100% found this document useful (2 votes)
575 views48 pages

Fundamentals of Scales and Key

This document discusses fundamentals of scales and key signatures, including: 1. Tetrachords are series of four tones used to construct scales. The document defines major, minor, natural, and harmonic tetrachords. 2. Major scales are constructed using the formula of major-minor-major tetrachords. Key signatures contain the accidentals that define the scale. 3. Scale degrees refer to the positions within a scale and have formal names like tonic, subdominant, dominant, etc. The document defines the seven scale degrees in a major scale.

Uploaded by

chidi_orji_3
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
100% found this document useful (2 votes)
575 views48 pages

Fundamentals of Scales and Key

This document discusses fundamentals of scales and key signatures, including: 1. Tetrachords are series of four tones used to construct scales. The document defines major, minor, natural, and harmonic tetrachords. 2. Major scales are constructed using the formula of major-minor-major tetrachords. Key signatures contain the accidentals that define the scale. 3. Scale degrees refer to the positions within a scale and have formal names like tonic, subdominant, dominant, etc. The document defines the seven scale degrees in a major scale.

Uploaded by

chidi_orji_3
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 48

Fundamentalsof

SCALESANDKEYSIGNATURES

PARTATETRACHORDS
1.TetrachordStructure
a.Atetrachordisaseriesoffourtonesonsuccessivedegreesofthestaffwith
anintervaloffivehalfstepsbetweenthefirstandlasttones.Thetetrachordis
usedinconstructingandanalyzingscales.
b.Tetrachordsusedarethemajor(M),minor(m),natural(N),andharmonic
(H).Anytetrachordmaybeconstructedonanypitchandwillretaintheinterval
relationshipofthetetrachord.
2.MajorTetrachord(M).Themajortetrachordiscomposedoftwohalfsteps,two
halfsteps,andonehalfstepascendingonfoursuccessivestaffdegrees(Figure12).

Figure12:MajorTetrachords

3.MinorTetrachord(m).Theminortetrachordiscomposedoftwohalfsteps,onehalfstepand
twohalfstepsascendingonfoursuccessivescaledegrees(Figure13).

Figure13:MinorTetrachords.

4.NaturalTetrachord(N).Thenaturaltetrachordiscomposedofonehalfstep,two
halfstepsandtwohalfstepsascendingonfoursuccessivestaffdegrees(Figure14).

Figure14:NaturalTetrachords.
5.HarmonicTetrachord(H).Theharmonictetrachordiscomposedofonehalfstep,
threehalfsteps,andonehalfstepascendingonfoursuccessivestaffdegrees(Figure
15).

Figure15:HarmonicTetrachords.
6.ScaleConstructionUsingTetrachords
a.Scalesconstructedwithtetrachordscombinetwotetrachordsandalink
(abbreviatedL).Thelinkisalwayscomposedoftwohalfsteps(awholestep)
onadjacentstaffdegrees.Thelinkmaybeplacedatthebottom,inthemiddle,
oratthetopofthescale.Thecombinationoftwotetrachordsandalinkforma
scalethatencompassesanoctave(Figure16).

Figure16:TetrachordsandLinkinScaleConstruction.
b.Thecombinationoftwotetrachordsandalinkformascalethatencompasses
anoctave.Anoctaveisanintervalcontainingtwelvehalfsteps.Itisthe

distancefromonepitchtothenexthigherorlowerpitchwiththesameletter
nameCC(Figure17).

Figure17:OctaveonaPianoKeyboard.
PARTAMAJORSCALES
1.MajorScaleStructure.
a.TheformulaforamajorscaleisMajor(M),Link(L),Major(M)(Figure2
1).

Figure21:MajorScaleFormula.

b.Themajorscaleisaseriesofeightsuccessiveascendingordescending
pitcheswithaspecifiedintervalpattern.Amajorscalebeginsandendswiththe
samelettername(uppercase)ofthemusicalalphabet(AA).
c.Thescale'swholestepandhalfstepintervalrelationshipcorresponds,ona
keyboard,toawhitekeyscalefromCtoC(Figure22).
NOTE:Upperandlowercaselettersareusedtodifferentiatebetweenmajorand
minorkeys.Uppercaselettersrepresentmajorkeys(CMajor).Lowercaseletters
representminorkeys(cminor).

