Chapter I-Introduction: Origin of The Report
Chapter I-Introduction: Origin of The Report
We were assigned this topic to our group by our honorable course teacher to learn more about
production function for partially fulfilling the objectives of the course Microeconomics. And, this
research is a purely academic research on production function. In economics, a production
function relates physical output of a production process to physical inputs or factors of
production. The production function is one of the key concepts of mainstream neoclassical
theories, used to define marginal product and to distinguish allocative efficiency, the defining
focus of economics. The primary purpose of the production function is to address allocative
efficiency in the use of factor inputs in production and the resulting distribution of income to
those factors, while abstracting away from the technological problems of achieving technical
efficiency, as an engineer or professional manager might understand it. Production function
denotes an efficient combination of inputs and outputs.
Objectives
Scopes
The paper is of immense importance. We got to know the usage of OLS method to estimate
Cobb-Douglas production function. We estimated Cobb-Douglas production function for
Bangladesh and the USA considering GDP as the output. It will help us to have a better
understanding of the economy of these countries.
Limitations
Like every other report, we have some limitations of our study. As we did not get a huge span of
time, there might be some issues we could not cover due to shortage of time. All the data and
information we have provided here are secondary. We did not collect data from primary sources
and conducted the research on the basis the secondary data we collected.
Mean,   x =
                 ∑x       , where    ∑x     = Summation of elements, n = Number of elements.
                     n
                th                 th
            n                  n
Median =   ()
            2             ( )
                     term +
                               2
                                 +1 term
                              2
Mode = The most frequently occurring element.
                    Bangladesh                          USA
            GDP       Labor       Capital      GDP       Labor   Capital
                    55608205.
 Mean 54985930414       8      14721309157 1.02915E+13 1.42E+08 2.23E+12
 Median 46757686560 53693860 10667505962 1.01507E+13 1.43E+08 2.24E+12
 Mode       N/A        N/A         N/A         N/A        N/A      N/A
Comment: For both Bangladesh and the USA, the mean value of GDP is greater than the
median. That means, it is positively skewed and the performance is not so good.
Again,
                    n
Variance, σ2 =
                  ∑ ( x i−x )2
                   i=1
                         n−1
                               √
                                    n
                                   Bangladesh                                   USA
                        GDP                  Labor      Capital      GDP         Labor      Capital
  Variance       7.62596E+20             1.58E+14      1.26E+20   8.28235E+24   2.43E+14   5.14E+23
   StDev         27615133354             12582327      1.12E+10   2.87791E+12   15580480   7.17E+11
   Mean          54985930414             55608206      1.47E+10   1.02915E+13   1.42E+08   2.23E+12
     CV          50.22218074             22.62675      76.29342   27.96385552   10.99981   32.12147
Comment: The coefficients of variation for GDP, labor and capital of Bangladesh are greater than
those of the USA. That mean, the economic situation of Bangladesh is very inconsistent and
risky.
Chapter IV- Methodology & Findings
Cobb-Douglas Production Function
In economics, the Cobb-Douglas functional form of production functions is widely used to
represent the relationship of an output to inputs. It was proposed by Knut Wicksell (1851 -
1926), and tested against statistical evidence by Charles Cobb and Paul Douglas in 1928.
In 1928, Charles Cobb and Paul Douglas published a study in which they modeled the growth of
the American economy during the period 1899 - 1922. They considered a simplified view of the
economy in which production output is determined by the amount of labor involved and the
amount of capital invested. While there are many other factors affecting economic
performance, their model proved to be remarkably accurate.
Let us consider the following Cobb-Douglas production function,
                                                           Pi = A 0 L∝i K βi
...................................................................... (1)
where, P = level of output variable, L = quantity of input variable labor, K = quantity of input
variable capital and A 0 is constant. α and β are two parameters, α is called the
output elasticity with respect to input variable labor, β is called the output elasticity of input
variable capital. To estimate α and β , we have to take logarithms on both sides to make it
a linear equation. Taking logarithms on both sides of the equation (1), we have,
                                 ln Pi = ln ( A 0 L∝i K βi )
                                     = ln ( A 0 ) + ln ( L∝i ) + ln ( K iβ )
                                     = ln ( A 0 ) + α ln ( Li ) + β ln ( K i )
This model is known as the double-log transformation.
This is a linear equation and we can apply the OLS method to estimate α 0 , α                             and    β .
Ordinary Least Squares (OLS) Method
In statistics, ordinary least squares (OLS) or linear least squares is a method for estimating the
unknown parameters in a linear regression model, with the goal of minimizing the sum of the
squares of the differences between the observed responses (values of the variable being
predicted) in the given dataset and those predicted by a linear function of a set of explanatory
variables. Visually this is seen as the sum of the squared vertical distances between each data
point in the set and the corresponding point on the regression line – the smaller the differences,
the better the model fits the data. The resulting estimator can be expressed by a simple
formula, especially in the case of a single regressor on the right-hand side.
