I
I
T
-
J
E
E
O
b
j
e
c
t
i
v
e
M
a
t
h
e
m
a
t
i
c
s
E
r
.
L
.
K
.
S
h
a
r
m
a
[233] Mathematics for I I T-J EE (Hints/Solutions)
1. , and b c b c
are three non-coplanar vectors , hence
any vector ( ) r
in space can be represented by
( ) ,
| | | | | |
r b c b c
b c b c
= + +
where , ,
are the projections of on , r b c
and
b c
respectively.
projection of
.
on
| |
b
r b
b
= =
Similarly ,
. ( ).
and
| | | |
r c b c r
c b c
= =
Now ,
2
.( )
( . ) ( . ) ( )
| |
r b c
r r b b r c c b c
b c
= + +
( | | | | 1) b c = =
2
.( )
( . ) ( . ) ( )
| |
a b c
a b b a c c b c a
b c
+ + =
required vector a =
2. Let point P represents the origin
2
( )
2
1 1
a b
b a
SX
PX
XM
| |
+
+
|
\ .
= =
+
2
2
a b
PM
+
=
`
)
( )
1 1
PX u u
PX a b
XR u
= = +
+
...(ii)
PX
from (i) and (ii) is equal
( 1) 1
2
( )
1 1
a b
u
a b
u
| |
+ +
|
\ .
+ =
+ +
( 1) 1
2
| |
= +
|
\ .
4 =
1 4
4 5
XM SM
SX SX
= =
4
5
k =
3. | | | | | | 1 a b c = = =
. 0, . . cos a b a c b c = = =
( ) ( ) c p a b q a b = + +
. . cos . a c b c p p = = =
Now ,
2
2
| | ( ) ( ) c p a b q a b = + +
2 2
1 ( | | 1) p p q a b = + + =
2 2
1 2cos cos2 q = =
(cos2 ) 0 s
3
4 4
s s
4. Applying vector triple product
( )
( )
( ) ( )
( )
3 . . . 0 a ak k a j j ai i i j k + + + + =
( )
( )
( )
( )
2 . . . a i j k a ai i a j j ak k = + + = + +
3 3
or
2 2 2 3
i j k
a a
+ +
= =
5. x
lies in plane of and a b
and it is normal to
( )
. . 0 b xb=
Let
( ) ( )
x b a b =
( ) ( ) ( )
. . x b b a b a b =
( )
3 5 6 x i j k = + +
Now ,
1
. 7
2
a x = =
( )
1
3 5 6
2
x i j k = + +
Chapter No -29 ( Vectors )
I
I
T
-
J
E
E
O
b
j
e
c
t
i
v
e
M
a
t
h
e
m
a
t
i
c
s
E
r
.
L
.
K
.
S
h
a
r
m
a
[234] Mathematics for I I T-J EE (Hints/Solutions)
6. ( ) ( ) ( ) ( ) ( ) ( ) { }
a b r c b c r a c a r b + + =
AddingthethreeV.T.P.
a b c r a b r c
b c a r b c r a
c a b r c a r b
( (
( (
`
( (
)
{ }
3 a b c r a b r c b c r a c a r b ( ( ( ( + +
{ }
3 a b c r a b c r
( (
=
2 a b c r ( =
7. Volume a b b c c a
(
= + + +
2 a b c
(
=
2| | 2 = =
8.
2 2 2
a b b c c a + +
{ }
2 2 2
2 2 . . . a b c ab bc ca
| |
= + + + +
|
\ .
{ }
2 2 2 2
2(3) a b c a b c = + + + + +
2
9 a b c = + +
maximumvalue =9
( )
0 a b c + + >
9.
( ) ( )
. 0 a d b c AD BC =
( ) ( )
. 0 b d c a BD AC =
D
is intersection point of altitudes
D
is orthocentre of
ABC A
10. ( )
a b c
represents the vector in plane of and b c
,
and the vector is normal to a
( )
( )
a b c
n
a b c
| |
|
=
|
+ |
\ .
Required unit vector
3
10
j k
| |
= |
|
\ .
11.
