Stat 315 Recommended Homework 2 Chapter 3
Chapter 3
3.1.
a.
P( x) = 1.0
b.
x
F(x)
0
0.3
1
0.5
2
0.7
3
0.8
4
0.9
5
1.0
c. P(X > 2) = 1 F(2) = 0.3
3-2.
a.
P( x) = 1.0
b. x
F(x)
0
0.01
1
0.10
2
0.40
3
0.60
4
0.80
5
0.90
6
1.00
c. P ( X 4) = F(4) = 0.80
d. P ( X 2) = 1 F(1) = 0.90
3-10.
a.
P( x) = 1.0
b. 0.85, found by summing the probabilities for 0.75 0.78:
P(0.75) + P(0.76) + P(0.77) + P(0.78) = 0.25 + 0.40 + 0.15 + 0.05 = 0.85
c. 0.80 found by: 1 P(0.77) P(0.78) = 1 0.15 0.05 = 0.80
d. 0.36 found by: P(price >0.75) = P(0.76) + P(0.77) + P(0.78) = 0.40 + 0.15 + 0.05 =
0.60
for the price to be above 0.75 for two days in a row: (0.60)2 = 0.36
3-11.
For the random variable in Problem 3-1:
E(X) = 1.8
E(X 2) = 6
V(X) = 2.76
[Using the template: Random Variables.xls]
SD(X) = 1.661
Statistics of X
Mean
1.8
Variance 2.76
Std. Devn. 1.66132
3-16.
For Problem 3-6:
E(X) = 2.2
P(X > E(X)) = P(X > 2.2) = P(3) + P(4) + P(5) = 0.3
3-19 Excluded
3.21.We use Equation (3-6) for a linear function of a random variable.
E(aX + b) = aE(X) + b
Hence: E(net income of a manager)
= 0.95E(X) - 300 = 0.95(1230) - 300 = $868.5M
[Using the template: Random Variables.xls)]
Enter the formula for h(X) in cell G12 as: = -300 +0.95*x, [omitting the marks]
Definition of h(X)
h(X) =
1315
Statistics of h(X)
Mean
Variance
Std. Devn.
Skewness
(Relative) Kurtosis
868.5
123733
351.757
-0.50362
-0.54598
3.25.In Problem 3-2, penalty = X 2.
Find E(penalty). From Problem 3-11:
x
1700
E(X 2) = $12.39
3.26.Mean = 0.03, var. = 0.9291
[Using the template: Random Variables.xls]
Descriptive Statistics of a Random Variable
x
-1
0
1
P(x)
0.45
0.07
0.48
F(x)
0.45
0.52
1
Statistics of X
Mean
Variance
Std. Devn.
Skewness
(Relative) Kurtosis
0.03
0.9291
0.9639
-0.0599
-1.921
3.33.X is binomial if sales calls are independent of each other.
3.39.Using the Binomial Template, we get the following answers:
a) 0.8889
b) 11
c) 0.55
3.40.Using the Binomial Template, we get the following answers:
a) 0.5769
b) I) 27
ii) 37
iii) 0.9576
3-41.
a)
b)
c)
d)
0.9981
0.889, 0.935
4, 5
increase the reliability of each engine.
3-49. Excluded