Figure22:CMajorScaleonKeyboard.
2.UseofChromaticSignsinMajorScaleConstruction.Toconstructascaleother
thanCMajor,chromaticsigns( or )mustbeusedtomaintainthescaleformula
(wholestep/halfstep).TheDMajorscaleiswrittenwithchromaticsignsonthethird
andseventhnotes(Figure23).

Figure23:DMajorScale.
PARTBSCALESANDKEYSIGNATURES
3.Scales.
a.Thefirstnoteofamajorscalegivesthescaleitsidentityorname.For
example,amajorscalebeginningonthenoteE iscalledan"E Majorscale"
(Figure24).

Figure24:E MajorScale.
b.Musicalcompositionsarebasedonscales.AcompositionbasedonanE
MajorscaleissaidtobeinthekeyofE Major(Figure25).

Figure25:MelodyinE .

SELFREVIEWEXERCISE#1
Constructingmajorscales.
4.KeySignatures.
a.Akeysignatureisthegroupingofchromaticsignsthathavebeenextracted
fromascaleandplacedaftertheclefsign.Thenumberofflatsorsharpsina
keysignaturedeterminesthekeyofacomposition.
b.TheE Majorscalehasakeysignatureofthreeflats(Figure26).

Figure26:ExtractingAccidentalsforKeySignatures.
c.TheE Majorscalewiththekeysignatureinplace,lookslikethis(Figure2
7).

Figure27:E MajorKeySignature.
5.PlacementofSharpsinaKeySignature.
a.Sharpsareplacedonthestaffinthefollowingorder(Figure28).

Figure28:OrderofSharps.
b.Todeterminethisorder,beginonF (thefirst addedtothestaff).Countup
fiveletternamestoC .ThenbeginonC andcountupfivemoreletternames
toGsharp.Continuethispatternuntilallsevensharpsareidentified(Figure2
9).

Figure29:DeterminingOrderofSharps.
c.Sharpsareplacedonastaffinaspecificpattern.Thefirstsharp,F ,is
placedonthefifthlineofthetreblestaffandthefourthlineofthebassstaff.
Thesecondsharp,C ,isplacedbelowthefirstsharp.Thethirdsharpisup,the
fourthsharpdown,thefifthsharpdown,thesixthsharpup,andtheseventh
sharpdown.Figure210indicatesthecorrectplacementofsharpsinakey
signature.

Figure210:PlacementofSharps.
6.PlacementofFlatsinaKeySignature.
a.Flatsareplacedonthestaffinthefollowingorder(Figure211).

Figure211:OrderofFlats.
b.Todeterminetheorderofflats,beginonBflat(thefirstflataddedtothe
staff).CountupfourletternamestoE .ThenbeginonE andcountupfour
moreletternamestoA .Continuethispatternuntilallsevenflatshavebeen
identified(Figure212).

Figure212:DeterminingOrderofFlats.

c.Thefirstflat,B ,isplacedonthethirdlineofthetreblestaffandonthe
secondlineofthebassstaff.Thesecondflat,E ,isplacedabovethefirstflat.
Thethirdflatisdown,thefourthup,thefifthdown,thesixthup,andthe
seventhdown(Figure213).

Figure213:PlacementofFlats.
NOTE:Theorderofflatsinakeysignatureisoppositetheorderofsharps(Figure
214).

Figure214:OrderofFlatsandSharps.
7.CircleofMajorKeys.MajorkeysarearrangedinacirclestartingwithCand
progressingthroughthesharpkeysclockwiseandtheflatkeyscounterclockwise.This
formsthecircleofmajorkeys,alsocalledthecircleoffifths(Figure215).

Figure215:CircleofMajorKeys(Fifths).
8.DerivingMajorKeyNamesfromKeySignatures.
a.Sharpkeys.Thenameofthesharpmajorkeyisthesameasthelettername
ofthescaledegreeabovethelastsharpinthekeysignature(Figure216).

Figure216:DeterminingSharpKeyNames.

b.Flatkeys.Thenameoftheflatmajorkeyisthesameastheletternameof
thescaledegreefivestepsabovethelastflatinthekeysignature(Figure217).

Figure217:DeterminingFlatKeyNames.
c.Whentherearetwoormoreflatsinthekeysignature,thekeynameisthe
nameofthenexttothelastflat(Figure218).