( ) ( ) ( ) ( )
. a b c b c b c +
( ) { } ( )
. a b c b c b c b c a b c
( (
= + +
( ) { } ( )
0 . a b c b c b c
(
= +
{ }
2 2
. a b c b c
(
=
( )
0 1 b c = = =
12. and r a b r c d = =
( ) ( )
r a c b d =
( ) ( )
. 0 a c b d =
. . . . 0 ab ad cb cd + =
( )
. . 0 . . 0 ad cb ab cd + = = =
13. Let d xa yb = +
( )
.
1
3
xa yb c
c
+
=
( ) ( )
. .
1
3
x a c y b c
c
+
=
2 1 or (2 1) x y y x = =
(2 1) d xa x b = +
(3 1) (3 2 ) (3 1) d x i x j x k = + +
for
1, 2 2 x d i j k = = + +
14.
1
2
. ba
b b a
a
=
( ) 1
2
.
. . .
ba
b a ba aa
a
=
2
1. 0 . b a aa a
| |
= =
|
\ .
and a b
are orthogonal vectors.
Now ,
( )
1
1 1 1 1 1
2
.
. . 0 .
b c
c b cb b b
b
=
1 1 1 1 . 0 or . 0 c b b c = =
15.
( )
. a b c
represents the volume of a parallelepiped
I
I
T
-
J
E
E
O
b
j
e
c
t
i
v
e
M
a
t
h
e
m
a
t
i
c
s
E
r
.
L
.
K
.
S
h
a
r
m
a
[235] Mathematics for I I T-J EE (Hints/Solutions)
and if it equals to , a b c
then it represents the
volume of cuboid.
. . . 0 ab bc ca = = =
16. Let normal vector of plane determined by vectors
1 and be i i j n +
and for the another plane let the
normal vector be 2 n
As shown in figure , a
is normal to both the vectors
( ) 1 2 . . and i e n n
( ) 1 2 Let a n n =
( ) ( )
( )
( ) ( ) { }
a i i j i j i k = + +
( )
a i j =
Let angle between a
and
2 2 i j k +
be
( )
( )
2
(1 2) 1
cos
2
2 9
+
= =
4
=
17.
( )
( )
( )
( )
. . . 1 b a b a a a b a b a a = =
( )
( )
. b a b a a b a =
( )
( )
3 and a b a b a
are orthogonal vectors,
hence the triangle is right-angled
Let the internal angles be 90 , , 90
( )
( )
3
tan
a b
a b a
( ) ( )
3
tan
sin90
a b
a b a
a b a
tan 3 60 = =
internal angles are 30 , 60 , 90 .
18.
( )
. U V W U V W
(
=
cos U V W U V W
(
=
( )
min
1 U V W V W U
(
= =
59 =
19. Let
w xa yv = +
( )
. . wa x y v a = +
cos cos x y = ...(i)
Similarly ,
( )
. . wv x a v y = +
cos2 ( cos )x y = + ...(ii)
from (i) and (ii) ,
( )
2 . w v a v a =
20. In , ABC BC AC AB A =
BA CA BC = +
2e e f
BA
e e f
= +
e f
BA
e f
| |
|
= +
|
\ .
Now ,
2 2
. .
.
e e f f
BC BA
e f
| |
|
=
|
|
\ .
. 0 BC BA =
90 ABC Z =
cos2 cos2 2cos( ).cos( ) A C A C A C + = +
0 ( 90 ) A C = + =
cos2 cos2 cos2 (cos2 0) A B C B + + = +
1 ( 2 180 ) B = =
I
I
T
-
J
E
E
O
b
j
e
c
t
i
v
e
M
a
t
h
e
m
a
t
i
c
s
E
r
.
L
.
K
.
S
h
a
r
m
a
[236] Mathematics for I I T-J EE (Hints/Solutions)
21.
( ) ( )
. 1 a b c d =
( ) ( )
1 and || a b c d a b c d = =
, , and arecoplanar a b c d
1
.
2
a c=
angle between and a c
is
60
1 a b =
angle between and a b
is 90 , and
similarly angle between and c d
is 90.
As shown in figure , and b d
are orthogonal to
and a c
respectively
, b d
are non-parallel.
22. Let ; 0 a b c
(
= =
1 2 6
, ,..... can be or P P P
i k
j l
P P
P P
+
`
)
can not attain the value of 1
23. For cyclic quadrilateral ABCD , A C Z + Z = and
. B D Z + Z =
tan( ) 0 tan tan 0 A C A C + = + =
sin sin
0
cos cos
A C
A C
+ =
( ) ( )
0
. .
