Conchoidal fracture is a smoothly curving fracture surface of fine-grained materials which have no planar surfaces of internal weakness or planes of separation (no cleavage). Such a curving fracture surface is characteristic of glass and other brittle materials with no crystal structure. However, conchoidal fracture is common in crystalline materials also if they have no cleavage (like mineral quartz), or if they are composed of very small mineral grains so that the fracture surface which is actually zigzagging between the grains appears smooth to our eyes. This is the case with many fine-grained (aphanitic) rocks.
Smoothly curving fracture surface develops when force is rapidly applied to brittle objects like hitting a piece of obsidian (volcanic glass) with a hard pointy object. If the force is applied correctly, a flake of obsidian is peeled away leaving obsidian with a smoothly curving fracture surface and sharp edges. It was the way our ancestors made sharp cutting tools.
Why is the fracture surface smoothly curving? Because we apply a force to only one point. This is where the brittle deformation starts. The energy of the blow spreads in the material like seismic waves travels through the Earth. So the curving lines are like the fronts of seismic energy recorded on the fracture surface. The fracture can occur only if the blow is energetic enough to peel off a flake. We need to apply more force if we want to shatter a large piece of material and much less if we just want to peel off a small flake from the edge.
Thanm you! Have been an amateur a haeologist for years but just recently began studying ro ks Bd minerals. Greay Ppreciated cor photos and reasons for differences. Keep up the good work.