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THE LAPLACIAN MATRIX OF A GRAPH*

R.B. BAPAT

1. INTRODUCTION

We consider graphs which have no loops or parallel edges, unless stated
otherwise. Thus a graph G = (V(G), E(G)) consists of a finite set of vertices,
V(G), and a set of edges, E(G), each of whose elements is a pair of distinct
vertices. We will assume familiarity with basic graph-theoretic notions; see, for
example, Bondy and Murty [5],

Given a graph, one associates a variety of matrices with the graph. Some of the
important ones will be defined now. Let G be a graph with V(G) = {1, . .. ,n},
E(G)= "fl, .oy 'HI}‘

The adjacency matrix A(G) of G is an n X n matrix with its rows and columns
indexed by V(G) and with the (i, j)-entry equal to 1 if vertices i, j are adjacent
(i.c., joined by an edge) and O otherwise. Thus A(G) is a symmetric matrix with
its i-th row (or column) sum equal to d{G), which by definition is the degree of
the vertex i,i=1, 2, ... n. Let D(G) denote the n X n diagonal matrix, whose i-th
diagonal entry is d{(G),i=1,2,...,n.

The Laplacian matrix of G, denoted by L(G), is simply the matrix
D(G) - A(G).

There is another way to view the Laplacian matrix. First we introduce yet
another important matrix associated with G. Suppose each edge of G is assigned
an orientation, which is arbitrary but fixed. The (vertex-edge) incidence matrix
of G, denoted by Q(G), is the n X m matrix defined as follows. The rows and the
columns of ((G) are indexed by V(G), E(G) respectively. The (i, Jj)-entry of
Q(G) is O if vertex i and edge ¢; are not incident and otherwise it is 1 or ~1

according as ¢; originates or terminates at i respectively.

*Textof S.S. Pillai Memorial Lecture delivered on 14th April, 1996 at the Ph ysics Lecture Theatre,
University of Delhi as a part of the IMS-sponsored programme of Memorial Lectures.
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A simple verification reveals that the Laplacian matrix L(G) equals o(G)
O(G)", where the superscript:T denotes transpose. Observe that although we
introduced an orientation for each edge while defining Q(G), the matrix L(G)

does not depend upon the particular orientation.

EXAMPLE. Let G be the graph with vertex set {1, 2, 3, 4, 5} and edge set
(12, 23, 13, 24, 34, 45). Then

011 0 0] I8 1 6 0 0
10110 44— 1 9 1 00
AG)=|1 1010/, 0G=/0-1-1 0 1 O
01101 0 0 0-1 -1 1
00010 00 "0 07-1
and

b8 ol =1 -8 b

-1 3 -1 1. 0

LG)=0(G)QG) ={-1 -1 3 -1 0f.

0 -1 -1 3 -l

LR .U -1 )
Let G be a graph with V(G)={1,...,n}, E(G)={e,,...,2n}. Some basic
properties of the Laplacian matrix are summarized below.
(1) L(G) is a symmetrix, positive semideﬁnitc matrix.
(ii) The off-diagonal entries of L(G) are nonpositive (in fact, they are either
or —1). A positive semidefinite matrix with nonpositive off-diagonal entries is
called a Stieltjes matrix and thus L(G) is a Stieltjes matrix. Such matrices form

an interesting class and possess several nice properties. For example, the square
root of a Stieltjes matrix is again a Stieltjes matrix, a fact which is not at all

obvious.
(iii) The diagonal entries of L(G) are the vertex degrees and the row sums

and the column sums are all zero.

(iv) The quadratic form afforded by L(G) has a rather simple description:
(LGWx)= I (5-x)

(i.)) € EG)
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(v) The rank of L(G) is n = k, where k is the number of connected components
of G. In particular, if G is connected, then the rank of L(G) is n— 1.

The Laplacian matrix is also known by several other names in the literature
such as the Kirchhoff matrix or the Information matrix. The term Laplacian matrix

is justified as follows.

