

Rt
i = rexti,t + β rinti,t (15)
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Figure 4: The training curves of success rate for our approach and baseline algorithms in Google Football Research environment.

Methods Cooperative Navigation (N=3) Cooperative Navigation (N=4) 3 vs.1 with Keeper Counterattack Easy
Coverage Rate Episode Rewards Coverage Rate Episode Rewards Success Rate Episode Rewards Success Rate Episode Rewards

MAPPO 64.43± 1.56 3.38± 0.06 64.26± 3.14 4.59± 0.21 53.77± 8.53 9.86± 2.50 0.73± 0.17 −0.03± 0.10
SN-MAPPO 62.23± 0.53 3.34± 0.04 62.37± 2.37 4.57± 0.09 78.87± 7.36 14.46± 2.02 60.27± 15.93 9.23± 1.47

RND 62.33± 1.17 3.28± 0.09 58.40± 1.52 4.27± 0.10 0.75± 0.14 0.00± 0.05 0.22± 0.11 −0.21± 0.20
Elign 63.16± 0.42 3.36± 0.02 64.45± 1.88 4.69± 0.13 78.87± 6.62 14.61± 2.67 30.70± 1.87 6.37± 0.46
Our 65.48± 1.59 3.46± 0.07 66.80± 1.54 4.79± 0.02 84.95± 4.10 15.06± 1.50 76.12± 4.48 11.58± 1.19

Table 1: The exact results in four sparse reward scenarios for our method and compared baselines.

where rexti,t is the external reward given by the environment,
rinti,t is the intrinsic reward calculated by Eq. 13, and β is a
positive scalar that weights the intrinsic reward.

During the training procedure, the disorder of the system
state gradually decreases and intrinsic rewards finally con-
verge to a constant close to 0. Therefore, the advantage esti-
mate Āπ(st,at) with intrinsic rewards can be proved:

lim
t→∞

Āπ(st,at)= lim
t→∞

[Rt + γV π(st+1)− V π]

= lim
t→∞

[rextt + βrint
t + γV π(st+1)− V π]

= lim
t→∞

[rextt +γV π(st+1)−V π]+β lim
t→∞

rint
t

= lim
t→∞

Aπ(st,at) ∝ rextt

(16)

This means that after a certain amount of training, the pol-
icy is only influenced by external rewards, ensuring policy
invariance.

4.3 Training Process
In this section, we show the overall training process of the
SAEIR applied to the agent in Algorithm 1. The plain actor
network is trained to minimize the Eq. 17 and the multi-scale
hypergraph critic network is trained to minimize the Eq. 18:

Lπ(θ) =
1

N

N∑
i

min[rθi Â
π
i , clip(rθi , 1± ϵ)Âπ

i ]

+ σ
1

N

N∑
i=1

S[πθ(oi)]

(17)

LC(ϕ) =
1

N

N∑
i=1

max[(Vθ(si)−Rt
i(γ))

2,

[clip(Vθ(si), Vθold(si)± ϵ)−Rt
i(γ)]

2

(18)

where rθi = πθ(ai|oi)
πθold

(ai|oi) , S is the policy entropy, σ is the en-

tropy coefficient hyperparameter, and Rt
i(γ) is the discounted

reward-to-go of the augmented reward with factor γ.

5 Experiments and Results
In this section, We evaluate SAEIR in two complex coop-
erative multi-agent environments: Cooperative Navigation
(CN, [Lowe et al., 2017]) and Google Football Research
(GRF, [Kurach et al., 2020]). In all environments, scenar-
ios with sparse reward settings are considered. We compare
the performance of SAEIR against a classical Actor-Critic
MARL algorithm MAPPO [Yu et al., 2022], an Enhanced-
Critic MARL algorithm SN-MAPPO [Mehta et al., 2023],
and two intrinsic reward MARL algorithms RND [Burda et
al., 2019] (extended to MARL version), Elign [Ma et al.,
2022]. All experiments run with five random seeds to main-
tain reliability and consistency.

5.1 Experimental Settings
For the CN environment, it requires N agents cooperating
to reach L landmarks while avoiding collision. The loca-
tions of agents and landmarks are generated randomly. Each
agent gets a positive reward related to the number of occu-
pying landmarks and a negative reward when collisions oc-
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Algorithm 1 Sequentially Accumulated Entropy Intrinsic
Reward Applied to Agents (SAEIRA)
Initialize the parameters θ for policy π, the parameters set ϕK

for multi-scale critic V K , K ∈ {individual, group, team},
using Orthogonal initialization.
Set learning rate α.