AB AD CB CD
ABAD CBCD
+ =
( ) ( ) ( ) ( )
0
. .
a b b d d a b c c a d b
b a d a b c d c
+ + + +
+ =
`
)
24.
( ) ( )
. . r a b c a c b =
( )
r b c a =
( )
. 0 and . 0 r a r b c = =
25. Diagonal vectors are and a b a b +
( ) ( )
.
cos
a b a b
a b a b
+
=
+ +
1
cos
2
=
=
4
Now , angle between diagonals can be
3
4
26. . 0 a b x R > e
( 1) ( 1) 0 x x x a x R + + + > e
2
2 1 0 x x a x R + + > e
0 2 D a < >
27.
( ) ( ) { }
. . a b a c d
. a b c a d
(
=
( )
. a d a b c
(
=
28. 1 a b = =
( ) ( ) ( ) 1 . . . u a a b b b b a a b b = =
( ) 1 u b a b =
1. 0 u b =
2 u a b =
1 sin90 u b a b =
1 2 u u =
( ) 2 1 2 1 or . . 0 u u u b u b = + =
29. Given conditions imply that r
is orthogonal to
, , a b c
.
, , a b c
are coplanar
0 a b c
(
=
30. Let the vertex points be ( ) ( ) ( )
, , A a B b C c
and
( )
D d
Now ,
1 1 AA AB AC + =
I
I
T
-
J
E
E
O
b
j
e
c
t
i
v
e
M
a
t
h
e
m
a
t
i
c
s
E
r
.
L
.
K
.
S
h
a
r
m
a
[237] Mathematics for I I T-J EE (Hints/Solutions)
( )
2 2
b c c d
a a c a
| | | |
+ +
+ =
| |
| |
\ . \ .
( )
2
2 2
b d
c a c a + + =
( )
2
2 2 2
a c b d c a
c a c a
| |
+ + +
+ = =
|
|
\ .
( )
3 3
2 2
c a c a =
3
2
=
31.
from figure , cos CD a =
( )
. a b
b
b
=
`
)
( )
2
. ab
b
b
=
`
)
Now , CD DB CB + =
CB CD =
( )
2
2
. b a a b b
a
b
= =
32. 0 a b =
and a b
are collinear vectors
| |
2
2
1 cos
sin
sin
|sin | |cos |
cos
1
x
x
x
x x
e x
xe
e
+
= =
| | ( )
sin
cos
1 1 |sin | |cos | 1
x
x
x x x R
xe
= = + = e
sin
cos 0
x
x xe =
Let
sin
( ) cos
x
f x xe x =
( )
sin sin
'( ) . cos sin
x x
f x e xe x x = + +
'( ) 0 0,
2
f x x
| |
> e
|
\ .
Now , (0). (1)
2 2
e
f f
| | | |
=
| |
\ . \ .
(0). 0 and ( )
2
f f f x
| |
<
|
\ .
is strictly increasing
in
0,
2
| |
|
\ .
Unique value of ' ' x exists in 0,
2
| |
|
\ .
Similarly ,
3
'( ) 0 ,
2
f x x
| |
> e
|
\ .
( )
3 3
( ) 1
2 2
f f
e
| | | |
=
| |
\ . \ .
( )
3
0
2
f f
| |
>
|
\ .
and ( ) f x is increasing in
3
,
2
| |
|
\ .
no value of
' ' x
exists in
3
,
2
| |
|
\ .
.
33.
( )
2 2
cos sin (2cos sin ) . OP t t t t a b = + +
( )
1 (sin2) . OP t a b = +
maximum value of
( )
1 . OP a b = +
( )
. 0 a b >
( )
1 . L a b = +
for 2 90 t =
Now , if
45 ,
2
a b
t OP
| |
+
= = |
|
\ .
2
2
a b a b
n
a b a b
+ +
= =
+ +
a b
n
a b
+
=
+
I
I
T
-
J
E
E
O
b
j
e
c
t
i
v
e
M
a
t
h
e
m
a
t
i
c
s
E
r
.
L
.
K
.
S
h
a
r
m
a
[238] Mathematics for I I T-J EE (Hints/Solutions)
34.