Consider the partial differential equation

%z 8%
= (),
i e
or Vz+Az=0,

where V is the Laplacian operator and z=z(x, y) is subject to the boundary
condition z(x, y) = 0 on a simple closed curve T in the xy-plane.

It is well-known that this problem has a solution only for an infinite sequence

of eigenvalues A, S\, <. . ..

An approximate solution to the problem may be found by covering the region
enclosed by I' by a grid and then solving the corresponding finite eigenvalue
problem. The coefficient matrix of the finite problem is seen to tbe precisely the

Laplacian matrix of the graph associated with the grid.

The Laplacian matrix arises in a variety of applicalj_bn areas such as graph
isomorphism problems, electrical networks, computational techniques for dif-
ferential equations, physical chemistry, biochemistry, computer science and
design of statistical experiments. We refer to Cvetkovic, Doob and Sachs [9] and
Merris [15] for further references concerning these applications.

In this paper we survey some interesting results involving the Laplacian matrix.
The emphasis is on giving a glimpse into results with different flavours. We do
not aim at completeness and hence this is not a comprehensive survey. For an

- excellent survey, from which we have borrowed extensively, see Merris [15].

2. KIRCHHOFF'S MATRIX-TREE THEOREM
Recall that a tree is a connected, acyclic graph. A spanning tree of the graph
- G=(V(G), E(G)) is a subgraph of G with vertex set V(G), which is a tree. Clearly,
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G has a spanniﬁg tree if and only if G is connected. The.next result gives a formula

for.__thé number of spanning trees in a graph in terms of its Laplacian matrix.

. THEOREM 1 (Kirchhoff ’s Matrix-Tree Theorem). If G is a connected graph,
then the cofactors of the Laplacian matrix are all equal and the common value

is the number of spanning trees in G.

As é.n application of Theorem 1, consider K,,, the complete graph on n vertices.
The Laplacian L(K,) is the n X n matrix with n -1 on the diagonal and -1
elsewhefe. It is easily verfied that any cofactor of L(K,) equals n"~ %, which by
Theorem 1 is the number of spanning trees in K,,. This result is known as Cayley’s

Theorem which can be proved in many different ways, see Moon [16].

A proof of Theorem 1 can be given using Cauchy-Binet formula for the
determinant applied to the expression L(G)= Q(G)Q(G)". The technique has
been used to get various extensions and generalizations of the theorem, see for

example [1, 3, 7, 8].

3. PERRON-FROBENIUS THEOREM

The concept of the Laplacian matrix extends naturally to a directed graph with

weights on the edges. Thus consider the complete directed graph on three vertices,

1, 2, 3, where the edge from i to j is assigned weight w;; 2 0. Then the Laplacian

matrix is given by

Wiy + W, ~Wiy ~Wi3
—Wj Wy, + Wy, —Wo3
E TP o o BT W

The Matrix-Tree Theorem has a natural extension to this case and cofactors in
the above matrix have interpretation in terms of spanning trees. Thus the cofactor
of the (1, 3)-entry is '

| Wo W3y + Wy W3, + WoaWsyy,
which is the sum of the weights of all spanning trees directed towards vertex 1.

(The weight of a spanning tree is the product of the edge weights.)

This extension of the Matrix-Tree Theorem-is related to the Perron-Frobenius

‘Theorem as we indicate now. Let A be an n X n stochastic matrix, 1.e. the entries
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of A are all nonnegative and the row sums are all 1. Let G be the directed graph
associated with A. Thus G has vertices {1, 2, ..., n} and there is an edge from
i to j if and only if a; > 0. We assume that G is strongly connected, that is to say,
that A is irreducible. It is well-known that A has a left eigenvector x with positive
entries for the eigenvalue 1. This fact is usually proved using the Perron-Frobenius
Theorem, in the context of Markov chains, where x is called the steady state
vector. However we give an alternative proof. Since A is irreducible, 7, - A is
singular with rank n — 1. Thus there exists a nonzero vector x, which is unique
up to a scalar multiple, such that x'(I, - A) = 0. Clearly x is proportional to any
column of the cofactor matrix of I, — A. But /, — A is a weighted version of the
Laplacian matrix of G. By the Matrix-Tree Theorem its cofactors represent th{s
sum of the weights of certain spanning trees and hence are all positive. Thus we
have shown the existence of a vector x with positive components such that
xTA=x".