1: while step ≤ stepmax do
2: set data buffer D ={}
3: for b = 1 to batch size do
4: τ =[ ] empty list
5: for t = 1 to T do
6: for all agents i do
7: pti, h

t−1
i = π(oti, h

t
i; θ)

8: ati ∼ pti
9: vKi,t, h

K
i,t−1, ŝ

K
i,t = V K(st;ϕ

K) // Eq. 5 - Eq. 9
10: V π

i,t =
∑

K wK
i,tv

K
i,t // Eq. 10

11: end for
12: Execute actions at, observe rextt , st+1,ot+1

13: Calculate intrinsic reward rinti,t using Eq. 13
14: τ+=[st,ot,h

t,hK
t ,at, r

ext
t , rintt , st+1,ot+1]

15: end for
16: Calculate advantages estimate Âπ for plain actor by

GAE on τ , using PopArt
17: Calculate reward-to-go Rt(γ) of augmented reward

by GAE on τ with normalizing PopArt
18: D = D ∪ τ
19: end for
20: for p = 1 to epochtrain do
21: Sample data d from D
22: Adam update θ on Lπ(θ) with data d // Eq. 17
23: Adam update ϕ on LC(ϕ) with data d // Eq. 18
24: end for
25: for e = 1 to epocheval do
26: Evaluate policy πi of each agent i
27: end for
28: end while

cur. The evaluation metric is the coverage rate per episode
during the training process. In the GRF environment, each
scenario requires agents to learn collaborative skills to score,
such as dribbling, passing, and moving. Each agent only ob-
tains a +1 reward for scoring a goal and a −1 reward when
conceding one to the opposing team, which corresponds to
the SCORING reward function provided by the environment.
The evaluation metric is the winning rate per episode during
the training process. More details are within supplementary.

5.2 Results in Cooperative Navigation
Fig. 3 shows the training curves of the coverage rate for
agents reaching goal landmarks. According to Fig. 3, we can
find that the performance of RND deteriorates as the num-
ber of agents increases. Although SN-MAPPO and Elign
learn coherent policies, their performance slightly lags be-
hind MAPPO. We think this is mainly because the outputs of
critic in SN-MAPPO are too smooth and the dynamics mod-
els learned in Elign are suboptimal. SAEIR achieves better
performance than the other baselines. With the increase in
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Figure 5: The training curves of success rate for ablation methods.

the number of agents, SAEIR shows increasingly pronounced
performance improvements compared to the other methods.

5.3 Results in Google Football Research
Fig. 4 shows the training curves of the success rate for agents
completing a football game. As shown in Fig. 4, RND does
not learn a winning strategy in two sparse reward scenar-
ios. Although MAPPO solves the task in Academy 3 vs.1
with keeper scenario, it failed in another scenario. For SN-
MAPPO and Elign, they can learn winning strategies in two
sparse reward scenarios but the performances are unstable. In
both sparse reward scenarios, we can see that SAEIR achieves
the highest success rate among the baselines. Table 1 shows
the exact results in all sparse reward scenarios.

5.4 Ablation Study
We present the results of the ablation studies. To confirm the
performance individually using the multi-scale hypergraph
critic and the sequentially accumulated entropy-based bonus,
we choose the academy 3 vs.1 with keeper scenario to make
the report. Fig. 5 shows the training curves of the success
rate. Although the MSHG critic and the SAE-based bonus
learn comparable winning strategies, the performance im-
provements do not achieve expectations. Benefiting from the
advantages of both two components, our method achieves the
highest performance and is quite stable with a small variance.

6 Conclusion and Future Work
In this paper, we propose a novel intrinsic reward called
SAEIR to successfully learn an effective strategy in sparse
reward environments. The proposed method is based on
the assumption that the highly valuable states making a de-
crease in the entropy of multi-agent systems should be added
a bonus. SAEIR guides multiple agents to find better states
that decrease the disorder of system and facilitates the learn-
ing of successful strategies. The experimental results demon-
strate the effectiveness of SAEIR compared to state-of-the-art
methods. One limitation of the current work is that it has a
cold start issue sometimes. In the future, we will make efforts
to address this limitation and explore the possibility of com-
bining our method with the subspace or subgoal technique.
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