Jun Liu

Jun Liu

Cary, North Carolina, United States
1K followers 500+ connections

About

Jun enjoys processing the large scale data to uncover meaningful and interesting results.…

Activity

Join now to see all activity

Experience

Education

  • Nanjing University of Aeronautics and Astronautics Graphic

    Nanjing University of Aeronautics and Astronautics

    -

    Activities and Societies: I helped organize the weekly seminar at the PARNEC group.

    · Dissertation Topic: "Research on Subspace Representation of Face Images"
    · Advisor: Prof. Songcan Chen

    My Ph.D. thesis was awarded the Excellent Ph.D. Thesis of Jiansu Province, P. R. China, 2009

  • -

    Activities and Societies: In this college, the best thing is to meet my wife.

    In the national college entrance examination of 1998, I obtained a score of 646 (out of 750). I hoped to attend Perking University, but failed.

    I obtained 147 (out of 150) for both math and physics, but did poorly for Chinese.

  • -

    Activities and Societies: The school locates in the Rugao town. Before this, I lived and studied in the countryside. I learned mathematics and physics very hard, and got many full scores for mathematics.

    http://www.rgzx.net.cn/

Patents

  • Acceleration of sparse support vector machine training through safe feature screening

    Issued US 9,495,647

    A system for machine training can comprise one or more data processors and a non-transitory computer-readable storage medium containing instructions which, when executed on the one or more data processors, cause the one or more data processors to perform operations including: accessing a dataset comprising data tracking a plurality of features; determining a series of values for a regularization parameter of a sparse support vector machine model, the series including an initial regularization…

    A system for machine training can comprise one or more data processors and a non-transitory computer-readable storage medium containing instructions which, when executed on the one or more data processors, cause the one or more data processors to perform operations including: accessing a dataset comprising data tracking a plurality of features; determining a series of values for a regularization parameter of a sparse support vector machine model, the series including an initial regularization value and a next regularization value; computing an initial solution to the sparse support vector machine model for the initial regularization value; identifying, using the initial solution, inactive features of the sparse support vector machine model for the next regularization value; and computing a next solution to the sparse support vector machine model for the next regularization value, wherein computing the next solution includes excluding the inactive features.

    See patent
  • Mri reconstruction with motion-dependent regularization

    Issued US 9,482,732

    A method of image reconstruction for a magnetic resonance imaging (MRI) system includes obtaining k-space scan data captured by the MRI system, the k-space scan data being representative of an undersampled region over time, iteratively reconstructing preliminary dynamic images for the undersampled region from the k-space scan data via optimization of a first instance of a minimization problem, the minimization problem including a regularization term weighted by a weighting parameter array…

    A method of image reconstruction for a magnetic resonance imaging (MRI) system includes obtaining k-space scan data captured by the MRI system, the k-space scan data being representative of an undersampled region over time, iteratively reconstructing preliminary dynamic images for the undersampled region from the k-space scan data via optimization of a first instance of a minimization problem, the minimization problem including a regularization term weighted by a weighting parameter array, generating a motion determination indicative of an extent to which each location of the undersampled region exhibits motion over time based on the preliminary dynamic images, and iteratively reconstructing motion-compensated dynamic images for the region from the k-space scan data via optimization of a second instance of the minimization problem, the second instance having the weighting parameter array altered as a function of the motion determination.

    See patent
  • Multi-GPU FISTA Implementation for MR Reconstruction with Non-Uniform K-Space Sampling

    Issued US 9,466,102

    A system for performing image reconstruction in a multi-threaded computing environment includes one or more central processing units executing a plurality of k-space components and a plurality of graphic processing units executing a reconstruction component. The k-space components executing on the central processing units include a k-space sample data component operating in a first thread and configured to receive k-space sample data from a first file interface; a k-space sample coordinate data…

    A system for performing image reconstruction in a multi-threaded computing environment includes one or more central processing units executing a plurality of k-space components and a plurality of graphic processing units executing a reconstruction component. The k-space components executing on the central processing units include a k-space sample data component operating in a first thread and configured to receive k-space sample data from a first file interface; a k-space sample coordinate data component operating in a second thread and configured to receive k-space sample coordinate data from a second file interface; and a k-space sample weight data component operating in a third thread and configured to retrieve k-space sample weight data from a third file interface. The reconstruction component is configured to receive one or more k-space input data buffers comprising the k-space sample data, the k-space sample coordinate data, and the k-space sample weight data from the one or more central processing units, and reconstruct an image based on the input data buffers using an iterative reconstruction algorithm.

    See patent
  • Dynamic Image Reconstruction with Tight Frame Learning

    Issued US 9,453,895

    A computer-implemented method for learning a tight frame includes acquiring undersampled k-space data over a time period using an interleaved process. An average of the undersampled k-space data is determined and a reference image is generated based on the average of the undersampled k-space data. Next, a tight frame operator is determined based on the reference image. Then, a reconstructed image data is generated from the undersampled k-space data via a sparse reconstruction which utilizes the…

    A computer-implemented method for learning a tight frame includes acquiring undersampled k-space data over a time period using an interleaved process. An average of the undersampled k-space data is determined and a reference image is generated based on the average of the undersampled k-space data. Next, a tight frame operator is determined based on the reference image. Then, a reconstructed image data is generated from the undersampled k-space data via a sparse reconstruction which utilizes the tight frame operator.

