Snapsolve any problem by taking a picture.
Try it in the Numerade app?
Question
(Matrices) From 2.7-7 we know that an $r \times n$ matrix $A=\left(\alpha_{j k}\right)$ defines a linear operator from the vector space $X$ of all ordered $n$-tuples of numbers into the vector space $Y$ of all ordered $r$-tuples of numbers. Suppose that any norm $\|\cdot\|_{1}$ is given on $X$ and any norm $\|\cdot\|_{2}$ is given on $Y$. Remember from Prob. $10, \mathrm{Sec}$. 2.4, that there are various norms on the space $Z$ of all those matrices ( $r$ and $n$ fixed). A norm $\|\cdot\|$ on $Z$ is said to be compatible with $\|\cdot\|_{1}$ and $\|\cdot\|_{2}$ ifShow more…
$$
\|A x\|_{2} \leqq\|A\|\|x\|_{1} .
$$
Show that the norm defined by
$$
\|\boldsymbol{A}\|=\sup _{x \in x \atop x \neq 0} \frac{\|A x\|_{2}}{\|x\|_{1}}
$$
is compatible with $\|\cdot\|_{1}$ and $\|\cdot\|_{2}$. This norm is often called the natural norm defined by $\|\cdot\|_{1}$ and $\|\cdot\|_{2} .$ If we choose $\|x\|_{1}=\max _{t}|\xi|$ and $\|y\|_{2}=\max _{1}\left|\eta_{k}\right|$, show that the natural norm is
$$
\|A\|=\max _{i} \sum_{k=1}^{n}\left|\alpha_{j k}\right|
$$
Introductory Functional Analysis with Applications
Chapter 2, Problem 12
Instant Answer
Step 1
To do this, we need to show that $$ \|A x\|_{2} \leqq\|A\|\|x\|_{1} . $$ By definition of the norm $\|\boldsymbol{A}\|$, we have $$ \|\boldsymbol{A}\|=\sup _{x \in x \atop x \neq 0} \frac{\|A x\|_{2}}{\|x\|_{1}} \geq \frac{\|A x\|_{2}}{\|x\|_{1}} $$ for any $x Show more…
Show all steps