( )
2
2
2
1 1
. 1 1 0
1 1
a b c
= =
1 1 2 3
R R R R + +
2 2 2
2
2
2 2 2
1 1 0
1 1
( )
2 2
2
1 1 1
2 1 1 0
1 1
Apply
1 1 2 2 2 3
and C C C C C C
( )
2 2 2
2 2
0 0 1
2 1 1 1 0
0 1
+ =
+
( )( )
2
2 2
2 1 0 + =
2 =
35. . 0 >
( ) ( )
2
3 3 ( ) 0 a b c ab bc ac + + + >
( )
2 2 2
(2 3 ) 0 a b c ab bc ac + + + + + >
( )
2 2 2
3 2
a b c
ab bc ac
| |
+ +
s
|
|
+ +
\ .
for scalene triangle ,
2
2
a b c < ...(i)
2
2
b c a < ...(ii)
2
2
c a b < ...(iii)
Adding (i) , (ii) and (iii)
( )
( )
2 2 2
2
a b c
ab bc ac
+ +
<
+ +
( ) 3 2 2 <
4
3
<
Now , exhaustive set of values of
4
is ,
3
| |
|
\ .
36. If
( ) ( )
and a b c a b c
are perpendicular to each
other , then :
( ) ( ) { } ( ) ( ) { }
. . . . . 0 a c b a b c a c b b c a =
( ) ( )( )
{ }
2
. . . 0 a c b a c b c =
( )
. a c
is not necessarily zero
Statement (1) is false and statement (2) is true.
37.
( ) ( )
r a r b a b b a + = +
( )
0 r a b + =
( )
and r a b +
are collinear
( )
r a b = +
( )
1
2 2
9
r i j k = +
Statements (1) and (2) are true and the explanation is
appropriate.
38. Given equation can be written as :
2 2
3 2 0 p u v w pq u v w q u v w ( ( ( + =
( )
2 2
3 2 0 0 p pq q u v w
(
+ = =
Disc =124 <0
( ) 0 , p q p q R = = e
Statements (1) and (2) are true and the reasoning is
appropriate.
39.
( )
r b r a = +
2 2
r r a b =
( ) ( )
2 2 2
2 . r r a r r a b + =
( )
2 2
1 . 0 r r r a + = =
1 2
of
2 2
r =
Statement (1) is true.
As per statement (2) , 2r b a b = +
2r b a b =
( )
r r b a b + =
( ) ( )
r r a a b r b r a + = = +
I
I
T
-
J
E
E
O
b
j
e
c
t
i
v
e
M
a
t
h
e
m
a
t
i
c
s
E
r
.
L
.
K
.
S
h
a
r
m
a
[239] Mathematics for I I T-J EE (Hints/Solutions)
( )
r a b r = +
( )
r a b r = +
is not true because r
and b r +
are not
perpendicular to each other
Statement (2) is false.
40.
( ) ( )
r a b a c =
r a a c b b a c a
( (
=
r a b c a
(
=
and r a
are collinear
( )
0 a b c
(
=
and r a
are linearly dependent
Statement (1) is true.
Now . . r b a b c a b
(
=
. r b
is not essentially zero.
Similarly . r c
is also not essentially zero.
Statement (2) is false.
I
I
T
-
J
E
E
O
b
j
e
c
t
i
v
e
M
a
t
h
e
m
a
t
i
c
s
E
r
.
L
.
K
.
S
h
a
r
m
a
[240] Mathematics for I I T-J EE (Hints/Solutions)
1.
Let
1
CD
DA
=
position vector of
4 1 2 2 1
1 1 1
D i j k
+ | | | | | |
= + +
| | |
+ + +
\ . \ . \ .
Now ,
5 6 3 (2 1)
1 1 ( 1)
DB i j k
+ + | | | |
= +
| |
+ + + \ . \ .
. 0 . 0 ADBD DBDC = =
25 18 9 2 1 0 =
15 20 =
3
4
=
p . r . of
13 2 10
7 7 7
D i j k = +
169 4 100
49
OD
+ +
=
39
7
2. Area of
1
2
CDB DB DC A =
1
600 420 60
98
i j k =
150 6
Area Squareunits.
49
=
3.
