0% found this document useful (0 votes)
214 views2 pages

Kinetic Modelling of Methyl Formate Hydrolysis in The Presence of Formic Acid As A Homogenous Catalyst

The document describes a kinetic study of the hydrolysis of methyl formate to produce formic acid. The hydrolysis reaction is slow and equilibrium-limited. Using formic acid as a catalyst speeds up the reaction over 3 times faster than the uncatalyzed reaction. Kinetic models were developed for the autocatalyzed and formic acid catalyzed reactions. The models fit the experimental data successfully and can predict the reaction rates and conversions for both systems.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOC, PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
214 views2 pages

Kinetic Modelling of Methyl Formate Hydrolysis in The Presence of Formic Acid As A Homogenous Catalyst

The document describes a kinetic study of the hydrolysis of methyl formate to produce formic acid. The hydrolysis reaction is slow and equilibrium-limited. Using formic acid as a catalyst speeds up the reaction over 3 times faster than the uncatalyzed reaction. Kinetic models were developed for the autocatalyzed and formic acid catalyzed reactions. The models fit the experimental data successfully and can predict the reaction rates and conversions for both systems.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOC, PDF, TXT or read online on Scribd
You are on page 1/ 2

Kinetic modelling of methyl formate hydrolysis in the presence of formic acid as a homogenous catalyst

1 1

O. Jogunola, 1T. Salmi, 1,2J.-P. Mikkola bo Akademi Universit , !e". #$emi%al &ngineering, 'isko"sgatan (, 2)*)), bo+Turku ,inalnd- ,a.. /0*(221*1123, &-mail4 5olatund6abo.7i- 2Ume8 Universit , !e". #$emistr , 3)1(2, Ume8, S9eden. Met$ l 7ormate :Me,o; $ drol sis, a "rominent industrial "ro%ess 7or "rodu%ing 7ormi% a%id :,A;, a versatile, environmentall benign %$emi%al, a%%ounts 7or more t$an 2)< o7 t$e 9orld "rodu%tion %a"a%it . =o9ada s, ne9 uses are being soug$t 7or t$e a%id b resear%$ers and t$e %$emi%al industr due to its relativel strong a%idit , redu%ing "o9er, and e%o7riendliness. T$e met$ l 7ormate $ drol sis "ro%ess is a slo9, endot$ermi% and e>uilibriumlimited rea%tion, 9$i%$ "rodu%es met$anol :MeO?; and ,A in almost e>uimolar amount. ?o9ever, ,A "rodu%ed in t$e rea%tion %atal sed t$at same rea%tion. ?#l and ? 2SO1 $ave been re"orted to s"eed u" t$e rea%tion, but t$ese a%ids $ave to be se"arated 7rom t$e rea%tion mi.ture and t$is adds to t$e %ost o7 energ . T$e endeavour is to use 7ormi% a%id as an initial %$arge to s"eed u" its o9n rea%tion. T$e $ drol sis e."eriments :9it$ or 9it$ ,A %atal st; 9ere done in a stirred laborator s%ale, almost isot$ermal bat%$ rea%tor at () @ 11) O# and 2) bar nitrogen "ressure using a %onstant initial 9ater-to ester molar ratio :?2O+Me,o A 1.(;. T$e $ drol sis o7 met$ l 7ormate %an be sim"l re"resented as4 ?#OO#?0 :A; / ?2O :'; ?#OO? :#; / #?0O? :!; Bn t$e absen%e o7 t$e %atal st, t$e rea%tion is auto%atal sed and t$e rea%tion rate %an be e."ressed as4
r = :k + k C C ;:C A C B 1 CC C D ; KC

Using ,A %atal st in t$e 7orm o7 an initial %$arge, t$e rate o7 t$e rea%tion be%omes4 C C r = k :C A C B C D ;: K d C C ; ).* KC 9$ere Cd is t$e disso%iation %onstant o7 7ormi% a%id. T$e model e>uations 9ere solved b di77eren%e met$od. T$e so7t9are, Mod&st solved t$e model e>uations and minimiDed t$e ob5e%tive 7un%tion :SSE A F: model- e.";2 b ad5usting t$e t$ree "arameters, k ) , K )C , and E a 9it$ t$e Gevenberg-Mar>uardt-sim"le. met$od, 9$ile H ro 9as 7i.ed at /*.11 kJ+mol. T$e kineti% and e>uilibrium "arameters in%luded in t$e rate e>uations 9ere estimated 7rom t$e e."erimental data b non-linear regression anal sis. T$e "redi%tive "o9er H 2 :%oe77i%ient o7 determining bet9een "redi%ted and e."erimental values; is given as4
R
2

