0% found this document useful (0 votes)
49 views10 pages

DFT (Prog 6) : Output Enter The Sequence (1,2,3,4,5) L 5 Enter DFT Point To Be Calculated4 Sum 1

The document contains MATLAB code that performs the discrete Fourier transform (DFT) on input sequences. It takes in a sequence as input, calculates the DFT at specified points, and plots the magnitude and phase of the results. It contains multiple code blocks that demonstrate calculating the DFT for different length sequences and sampling rates.

Uploaded by

Atin Mehra
Copyright
© Attribution Non-Commercial (BY-NC)
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOC, PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
49 views10 pages

DFT (Prog 6) : Output Enter The Sequence (1,2,3,4,5) L 5 Enter DFT Point To Be Calculated4 Sum 1

The document contains MATLAB code that performs the discrete Fourier transform (DFT) on input sequences. It takes in a sequence as input, calculates the DFT at specified points, and plots the magnitude and phase of the results. It contains multiple code blocks that demonstrate calculating the DFT for different length sequences and sampling rates.

Uploaded by

Atin Mehra
Copyright
© Attribution Non-Commercial (BY-NC)
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOC, PDF, TXT or read online on Scribd
You are on page 1/ 10

DFT(prog 6)

x=input('Enter the sequence');


L=length(x)
N=input('Enter DFT point to be calculated');
for k=0:N-1
sum=0;
for n=0:N-1
sum=sum+[x(n+1)*exp((-j*2*pi*k*n)/N)]
end;
X(k+1)=sum
end;
subplot(1,2,1);
stem(abs(X))
subplot(1,2,2);
stem(angle(X))

OUTPUT

Enter the sequence[1,2,3,4,5]

L=

Enter DFT point to be calculated4

sum =

sum =

sum =

sum =
10

X=

10

sum =

sum =

1.0000 - 2.0000i

sum =

-2.0000 - 2.0000i

sum =

-2.0000 + 2.0000i

X=

10.0000 -2.0000 + 2.0000i

sum =

sum =

-1.0000 - 0.0000i

sum =
2.0000 + 0.0000i

sum =

-2.0000 - 0.0000i

X=

10.0000 -2.0000 + 2.0000i -2.0000 - 0.0000i

sum =

sum =

1.0000 + 2.0000i

sum =

-2.0000 + 2.0000i

sum =

-2.0000 - 2.0000i

X=

10.0000 -2.0000 + 2.0000i -2.0000 - 0.0000i -2.0000 - 2.0000i

>>
PROG 7A

close all;
clear all;
for n=1:10
x(n)=cos(0.48*pi*(n-1))+cos(0.52*pi*(n-1))
end;
N=10;
for k=0:9
sum=0;
for n=1:10
sum=sum+[x(n)*exp((-j*2*pi*k*(n-1))/N)]
end;
X(k+1)=sum;
end;
subplot(1,2,1);
stem(abs(X));
subplot(1,2,2);
stem(angle(X));
PROG 7B

close all;
clear all;
for n=1:100
x(n)=cos(0.48*pi*(n-1))+cos(0.52*pi*(n-1))
end;
N=100;
for k=0:99
sum=0;
for n=1:100
sum=sum+[x(n)*exp((-j*2*pi*k*(n-1))/N)]
end;
X(k+1)=sum;
end;
subplot(1,2,1);
stem(abs(X));
subplot(1,2,2);
stem(angle(X));
PROG 1

x=0:0.1:2*pi;
y=sin(x);
z=cos(x);
subplot(2,2,1);
plot(x,y);
title('Sin Continous');
xlabel('x');
ylabel('function');
subplot(2,2,2);
stem(x,y);
title('Sin Discrete');
xlabel('x');
ylabel('function');
subplot(2,2,3);
plot(x,z);
title('Cos Continous');
xlabel('x');
ylabel('function');
subplot(2,2,4);
stem(x,z);
title('Cos Discrete');
xlabel('x');
ylabel('function');
x=0:0.1:5;
y=exp(x);
subplot(1,2,1);
plot(x,y);
xlabel('time');
ylabel('value');
title('Exponential y=exp(x) - Continuous');
y=exp(-x);
subplot(1,2,2);
stem(x,y);
xlabel('sample');
ylabel('value');
title('Exponential y=exp(-x) - Discrete');
DTFT(Q2)
close all
clear all
x=[1,2,3,4,5,6]
p=1
q=1
N=length(x)
for w=0:0.1:2*pi
sum=0;
for n=1:N
sum=sum+x(n)*exp(-j*w*(n-p));
end
X(q)=sum;
q=q+1;
end
c=abs(X);
d=angle(X);
w=0:0.1:2*pi;
subplot(2,2,3)
plot(w,c,'r')

subplot(2,2,4)
plot(w,d,'b')

You might also like