The OLS estimator is consistent when the regressors are exogenous, and optimal in the class of
linear unbiased estimators when the errors are homoscedastic and serially uncorrelated. Under
these conditions, the method of OLS provides minimum-variance mean-unbiased estimation
when the errors have finite variances. Under the additional assumption that the errors
are normally distributed, OLS is the maximum likelihood estimator.
OLS      is   used     in     fields    as     diverse     as economics (econometrics), political
science, psychology and electrical engineering (control theory and signal processing).
                                               Y i = α 0 + α X 1i +   β X 2i
The equation stated above is a linear equation and we can apply the Ordinary Least Squares
(OLS) method to estimate α 0 , α and β which are given by,
          SP ( X 1 , Y ) SS ( X 2 )−SP ( X 2 ,Y ) SP(X 1 , X 2 )
 α^   =                                                  2
                 SS ( X 1) SS ( X 2 ) −[ SP ( X 1 , X 2) ]
          SP ( X 2 , Y ) SS ( X 1 )−SP ( X 1 ,Y ) SP(X 1 , X 2 )
 ^β =                                                    2
                 SS ( X 1) SS ( X 2 ) −[ SP ( X 1 , X 2) ]
and
 α^0 = Ý      - α^ X́ 1 -       ^β X́ 2
Note:
                     ¿ X1i
                       ¿
SP( X 1 ,y) =         n       - X́ 1 )( y i - ý )
                     ∑¿
                     i=1
                     ¿ X2i
                       ¿
SP( X 2 ,y) =         n       - X́ 2 )( y i - ý )
                     ∑¿
                     i=1
                 n
SS( X 1 ) =     ∑ ( X 1 i− X́ 1)2
                i=1
                 n
SS( X 2 ) =     ∑ ( X 2 i− X́ 2)2
                i=1
                             ¿ X1i
                               ¿
SP( X 1 , X 2 ) =             n      - X́ 1 )( X 2 i - X́ 2 )
                             ∑¿
                             i=1
For Bangladesh,
                                                                                           X1i        X2i
                                                  Labor (       Capital (    Y i = ln      = ln (    = ln (
    Year        Country            GDP ( Pi )       Li )          Ki )          Pi          Li )      Ki )
                                   2315314306    3627123                    23.8653963    17.4065    21.8110
    1980      Bangladesh                8            1       2967761199              8          4          7
                                   2482802840    3731406                    23.9352390    17.4348    22.0169
    1981      Bangladesh                2            8       3646082672              3          8          2
                                   2535793992    3841401                    23.9563577    17.4639    22.0993
    1982      Bangladesh                3            1       3959284556              3          3          3
                                   2634209333    3957243                                  17.4936    22.1434
    1983      Bangladesh                7            7       4137933752      23.994434          4          6
                                   2760738574    4078945                    24.0413491    17.5239    22.2383
    1984      Bangladesh                5            9       4549907915              7          3          7
                                   2853002862    4206636                    24.0742230    17.5547    22.2959
    1985      Bangladesh                2            3       4819434295              1          6          2
                                   2972069586    4340278                    24.1151094    17.5860    22.3505
    1986      Bangladesh                1            5       5089987214              7          3          4
                                   3084187994    4480331                    24.1521393    17.6177    22.4484
    1987      Bangladesh                2            8       5613753008              4          9          9
    1988      Bangladesh           3158709898    4627996     5699753665     24.1760146    17.6502    22.4636
                         0           4                            1         2         9
                    3248309298    4784827                24.2039855   17.6835   22.5117
1989   Bangladesh        5           6      5980501589            8         5         7
                    3430937633    4567458                24.2586845   17.6370   22.5654
1990   Bangladesh        2           0      6310350747            2         5         6
                    3550513625    4699855                24.2929432   17.6656   22.5897
1991   Bangladesh        9           0      6465535056            1         3         5
                    3743756918    4806663                24.3459405             22.6290
1992   Bangladesh        0           0      6724640892            6   17.6881         4
                    3920146336    4915561                24.3919799             22.7348
1993   Bangladesh        0           0      7475379976            1   17.7105         8
                    4072644985    5026840                24.4301435   17.7328   22.8232
1994   Bangladesh        1           0      8165921452            9         9         4
                    4281216452    5140898                24.4800881   17.7553   22.9149
1995   Bangladesh        5           0      8950516468            2         2         8
                    4474852414    5253569   1002025317                          23.0278
1996   Bangladesh        2           0           9       24.5243243    17.777         7
                    4675768656    5369386   1066750596                17.7988   23.0904
1997   Bangladesh        0           0           2       24.5682445         1         7
                    4917834455    5487677   1163965323   24.6187192             23.1776
1998   Bangladesh        9           0           1                1   17.8206         8
                    5147505014    5607732   1263910388   24.6643630   17.8422   23.2600
1999   Bangladesh        9           0           1                6         4         6
                    5419977626    5728813   1353871616   24.7159426             23.3288
2000   Bangladesh        0           0           0                2   17.8636         2
                    5695165487    5885757   1461297562   24.7654685   17.8906   23.4051
2001   Bangladesh        5           0           3                8         3         8
                    5913468239    6045843   1569727489   24.8030834   17.9174   23.4767
2002   Bangladesh        2           0           4                3         7         5
                    6193741052    6206618   1689927080                17.9437   23.5505
2003   Bangladesh        0           0           1       24.8493902         1         4
                    6518264152    6365521   1828646093   24.9004590   17.9689   23.6294