:c =1 :c

i ,e.", k

ci , k ; 2 c ,i , k ; 2

i ,e.", k

9$ere c i , k is t$e model "redi%tion %on%entration, c i , k is t$e observation mean %on%entration. Results Bn t$e absen%e o7 t$e %atal st, t$e rea%tion 9as slo9 as indi%ated b t$e indu%tion "eriod. ,urt$ermore, auto%atal sis :S-s$a"ed; 9as "ronoun%ed as s$o9n in ,ig. 1. U"on addition o7 t$e %atal st, t$e indu%tion "eriod %eased to e.ist and t$e rea%tion rate 9as s"ed u". ?o9ever,

t$e "rodu%t ield 9as su""ressed. Bt %an be dedu%ed 7rom ,ig. 1 t$at t$e o"timal initial a%idto-ester molar ratio, 9$i%$ 9ill in%rease t$e rea%tion rate 9it$out $aving a drasti% e77e%t on t$e ield is ).1. T$e model "redi%tion o7 t$e rea%tion rate o7 bot$ t$e auto%atal sed "ro%ess and t$e ,A-%atal sed s stem :,A+Me,o A ).1; is de"i%ted in ,ig. 2.
Conversion (mol-%)

30

ri (mol/g min)

0.02 0.016 0.012 0.008 0.004 0 0 50 100 Time (min) Autocatalysis Formic acid catalysed 150

20 10
FA/Me Fo FA/Me Fo FA/Me Fo FA/Me Fo FA/Me Fo = = = = = 0.0 0.1 0.2 0.05 0.15

0 0 50 100 150 200 250


Time (min)

,igure 1. T$e e77e%t o7 t$e a%id %atal st on t$e rea%tion rate and e>uilibrium %onversion at () #- ?2O+Me,o A 1.(
o

,igure 2. #om"arison o7 t$e rea%tion rate o7 t$e ,A-%atal sed s stem 9it$ t$at o7 t$e auto%atal sed "ro%ess at 3)o#- ?2O+Me,o A 1.(

The results of the kinetic modelling for the two systems is depicted in Table 1. Table 1. #om"arison o7 t$e "arameters bet9een auto%atal Ded and ,A-%atal Ded rea%tions Hea%tion t "es Auto%atal sed ,A-%atal Ded
k

:kg+mol min;

k k 2 2 :kg +mol min;

Ea

Ea

I Ea

C#

:kJ+mol; :kJ+mol; :kJ+mol;

).)0 @

0.12 @

@ 0.39

((.2 @

@ 67.8

66.4 @

).2 ).2

,A-%atal sed rea%tion is more t$an t$ree times 7aster t$an t$e auto%atal sed rea%tion and t$eir a%tivation energies are in t$e %orre%t range. T$e e>uilibrium %onstant remains t$e same. Some o7 t$e 7its o7 t$e t9o models to t$e e."erimental results are de"i%ted in ,ig. 0.
C i (mol/kg)

20
20
C i (mol/kg)

15 10 5 0 0
A (expt) A (mo de l)

15 10 5 0 0
A (m ode l) D (m ode l) C (e !")

50
B (e xpt)

100

150
C (e xpt) C (mo de l)

100
Time (min)
B (m ode l) A (e !") D (e !")

200
C (m odel) B (e !")

Time (min)
B (mo de l)

,igure 0a. T$e model 7it to e."erimental data at 3)o#,A+Me,o A ).1 and ?2O+Me,o A 1.(

,igure 0. T$e model 7it to e."erimental data at 3)o#,A+Me,o A ).) and ?2O+Me,o A 1.(

Conclusion T$e $ drol sis o7 met$ l 7ormate 9it$ or 9it$out t$e 7ormi% a%id %atal st 9as a%%om"anied in a bat%$ rea%tor. T$e models develo"ed 7or t$e t9o "ro%esses 9ere able to "redi%t t$e e."erimental results su%%ess7ull . T$is a""roa%$ %an also be used 7or ot$er alk l 7ormates. Reference [1] O. Jogunola, T. Salmi, J. Wrn, J.-P. Mikkola, Kinetic studies of alkyl formate hydrolysis using formic acid as a catalyst, J. Chem. Technol. Biotechnol. (2011) DOI 10.1002/jctb.2714 [2] O. Jogunola, T. Salmi, K. Ernen, J. Wrn, M. Kangas, J.-P. Mikkola, Reversible autocatalytic hydrolysis of alkyl formate: kinetic and reactor modelling, Ind. Eng. Chem. Res. 49 (2010) 4099-4106.

You might also like