4. SPECTRAL PROPERTIES
Let G be a graph and let A,(G) 2A,(G) 2. . .2 A,(G) =0 denote the eigen-
values of the Laplacian L(G). The main problem that is addressed in the area of
spectral graph theory is the study of the relation between graph structure and the
spectrum of certain matrices assoclated with the graph. There is considerable work
“on the spectrum of the adjacency matrix (see [9]) but there are several interesting
results concerning the spectrum of a Laplacian as well.

To begin with, note that G is connected if and only if A, _ (G) > 0. To describe
additional results, let us denote by d,(G)2d,(G)2...2d(G), the vertex
degrees in G.

A simple application of the variational principle for the largest eigenvalue
shows that A;(G) 2d,(G). Similarly, by the Gershgorin Discs Theorem we
conclude that A,(G) < 24,(G). We now show that the first of these two statements

can be sharpened.
THEOREM 2. For any graph G, \(G) 2d,(G) + 1.
Proof. We write d, instead of dy(G). Let
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| T
L(G) = [f’ 3 l]

= =

Vd, .
Ezlrz

1
VIx (L~ )

Let

Then L(G) = FFT. Now

F'F =

[dy+1 *]

* *

Now observe that A,(G), which by definition is the maximum engenvalue of
FFT, equals the maximum eigenvalue of F TF and since d, + 1 is a main diagonal
entry of F'F, we conclude that A,(G) 2d, + 1. %

Theorem 2 is due to Merris. A more general result is described in the next

section,

5. MAIJORIZATION
If xe R", we donote by x;;2.. .2 x); the components of x in hdecrea's'ing

order. If x, y e R", we say that x is majorized by y, if

k
? x[l]"—:. E y[f]' k=],2,....ﬂ—l

i=1 i=1

n H

By a classical result of Schur, if A is an n X n real, symmetric matrix, then the
diagonal elements ay,...,a,, of A are majonized by the eigenvalues of A.
Applying this result to the Laplacian matrix we conclude that the degree sequence
d|(G)2...2d,(G) is majorized by the eigenvalues ,(G) 2...2A,(G) of the
'Laplat.:ian.

One expects that for a Laplacian, which is a special symmetric matrix with
more structure, one should be able to strengthen this result. Indeed, it was recently -
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proved by Grone [12] that for a connected graph G, the sequence d,(G) + 1,
ds(G),...,d,_(G),d,(G) - 1 is majorized by A(G), . .., A,(G). In particular,
A(G) 2d,(G) + 1, an inequality which was established in the previous section.

6. AUTOMORPHISM GROUP OF A GRAPH

Let S, denote the symmetric gfoup of degree n. If o € S, let P° denote the
permutation matrix corresponding to 0. Thus P° has 1 at positions (i, 6(i)),
i=1,2,...,n and zeros elsewhere. Let G=(V(G), E(G)) be a graph with n
vertices. A permutation ¢ € S, is called an automorphism of G if ¢ applied to
V(G) preserves adjacency. In other words, ¢ is an automorphism if A(G) =
PPA(G)P®", where A(G) is the adjacency matrix of G. The set of automorphisms
of G is clearly a subgroup of §, and is called the automorphism group of G,
denoted I'(G).

There are many results in the literature regarding automorphism groups of

-graphs; see, for example, [9]. We just give one example.