Figure218:DeterminingFlatKeyNames.
d.Ifthekeysignaturehasnoflatsorsharps,thekeysignaturenameisCMajor.
PARTCSCALEDEGREE
9.ScaleDegreeNamesforMajorScales."Scaletone,""scalestep,"and"scale
degree"allmeanthesamething.Eachscaletone,step,ordegreeisalsoknownbya
moreformalmusicalterm(Figure219).

Figure219:NamesofScaleDegrees.
a.Tonic.Thetonicisthebeginningscaledegree(thefirstscalestep)ofascale.
Itisthemostimportantscaledegree.Thetonicgivesthescaleitsidentity.Ina
CMajorscale,Cisthetonicscaledegree(Figure220).

Figure220:TonicScaleDegree.
b.Dominant.Thenextmostimportantscaledegreeisthedominant.The
dominantisthefifthscaledegree.InaCMajorscale,Gisthedominantscale
degree(Figure221).

Figure221:TheDominantScaleDegree.
c.Subdominant.Thescaledegreefivesteps(fifth)belowthetonicisthe
subdominant.Itisthefourthscaledegree.Thesubdominantscaledegreeisthe
dominantunder(sub)thetonic.Itisnextinimportancetothedominant.InaC
Majorscale,thesubdominantisF(Figure222).

Figure222:SubdominantScaleDegree.
d.Mediant.Midwaybetweenthetonicandthedominantisthethirdscale
degree.Itiscalledthemediant.InaCMajorscale,Eisthemediantscale
degree(Figure223).

Figure223:MediantScaleDegree.

e.Submediant.Thesixthscaledegree,midwaybetweentheuppertonicandthe
subdominant,isthesubmediant.InaCMajorscale,Aisthesubmediantscale
degree(Figure224).

Figure224:SubmediantScaleDegree.
f.Supertonic.Thetoneabove(super)thetonic,orthesecondscaledegree,is
calledthesupertonic.InaCMajorscale,Disthesupertonicscaledegree
(Figure225).

Figure225:SupertonicScaleDegree.
g.Leadingtone.Theseventhscaledegreeistheleadingtone.Ithasastrong
tendencytopushupward(lead)tothetonic.InaCMajorscale,Bistheleading
tone(Figure226).

Figure226:LeadingTone.
PARTDSCALEDEGREEACTIVITY
10.ScaleDegreeActivityinMajorKeys.Scaledegreesareclassifiedintothreetype
oftones:stable,active,andtendency(Figure227).

Figure227:ScaleDegreeActivityinMajorKeys.
a.Stabletoneshaveasoundqualitythatsuggestscompletenessandstability
(Figure228).

Figure228:StableTonesinMajorKeys.
b.Activetoneslackstabilityandwanttomovetowardastabletone.Normally,
anactivetonemovestoanadjacentnoteinthescale(Figure229).

Figure229:ActiveTonesinMajorKeys.
c.Tendencytonesareactivetonesthatpulltowardaparticularpitch.Tendency
tonestendtomoveahalfsteptoanadjacentscaledegree.Aleadingtone
movestothetonicunlessitispartofadescendingscalewisemotion.The
subdominantmovestothemediantunlessitispartofscalewisemotionthatis
ascending(Figure230).

Figure230:TendencyTonesinMajorKeys.

MINORSCALESANDKEYSIGNATURES

NaturalMinorScaleStructure
a.Theformulaforanaturalminorscaleisminor(m),Link(L),Natural(N).A
naturalminorscaleisaseriesofeightconsecutivenoteswiththeintervals
betweennotesbeingtwohalfsteps,onehalfstep,twohalfsteps,twohalfsteps,
onehalfstep,twohalfsteps,twohalfsteps(Figure31).

Figure31:NaturalMinorScale.
b.Onakeyboard,theintervalrelationshipscorrespondtoawhitekeyscale
fromatoa(Figure32).

Figure32:"a"NaturalMinorScale.
MinorKeysandKeySignatures
a.Thetonicnoteofaminorscalegivesthekeyofthescale.Forexample,a
minorscalewithatonicof"c"isinthekeyofcminor.
b.Todeterminetheorderofsharpminorkeys,beginwiththekeywithnoflats
orsharps("a"minor).Countupfivescaledegrees(eminor).Then,starton"e"
andcountupfivemorescaledegrees.Continuethisuntilallkeysareidentified
(Figure33).

