Practica N 4
Funcin objetivo
z = x1 + 2 x 2  max
Restricciones
2 x1 + 2 x 2  7
4 x1  5 x 2  9
4 x1  5 x 2  9
x1 , x 2  0
Llevamos a la forma estndar
2 x1 + 2 x 2 + s1 = 7
4 x1  5 x 2 + s 2 = 9
4 x1  5 x 2  s 3 = 9
Sacando la solucin inicial
x1 , x 2 = 0 variables no basicas
s1 = 7 
s 2 = 9  variables basicas
s 3 =  9
Solucin inicial inconsistente
Aplicamos el mtodo de dos fases
4 x1  5 x 2  s 3 + R1 = 9
x1 , x 2 , s 3 = 0 variables no basicas
s1 = 7 
s 2 = 9  variables basicas
R1 = 9
Solucin inicial factible
r =  Ri  min
r = R1  min
r  R1 = 0
r
R1
x1
x2
s1
s2
s3
R1
0
4
0
-5
0
0
0
0
0
-1
-1
1
Sol
0
9
x1
x2
s1
s2
s3
R1
4
2
4
4
-5
2
-5
-5
0
1
0
0
0
0
1
0
-1
0
0
-1
0
0
0
1
x1
x2
s1
s2
s3
R1
s1
s2
x1
0
1
0
9/2
0
-5/4
0
1
0
0
0
0
1
0
0
1/2
1
-1/4
-1
-1/2
-1
1/4
r
s1
s2
R1
Sol
9
7
9
9
Sol
0
5/2
0
9/4
Fase II
Z
x1
Z
s1
s1
x1
Z
x2
s2
x1
x1
x2
s1
s2
s3
-1
1
-2
-5/4
0
0
0
0
0
-1/4
sol
0
9/4
0
0
0
1
-13/4
9/2
0
-5/4
0
1
0
0
0
0
1
0
-1/4
1/2
1
-1/4
9/4
5/2
0
9/4
0
0
0
1
0
1
0
0
13/18
2/9
0
5/18
0
0
1
0
1/9
1/9
1
-1/9
73/18
5/9
0
53/18
Z = 73 / 18
x1 = 53 / 18
x2 = 5 / 9
Acotamiento
Establecemos la cota inferior:
Z*=-
Ramificacin
Z = 73 / 18
x1 = 53 / 18
x2 = 5 / 9
x1  [ 53 / 18] = 2
x1  2
x1 + s 4 = 2
x  [ 53 / 18] + 1 = 3
1
X1 = 3
x1  3
X2 = 1/2
S2 = -1/2 x1  s ' 4 = 3
 x1 + s ' 4 = 3
Z=4
Se sondea por la prueba dos
X1 = 2
X2 = -1/5
Z = 144/90
Se sondea por la prueba dos
Sub-problema 1
z
x2
s2
x1
s4
z
x2
s2
x1
s4
z
x2
s2
x1
s1
Sub-problema 2
x1
x2
s1
s2
s3
s4
0
0
0
1
1
0
1
0
0
0
13/18
2/9
0
5/18
0
0
0
1
0
0
1/9
1/9
1
-1/9
0
0
0
0
0
1
x1
x2
s1
s2
s3
s4
0
0
0
1
0
0
1
0
0
0
13/18
2/9
0
5/18
-5/18
0
0
1
0
0
1/9
1/9
1
-1/9
1/9
0
0
0
0
1
x1
x2
s1
s2
s3
s4
0
0
0
1
0
0
1
0
0
0
0
0
0
0
1
0
0
1
0
0
2/5
1/5
1
0
-2/5
13/5
4/5
0
1
-18/5
x1
x2
s1
s2
s3
s' 4
0
0
0
1
-1
0
1
0
0
0
13/18
2/9
0
5/18
0
0
0
1
0
0
1/9
1/9
1
-1/9
0
0
0
0
0
-1
Sol
73/18
5/9
0
53/18
2
Sol
73/18
5/9
0
53/18
-17/18
Sol
144/90
-1/5
0
2
17/5
Sub-problema 2
Z
x2
s2
x1
s' 4
Sol
73/18
5/9
0
53/18
-3
Z
x2
s2
x1
s' 4
Z
x2
s2
x1
s3
x1
x2
s1
s2
s3
s' 4
0
0
0
1
0
0
1
0
0
0
13/18
2/9
0
5/18
5/18
0
0
1
0
0
1/9
1/9
1
-1/9
-1/9
0
0
0
0
1
x1
x2
s1
s2
s3
s' 4
0
0
0
0
0
0
1
0
0
0
1
1/9
5/2
0
-5/2
0
0
1
0
0
0
0
0
0
1
1
1
9
-1
-9
Conclusin.
Sol
73/18
5/9
0
53/18
-1/18
Sol
4
1/2
-1/2
3
1/2