THEOREM 3. Let G be a connected graph. If some permutation in I'(G) has

s odd cycles and t even cycles, then L(G) has at most s + 2t simple eigenvalues.
Here are some consequences of the above result.

COROLLARY 4. If some permutation in I'(G) has a cycle of length at least 3,
then L(G) has a repeated eigenvalue.

COROLLARY 5. If the eigenvalues of L(G) are all distinct then each element
in I'(G) has order 2 and, in particular, I'(G) is abelian.

7. LAPLACIAN SPECTRUM OF A TREE

There are a large number of results in the literature concerning the Laplacian

spectrum of a tree. We give some sample results here and refer to Merris [15] for

further details.
A vertex is called a pendant vertex if it has degree 1.

THEOREM 6. Let T be a tree and let A be an eigenvalue of the Laplacian
L(T). Then the multiplicity of A is at most p(T) — 1 where p(T) is the number of

pendant vertices in T.
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THEOREM 7. Let T be a tree with n vertices. If A > 1 is an integer eigenvalue
of L(T), then A divides n.

For any graph G, Fiedler has defined the algebraic connectivity of G as the
second largest eigenvalue A, _; of L(G). Note that G is connected if and only if

its algebraic connectivity is positive. The next result gives bounds for the

algebraic connectivity of a tree.

THEOREM 8. For any tree T, the algebraic connectivity a(T) satisfies

2(1 —cos E) <a(T)< 1.

Equality holds in the first inequality if and only if T is a path, while it holds in
the second inequality if and only if T is a star (i.e., a tree in which all vertices

except one have degree 1.)

We remark that Fiedler [10] has obtained some interesting and deep results
concerning the eigenvector of L(T) corresponding to the algebraic connectivity
a(T).

8. DISTANCE MATRIX
Let G be a connected graph with V(G) = {1, 2, ..., n}. The distance d(i, j)
between vertices i, j is defined to be the length of the shortest path between i, j.
The distance matrix A(G) of G is the n X n matrix [d(i, j)]. This matrix turns up

in some applications in biochemistry.

For an arbitrary graph the distance matrix is quite intractable, but for a tree,

it has nice properties, some of which involve the Laplacian.

The next result due to Graham and Pollak [11] shows that the determinant of

the distance matrix of a tree depends only on the number of vertices.

THEOREM 9. If T is a tree with n vertices, then the determinant of A(T) is
5 i (o &

The Wiener index of a graph G with vertex set {1,2, ..., n} is defined to be
Z d(i, j). The Wiener index arises in several applications. For example:
i<j :
(i) In biochemistry, it represents n” times the mean squared radius of gyration

of a polymer molecule.
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(i1) In design of experiments, minimization of the Wiener index is the
well-known A-optimality criterion.

THEOREM 10. Let T be a tree with Laplacian eigenvalues A(T)2...
n-1 )
Ap-1((T) 2 A, (T)=0. Then the Wiener index of T equals n 2 __?t.{lG)

If A is an nXxXm matrix, then an mxn matrix G is called a generalized
inverse of A if AGA = A. The Moore-Penrose inverse of A, denoted by A*, is an
mxn matrix satisfying the equations AGA=A, GAG =G, (AG)"=AG and
(GA)" = GA. 1t is well-known that any complex matrix admits a unique Moore-

Penrose inverse; see, for example, [4, 6].

- Let T be a tree with n vertices and let A, A be the adjacency matrix and the
distance matrix of T respectively. Merris [15] has observed that ATAA = 21,

As shown in [2], AA* =1, —%J,,, where J, is the matrix of all ones. Thus it

follows, using elementary properties of the Moore-Penrose inverse, that if
= [1;] is the Moore-Penrose inverse of the Laplacian matrix of 7, then

I+ I;; - 215-’ = d(i, j), |
for all i, j. We refer to [2] for further details and for combinatorial formulae for
A" and L*.
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