Figure33:DeterminingOrderofSharps.

c.Althoughthetonicsinnaturalminordifferfrommajor,theplacementof
sharpsremainsthesame(Figure34).

Figure34:PlacementofSharps.
d.Tofindtheorderofflatminorkeys,beginwiththekeyofnoflatsorsharps
("a"minor).Countupfourscaledegrees(dminor).Then,starton"d"and
countupfourmorescaledegrees.Continuethisuntilallkeysareidentified
(Figure35).

Figure35:DeterminingOrderofFlats.
e.Althoughthetonicsinnaturalminordifferfrommajor,theplacementofflats
remainsthesame(Figure36).

Figure36:PlacementofFlats.
3.CircleofMinorKeys.
Sincethenatural,harmonic,andmelodicminorscalessharethesamegroupofkey
signatures,itispossibletoconstructonecircleoffifthsforallthreeformsofthescale
(Figure37).

Figure37:CircleofMinorKeys(Fifths).
4.DerivingMinorKeyNamesfromKeySignatures.
a.Theletternameofthescaledegreeimmediatelybelowthelastsharpinthe
keysignatureistheminorkeynameforsharpkeys(Figure38).

Figure38:DerivingNamesofSharpKeys.

NOTE:Thisisoppositetomajorkeyswheretheletternameabovethelastsharpis
thekeyname.
b.Forminorflatkeys,findthenameofthekeybycountingupthreescale
degreesabovethelastflat(Figure39).

Figure39:DerivingNamesofFlatKeys.

5.NaturalMinorScaleDegreeNames.
Thescaledegreenamesfornaturalminorscalesarethesameasformajorscales
exceptfortheseventhscaledegree.Theseventhscaledegreeiscalledthesubtonic
whenitistwohalfsteps(wholestep)belowthetonic(Figure310).

Figure310:NaturalMinorScaleDegreeNames.
6.NaturalMinorScaleDegreeActivity.
a.Comparedtoamajorscaleonthesametonic,thenaturalminorscalehasa
loweredmediant(third),loweredsubmediant(sixth)andasubtonic(seventh)
(Figure311).

Figure311:ComparingMajorandNaturalMinorScales.
b.Thescaledegreeactivityinnaturalminorscalesisdifferentfrommajor
scalesbecausethepatternofwholestepsandhalfstepsisdifferent(Figure3
12).

Figure312:MajorandNaturalMinorScaleDegreeActivity.

7. Harmonic Minor Scale Structure.


a.Theformulafortheharmonicminorscale
isminor(m),link(L),harmonic(H).Theharmonicminorscaleisidenticalin
structuretothenaturalminorscale,exceptforaraisedseventh(leadingtone)
degree.Theintervalsbetweennotesofaharmonicminorscalearetwohalf
steps,onehalfstep,twohalfsteps,twohalfsteps,onehalfstep,threehalf
steps,onehalfstep(Figure313).

Figure313:HarmonicMinorStructure.
b.Thewholestep/halfstepintervalrelationshipsinharmonicminordonot
correspondtoanywhitekeyscale(Figure314).

Figure314:"a"HarmonicMinorScale.
NOTE:Natural,harmonic,andmelodicminorscaleshavethesamekeysignature.
Theraisedseventhscaledegreeoftheharmonicscalesandtheraisedsixthand
seventhscaledegreesintheascendingmelodicminorscalesareindicatedby
accidentals.Theseaccidentalswillnotappearinthekeysignature.
8.HarmonicMinorScaleDegreeNames.

Scaledegreenamesfortheharmonicminorscalesarethesameasforthemajor
scales(Figure315).

Figure315:HarmonicMinorScaleDegreeNames.
9.HarmonicMinorScaleDegreeActivity.
a.Theharmonicminorscaleevolvedbecauseofthelackoftendencytonesin
naturalminor.Theharmonicformoftheminorscaledevelopsabetterbalance
oftendencytonesinminorkeys(Figure316).

Figure316:ScaleDegreeActivity.
b.Thethreehalfsteps(augmentedsecond)betweenthesubmediantandthe
leadingtonecancausemelodicproblems.
10.MelodicMinorScaleStructure.
a.Ascending.TheformulafortheascendingmelodicminorscaleismLM.
Unlikeothermajorandminorscales,theascendingformofthemelodicminor
scaleisdifferentfromitsdescendingform.Theintervalsbetweenthenotesof
theascendingmelodicminorscalearetwohalfsteps,onehalfstep,twohalf
steps,twohalfsteps,twohalfsteps,twohalfsteps,onehalfstep(Figure317).