.
cos( )
BC BD
DBC
BC BD
Z =
2 10
7
=
1
2 10
cos
7
DBC
| |
Z =
|
|
\ .
4.
as shown in figure , PQ RQ =
p r p p r r + = +
p r =
OP OR PQ RQ = = =
OPQR is rhombus
3 2
5 5
PQR OPQ
Z = Z =
SR r p p = =
r
2 2
2
2 . p r p p + =
( )
r p =
2
2
2
3
cos
5
r p
p
3 2
2cos or 2cos
5 5
=
Now ,
2 5 1 5 1
1 2cos 1 2
5 4 2
PS
QR
| |
+
= + = + =
|
|
\ .
I
I
T
-
J
E
E
O
b
j
e
c
t
i
v
e
M
a
t
h
e
m
a
t
i
c
s
E
r
.
L
.
K
.
S
h
a
r
m
a
[241] Mathematics for I I T-J EE (Hints/Solutions)
5. Area of polygon PQRST =OPQR +OTS +2(ORS)
( ) ( )
2
2
r p r p p r
= + +
2
1
2
r p
= +
`
)
2
2 2
2
r p
+
=
`
)
2 2
( 1) 1 ( 2cos72 1) 1
2 2 2 2
= + = +
2
1 5 1 1 5 5
1
2 2 2 4
| | | |
+
= + + =
| |
| |
\ . \ .
5 5
4
| |
+
=
|
|
\ .
6.
( ) 0
1
5
OC OP OQ OR OS OT = + + + +
( )
1
5
p p r r p r = + + + + +
( ) ( )
1
2
5
p r = + +
( )( )
1
2 2cos72
5
p r = +
2 5 1
1
5 4
p r
| |
= +
|
|
\ .
( )
5 5
10
p r
= +
7. I f 1 2 3 , , e e e
is given set of non-coplanar
vectors and
1 2 3
1 ;
. , then , ,
0;
m n
m n
e f f f f
m n
=
=
=
represent the reciprocal system of vectors.
1 2 3
1 2 3
1 e e e f f f
( (
=
Now ,
1 2 3
1 2 3
16 9 e e e f f f
( (
+
1 2 3
1 2 3
9
16 e e e
e e e
(
= +
(
By AM GM > property
minimumvalue 2 16 9 =
24 =
8. 1 2 3 2 e e e
(
=
1 2 3
2 f f f
(
=
4 =
given quadratic equation can be written as :
2
(2)(4)(3) ( ) (2)(3) 0
2 2
x x
| | | |
+ + =
| |
\ . \ .
2
(12 ) ( ) 3 0 x x + + =
Now ,
2
( ) 4(12)(3) D =
2
( ) 144( ) =
2
(4) 144(4) =
0 D <
9.
2
1 2 3 e e e
(
=
2
1 2 3
f f f
(
=
1 =
2
1 2 3
2
1 2 3
1
e e e
e e e
(
+ = +
(
By AM GM > property
2 + >
Now , sin cos x x + = +
sin cos 2 x x + >
Above inequality is not valid.
( )
1 sin cos 2 s + s
10. and a b
are non-collinear unit vectors
. 1 and 0 ab a b = =
Now
( )
2 2 a b a b + + =
Squaring both sides
( )
2
1 1 4 2 . 4 a b a b + + + =
( ) ( )
2
2 4 1 . 2 . 4 a b a b
| |
+ + =
|
\ .
( )
{ }
2 2 2 2
. a b a b a b =
( ) ( ) ( )
. 1 2 . 1 0 a b a b + =
1
. ; . 1
2
a b a b = =
I
I
T
-
J
E
E
O
b
j
e
c
t
i
v
e
M
a
t
h
e
m
a
t
i
c
s
E
r
.
L
.
K
.
S
h
a
r
m
a
[242] Mathematics for I I T-J EE (Hints/Solutions)
( )
2 2
2 . a b a b a b = +
3 a b =
( )
2 2 2 2
. a b a b a b = +
1 3
1
4 4
= =
3
2
a b =
Now, 2
a b
a b
11. ( ) ( ) ( )
1 1 1 2 2 2 3 3 3
6 a b c a b c a b c + + + + + + + + =
for maximumvolume , V a b c =
( )
3
2 2 2 2
1
r r r
r
V a b c
=
= + +
[
( ) ( ) ( )
1 1 1 2 2 2 3 3 3
3
a b c a b c a b c + + + + + + + +
>
( ) ( )
1/3
3
1
r r r
r
a b c AM GM
=
+ + >
`
)
[
( )( )( ) { }
3
1 1 1 2 2 2 3 3 3
6
3
a b c a b c a b c
| |
+ + + + + + s
|
\ .