    See patent
  • Mri reconstruction with incoherent sampling and redundant haar wavelets

    Issued US 9,396,562

    A method of image reconstruction for a magnetic resonance imaging (MRI) system having a plurality of coils includes obtaining k-space scan data captured by the MRI system, the k-space scan data being representative of an undersampled region over time, determining a respective coil sensitivity profile for the region for each coil of the plurality of coils, and iteratively reconstructing dynamic images for the region from the k-space scan data via an optimization of a minimization problem. The…

    A method of image reconstruction for a magnetic resonance imaging (MRI) system having a plurality of coils includes obtaining k-space scan data captured by the MRI system, the k-space scan data being representative of an undersampled region over time, determining a respective coil sensitivity profile for the region for each coil of the plurality of coils, and iteratively reconstructing dynamic images for the region from the k-space scan data via an optimization of a minimization problem. The minimization problem is based on the determined coil sensitivity profiles and redundant Haar wavelet transforms of the dynamic images.

    See patent
  • Zero communication block partitioning

    Issued US 9,286,648

    A computer-implemented method for calculating a multi-dimensional wavelet transform in an image processing system comprising a plurality of computation units includes receiving multi-dimensional image data. An overlap value corresponding to a number of non-zero filter coefficients associated with the multi-dimensional wavelet transform is identified. Then the multi-dimensional image data is divided into a plurality of multi-dimensional arrays, wherein the multi-dimensional arrays overlap in…

    A computer-implemented method for calculating a multi-dimensional wavelet transform in an image processing system comprising a plurality of computation units includes receiving multi-dimensional image data. An overlap value corresponding to a number of non-zero filter coefficients associated with the multi-dimensional wavelet transform is identified. Then the multi-dimensional image data is divided into a plurality of multi-dimensional arrays, wherein the multi-dimensional arrays overlap in each dimension by a number of pixels equal to the overlap value. A multi-dimensional wavelet transform is calculated for each multi-dimensional array, in parallel, across the plurality of computation units.

    See patent
  • Multi-stage magnetic resonance reconstruction for parallel imaging applications

    Issued US 9,097,780

    A computer-implemented method for reconstruction of a magnetic resonance image includes acquiring a first incomplete k-space data set comprising a plurality of first k-space lines spaced according to an acceleration factor and one or more calibration lines. A parallel imaging reconstruction technique is applied to the first incomplete k-space data to determine a plurality of second k-space lines not included in the first incomplete k-space data set, thereby yielding a second incomplete k-space…

    A computer-implemented method for reconstruction of a magnetic resonance image includes acquiring a first incomplete k-space data set comprising a plurality of first k-space lines spaced according to an acceleration factor and one or more calibration lines. A parallel imaging reconstruction technique is applied to the first incomplete k-space data to determine a plurality of second k-space lines not included in the first incomplete k-space data set, thereby yielding a second incomplete k-space data set. Then, the parallel imaging reconstruction technique is applied to the second incomplete k-space data to determine a plurality of third k-space lines not included in the second incomplete k-space data, thereby yielding a complete k-space data set.

    See patent
  • Image reconstruction using redundant Haar wavelets

    Issued US 8,948,480

    A method for image reconstruction includes receiving under-sampled k-space data, determining a data fidelity term of a first image of the under-sampled k-space data in view of a second image of the under-sampled k-space data, wherein a time component separated the first image and the second image, determining a spatial penalization on redundant Haar wavelet coefficients of the first image in view of the second image, and optimizing the first image according the data fidelity term and the…

    A method for image reconstruction includes receiving under-sampled k-space data, determining a data fidelity term of a first image of the under-sampled k-space data in view of a second image of the under-sampled k-space data, wherein a time component separated the first image and the second image, determining a spatial penalization on redundant Haar wavelet coefficients of the first image in view of the second image, and optimizing the first image according the data fidelity term and the spatial penalization, wherein the spatial penalization selectively penalizes temporal coefficients and an optimized image of the first image is output.

    See patent
  • Alternating direction of multipliers method for parallel MRI reconstruction

    Issued US 8,879,811

    A method for reconstructing parallel magnetic resonance images includes providing a set of acquired k-space MR image data y, and finding a target MR image x that minimizes ½∥Fv−y∥2 2+λ∥z∥1 where v=Sx and z=Wx where S is a diagonal matrix containing sensitivity maps of coil elements in an MR receiver array, F is an FFT matrix, W is a redundant Haar wavelet matrix, and λ≧0 is a regularization parameter, by updating...

    See patent

Recommendations received

More activity by Jun

View Jun’s full profile

  • See who you know in common
  • Get introduced
  • Contact Jun directly
Join to view full profile

Other similar profiles

Explore collaborative articles

We’re unlocking community knowledge in a new way. Experts add insights directly into each article, started with the help of AI.

Explore More

Others named Jun Liu in United States

Add new skills with these courses