Figure317:MelodicMinorStructure(Ascending).

b.Raisethesixthandseventhscalesdegreesofanaturalminorscaleonehalf
steptoformtheascendingmelodicminorscale(Figure318).

Figure318:MelodicMinor(Ascending).
c.Descending.TheformulaforadescendingmelodicminorscaleisNLm.
Theintervalsbetweenthenotesarethesameastheintervalsofadescending
naturalminorscale,ortwohalfsteps,twohalfsteps,onehalfstep,twohalf
steps,twohalfsteps,onehalfstep,twohalfsteps(Figure319).

Figure319:MelodicMinorStructure(Descending).

d.Theraisedsixth(submediant)andraisedseventh(leadingtone)scaledegrees
oftheascendingmelodicminorscaleareloweredinthedescendingmelodic
minorscale.Therefore,thedescendingmelodicminorscaleisidenticaltothe
descendingnaturalminorscale(Figure320).

Figure320:MelodicMinor(Descending).
11.MelodicMinorScaleDegreeNames.
a.ThescaledegreenamesforascendingmelodicminorareshowninFigure3
21.

Figure321:MelodicMinorScaleDegreeNames(Ascending).
b.Thescaledegreenamesforthedescendingmelodicminorscalearethesame
asthescaledegreenamesforthedescendingnaturalminorscale.
12.MelodicMinorScaleDegreeActivity.Figure322showsthescaledegreeactivity
formelodicminor.

Figure322:ScaleDegreeActivity.
13.ParallelKeys
Parallelkeysarekeysthathavethesametonicbutdifferentkeysignatures.For
example,thekeyofFmajorandfminorareparallelkeys(Figure323).

Figure323:ParallelKeys.
14.RelativeKeys
a.Majorandminorkeysthathavethesamekeysignaturearecalledrelative
keys.Relativekeysdonothavethesametonic(Figure324).

Figure324:RelativeKeys.
b.Thesixthscaledegreeofthemajorscaleisthetonicoftherelativeminor
scale(Figure325).

Figure325:RelativeKeyIdentification.
NOTE:Becauseofthisrelationship,youcandeterminetheminorkeysignatureby
firstdeterminingthemajorkeysignature.Thenameofthesubmediant(inthe
majorkey)isthenameoftherelativeminortonic.
c.Thethirdscaledegreeoftheminorscaleisthetonicoftherelativemajor
(Figure326).

Figure326:RelativeMajorandMinor.
MODALSCALES

INTRODUCTION
IntheMiddleAges,musicwasoftencomposedofeighttonescalesthatdidnotfollow
thepatternofmajorandminorscales.Theseearlyscaleswerecalledmodes.Modal
scaleshavesincebeenusedinmanyperiodsandstylesofmusic.
Mostmodalscalesareclassifiedasmajororminor.Themajormodalscalesare:
Lydian,Ionian,andMixolydian.Theminormodalscalesare:Dorian,Aeolian,and
Phrygian.TheLocrianmodalscaleisneithermajornorminor,ittendstowardminor
andwillbediscussedwiththeminormodalscales.
1.Lydian.
a.TheformulafortheLydianmodalscaleisLMM(Figure41).

Figure41:LydianFormula.
b.TheLydianscale'shalfstep/wholestepintervalrelationshipcorrespondstoa
whitescalefromFtoFonapianokeyboard(Figure42).

Figure42:LydianModeonPianoKeyboard.
c.ACircleofLydianKeyscanbeconstructedtorepresenttheremainingLydian
scalesbyusingtheMajorCircleofFifthsandshiftingthenumberofsharpsand
flatsonekeytotheright.Youcanfigureoutthenumberofflatsorsharpsby
subtractingoneflatoraddingonesharptotheparallelmajorscale.TheFLydian
scalehasnoflatsorsharps(Figure43).

Figure43:CircleofLydianKeys.
d.TheLydianscalehasaraisedsubdominant( 4)whencomparedtoitsparallel
(sametonic)majorscale(Figure44).

Figure44:LydianandParallelMajor.