( )( )( )
1 1 1 2 2 2 3 3 3
8 a b c a b c a b c + + + + + + s ...(i)
( ) ( )
2 2 2 2
1 1 1 1 1 1 1 1 1 1 1 1
2 a b c a b c ab bc c a + + = + + + + +
( )
2 2 2 2
1 1 1 1 1 1
a b c a b c + + > + + ...(ii)
( ) , , 0
r r r
a b c >
Similarly , ( )
2 2 2 2
2 2 2 2 2 2
a b c a b c + + > + + ...(iii)
( )
2
2 2 2
3 3 3 3 3 3
a b c a b c + + > + + ...(iv)
from (ii) , (iii) and (iv)
( ) ( ) ( )
2 2 2
1 1 1 2 2 2 3 3 3
. a b c a b c a b c + + + + + + >
( )
3
2 2 2
1
r r r
r
a b c
=
+ +
[
( )( )( ) { }
2
2
1 1 1 2 2 2 3 3 3
V a b c a b c a b c s + + + + + +
Using Inequality (i)
2
64 V s
8 V s
maximum volume=8
{
1 1 1 1 1 1
8exists, for 0, V ab bc ca = + + =
}
2 2 2 2 2 2 2 2 2 2 2 2
0 and 0 a b b c c a a b b c c a + + = + + =
12.
( ) ( ) ( )
. . a i a a a i a i a =
( ) ( )
( )
( ) { }
2
. . . b a i j k a i a a j a a k a = + + + +
( )
( )
2
. . . b a i j k a ai a j ak = + + + +
( )
( ) ( )
2
. 0 b a i j k a i j k = + + + + =
{ }
2 4
3 b a =
2
4
3
b
a
=
`
)
13. 1and 0, 0 a a b a c = = =
( ) ( ) { } ( )
. 2 P a b a b c a b c = +
{ } ( )
. 2 P b c a c a b c = +
( ) ( ) { }
. .2 P b c a a c b =
( )
3 . P a b c =
3 P a b c s
3 P b c s
( )
9 3 P b c s =
14. , ,
u v v w w u
x y z
u v v w w u
+ + +
= = =
+ + +
1 1 12cos 2cos
2
u v
+ = + + =
2cos and cos
2 2
r
v w w u
+ = + =
, and
2cos 2cos 2cos
2 2 2
u v v w w u
x y z
+ + +
= = =
Now ,
x y y z z x
(
( ) ( ) { }
. x y y z z x =
{ }
0 . x y z y z x
(
=
I
I
T
-
J
E
E
O
b
j
e
c
t
i
v
e
M
a
t
h
e
m
a
t
i
c
s
E
r
.
L
.
K
.
S
h
a
r
m
a
[243] Mathematics for I I T-J EE (Hints/Solutions)
2
x y z
(
=
2
2 2 2
64cos .cos .cos
2 2 2
u v v w w u
x y y z z x
(
+ + +
(
=
{ }
2
2 2 2
2
64cos cos .cos
2 2 2
u v w
x y y z z x
(
(
=
1
2
2
2 2 2
sec .sec .sec
2 2 2
4
u v w
x y y z z x
(
=
`
(
)
15. (a) Area of
1 1 1
2 2 2
ABC a b b c c a A = = =
a b b c c a = =
(b) In regular tetrahedron all the edges are of equal
length and the angle between two adjacent edges is
60
2
1
. . . (edgelength)
2
a b b c c a = = =
Area of all the faces is same
a b b c c a = =
(c) , a b c b c a = =
c a b =
, , a b c
forms an orthogonal system of
vectors having equal magnitude
. . . 0 a b b c c a = = =
2
a b b c c a a = = =
(d) a b c + =
1
.
2
a b c ab + = =
similarly ,
1
. .
2
b c c a = =
1
. . .
2
a b b c c a = = =
3
. . .
2
a b b c c a + + =
3
2
a b b c c a = = =