2.Ionian.
a.TheformulafortheIonianmodalscaleisMLM.
b.TheIonianmodalscaleisidenticaltoamajorscale.
3.Mixolydian.
a.TheformulafortheMixolydianmodalscaleisMMLorMLm(Figure45).

Figure45:MixolydianFormula.
b.TheMixolydianscale'shalfstep/wholesteprelationshipcorrespondstoa
whitekeyscalefromGtoGonthepianokeyboard(Figure46).

Figure46:MixolydianModeonPianoKeyboard.
c.ACircleofMixolydianKeyscanbeconstructedtorepresenttheremaining
MixolydianKeysbyusingtheMajorCircleofFifthsandshiftingthenumber
ofsharpsandflatsonekeytotheleft.Youcanfigureoutthenumbersofflats

orsharpsbysubtractingonesharporadding1flattotheparallelmajorscale.
TheGMixolydianscalehasnosharpsorflats(Figure47).

Figure47:CircleofMixolydianKeys.
d.TheMixolydianscalehasasubtonic( 7),insteadofaleadingtone,when
comparedtoitsparallelmajorscale(Figure48).

Figure48:MixolydianandParallelMajor.
4.Dorian.
a.TheformulafortheDorianmodalscaleismLm(Figure49).

Figure49:DorianFormula.
b.TheDorianscale'shalfstep/wholesteprelationshipcorrespondstoawhite
keyscalefromDtoDonapianokeyboard(Figure410).

Figure410:DorianModeonPianoKeyboard.
c.ACircleofDorianKeyscanbeconstructedtorepresenttheremaining
DorianKeysbyusingtheMajorCircleofFifthsandshiftingthenumberof
sharpsandflatstwokeystotheleft.Youcanfigureoutthenumberofsharps
andflatsbysubtractingtwosharpsoraddingtwoflatstotheparallelmajor
scale.ThedDorianscalehasnoflatsorsharps(Figure411).

Figure411:CircleofDorianKeys.
d.TheDorianscalehasaloweredmediant( 3)andsubtonic( 7)when
comparedtoitsparallelmajorscale(Figure412).

Figure412:DorianandParallelMajor.
e.TheDorianscalehasaraisedsubmediant( 6)whencomparedtoitsparallel
naturalminorscale(Figure413).

Figure413:DorianandParallelMinor.
5.Aeolian.
a.TheformulafortheaeolianmodalscaleismLN.
b.Theaeolianmodalscaleisidenticaltothenaturalminorscale.
6.Phrygian.
a.TheformulaforthePhrygianmodalscaleisNLN(Figure414).

Figure414:PhrygianFormula.

b.ThePhrygianscale'shalf/wholesteprelationshipcorrespondstoawhitekey
scalefromEtoEonthepianokeyboard(Figure415).

Figure415:PhrygianModeonPianoKeyboard.
c.ACircleofPhrygianKeyscanbeconstructedbyusingtheMajorCircleofFifths
andshiftingthenumberofflatsfourkeystotheleft.Youcanfigureoutthenumber
offlatsorsharpsbyaddingfourflatsorsubtractingfoursharpstotheparallel
majorscale.TheePhrygianscalehasnoflatsorsharps(Figure416).

Figure416:CircleofPhrygianKeys.
d.ThePhrygianscalehasaloweredsubtonic( 2),mediant( 3),submediant(
6),andsubtonic( 7)whencomparedtoitsparallelmajorscale.(Figure417).

Figure417:PhrygianandParallelMajor.
e.ThePhrygianscalehasaloweredsupertonic( 2)whencomparedtoitsparallel
naturalminorscale(Figure418).

Figure418:PhrygianandParallelMinor.

7.Locrian
a.TheformulafortheLocrianmodalscaleisNNL(Figure419).

Figure419:LocrianFormula.
b.TheLocrianscale'shalf/wholesteprelationshipcorrespondstoawhitescale
keyfromBtoBonapianokeyboard(Figure420).

Figure420:LocrianModeonPianoKeyboard.
c.ACircleofLocriankeyscanbeconstructedbyusingtheMajorCircleof
Fifthsandshiftingthenumberofflatsfivekeystotheleft.Youcanfigureout
thenumberofflatsorsharpsbyaddingfiveflatsorsubtractingfivesharpsto
theparallelmajorscale.ThebLocrianscalehasnoflatsorsharps(Figure4
21).

Figure421:CircleofLocrianKeys.
d.TheLocrianscalehasaloweredsupertonic(flat2),mediant(flat3),
dominant(flat5),submediant(flat6),andsubtonic(flat7)whencomparedto
itsparallelmajorscale.Thesubdominantistheonlyscaledegreethatremains
unaltered(Figure422).

Figure422:LocrianandParallelMajor.
8.IDPLMAL.
a.AneasywaytoremembermodalscalesistouseamnemonicIDPLMAL,
whichstandsforIDontPunchLikeMuhammadALi.Eachletterstandsfora
modalscale:IforIonian,DforDorian,PforPhrygian,LforLydian,Mfor
Mixolydian,AforAeolianandLforLocrian.
b.Byassigningthenumbersfrom1to7foreachletterofIDPLMAL,youcan
determinethescaledegreeofamajorscaleamodalscalestartsonandthen
buildamodelforthatmodalscale(Figure423).
MODALSCALE
Ionian
Dorian
Phrygian
Lydian
Mixolydian
Aeolian
Locrian

SCALEDEGREE
1
2
3
4
5
6
7

Figure423:IDPLMAL.
c.Anotherwaytoremembermodalscalesistorelatethemtoamajorscaleand
howeachscaledegreeisaltered.(Figure424).

Figure424:ComparisonofModalScaleDegreestoMajorScaleDegrees.

CHROMATIC,WHOLETONEANDPENTATONICSCALES

INTRODUCTION
Chromatic,wholetone,andpentatonicscalescannotbeanalyzedusingtetrachords.
Thesescalesdonotformregularkeysanddonothaveregularkeysignatures.
Chromaticandwholetonescalesrequireaccidentalswhenusedwithkeysignatures.
1.TheChromaticScale.
a.Thechromaticscaleconsistsentirelyofhalfsteps.Therearetwelvehalf
stepsorthirteenpitchesinanoctave.Ifallthirteenpitchesarerepresentedin
ascendingordescendingorder,theresultisachromaticscale.Thenameofthe
chromaticscaleisthefirstnoteofthescaleregardlessofthekeysignature
(Figure51).

Figure51:DChromaticScale.

b.Whennotatingchromaticscales,anypitchrequiringanaccidentaliswritten
asachromaticalterationofthepreviouspitch(Figure52).Usesharpswhen
ascendingandflatswhendescending.

Figure52:AccidentalsinaChromaticScale.
c.Avoiddoublesharpsanddoubleflatswhennotatingchromaticscales.Use
naturalsignsonadjacentstaffdegreestoavoiddoublesharpsanddoubleflats.
2.TheWholeToneScale.
a.Thewholetonescale,asitnameimplies,isconstructedusingwholesteps.
Accidentalsareusedtocreatewholesteps(Figure53).

Figure53:WholeToneScale.
b.Thewholetonescaleconsistsofsevenpitchesinsteadofeight(includingthe
octave).Oneofthestaffdegreeswithinthescalewillnotcontainanote.
3.PentatonicMajorScale.
a.APentatonicMajorscaleisconstructedstartingonthefirstdegreeofa
Majorscale.APentatonicMajorscalecontainsthetonic(1),supertonic(2),
mediant(3),dominant(5),andthesubmediant(6)ofaMajorscale(Figure5
4).

Figure54:ScaleDegreesinPentatonicMajor.
b.ThePentatonicMajorscalecorrespondstoablackkeyscaleonthekeyboard
fromG toG (Figure55).

Figure55:GflatPentatonicMajorScaleonPianoKeyboard.
c.ThetonesomittedarethetendencytonesinaMajorScale:thesubdominant
(4)andtheleadingtone(7).
4.PentatonicMinorScale.
a.APentatonicminorscaleisconstructedstartingonthefirstdegreeofa
naturalminorscale.APentatonicminorscalecontainsthetonic(1),mediant
(flat3),subdominant(4),dominant(5),andsubtonic(flat7)ofanaturalminor
scale(Figure56).

Figure56:ScaleDegreesinPentatonicMinor.
b.ThePentatonicminorscalecorrespondstoablackkeyscaleonthepiano
keyboardfromE toE (Figure57).

Figure57:EflatPentatonicMinorScaleonPianoKeyboard.
c.Thetonesomittedaretheactivetoneandtendencytonewhichformhalf
stepsinnaturalminor:thesupertonic(2)andsubmediant( 6).

You might also like