2004   Bangladesh        8           0           6                4         9         3
                    6944294308    6521161   2007188513   24.9637712   17.9931   23.7225
2005   Bangladesh        9           0           2                9         5         9
                    7407608477    6663447   2205658377   25.0283585   18.0147   23.8168
2006   Bangladesh        2           0           5                7         3         8
                    7930484611    6803103   2363293858   25.0965650   18.0354   23.8859
2007   Bangladesh        2           0           7                7         7         1
                    8407407282    6942051   2595253654   25.1549640   18.0556   23.9795
2008   Bangladesh        6           0           3                7         9         4
                    8831571471    7082737   2786994748                18.0757   24.0508
2009   Bangladesh        9           0           3       25.2041839         6         1
                    9323649172    7227449   3025690310   25.2584050   18.0959   24.1329
2010   Bangladesh        0           0           5                2         8         9
                    9926365646    7394848   3314974961   25.3210453   18.1188
2011   Bangladesh        2           0           4                4         8   24.2243
                                  7564288   3665292550   25.3842213   18.1415   24.3247
2012   Bangladesh   1.05737E+11      0           0                9         3         6
                                  7735773   3861922365   25.4426185   18.1639   24.3770
2013   Bangladesh   1.12096E+11      0           9                6         5         2
                                           7909481     4242516797      25.5019833      18.1861         24.4710
   2014      Bangladesh      1.18952E+11      0             3                   2            6               1
                                                                       861.480139      623.309         809.569
                                                                                7            1               5
n n n
Here, Ý    =
                  ∑Yi       = 24.61371828,    X́ 1 =   ∑ X1i     = 17.80883,     X́ 2 =     ∑ X2i          =
                  i=1                                  i=1                                  i =1
                       n                                     n                                     n
23.13056.
                                                                                x 1i        x 2i
                                   Yi =       X1i        X2i          yi =       =           =
                                    ln       = ln (     = ln (        Yi -      X1i         X2i
           Year         Country     Pi        Li )       Ki )          Ý     - X́ 1      - X́ 2
                                                                          -                     -
                       Banglade   23.865     17.406    21.811        0.7483                1.3194
           1980           sh           4         54        07             2   -0.4023           8
                                                                          -         -           -
                       Banglade   23.935     17.434    22.016        0.6784    0.3739      1.1136
           1981           sh          24         88        92             8         5           4
                                                                          -                     -
                       Banglade   23.956     17.463    22.099        0.6573                1.0312
           1982           sh          36         93        33             6   -0.3449           3
                                                                          -         -           -
                       Banglade   23.994     17.493    22.143        0.6192    0.3151      0.9870
           1983           sh          43         64        46             8         9           9
                                                                          -                     -
                       Banglade   24.041     17.523    22.238        0.5723                0.8921
           1984           sh          35         93        37             7   -0.2849           8
                                                                                    -           -
                       Banglade   24.074     17.554    22.295                  0.2540      0.8346
           1985           sh          22         76        92    -0.5395            7           3
                                                                       -                        -
                       Banglade   24.115     17.586    22.350     0.4986                   0.7800
           1986           sh          11         03        54          1      -0.2228           2
                                                                       -            -           -
                       Banglade   24.152     17.617    22.448     0.4615       0.1910      0.6820
           1987           sh          14         79        49          8            4           7
                                                                                    -           -
                       Banglade   24.176     17.650    22.463                  0.1586      0.6668
           1988           sh          01         22        69    -0.4377            1           7
                                                  -        -       -
       Banglade   24.203   17.683   22.511   0.4097   0.1252 0.6187
1989      sh          99       55       77        3        9       9
                                                  -        -
       Banglade   24.258   17.637   22.565   0.3550   0.1717
1990      sh          68       05       46        3        8 -0.5651
                                                  -        -       -
       Banglade   24.292   17.665   22.589   0.3207   0.1432 0.5408
1991      sh          94       63       75        8        1       1
                                                  -        -       -
       Banglade   24.345   17.688   22.629   0.2677   0.1207 0.5015
1992      sh          94        1       04        8        3       1
                                                  -        -       -
       Banglade   24.391   17.710   22.734   0.2217   0.0983 0.3956
1993      sh          98        5       88        4        3       8
                                                  -        -       -
       Banglade   24.430   17.732   22.823   0.1835   0.0759 0.3073
1994      sh          14       89       24        7        5       2
                                                  -        -       -
       Banglade   24.480   17.755   22.914   0.1336   0.0535 0.2155
1995      sh          09       32       98        3        1       8
                                                  -        -       -
       Banglade   24.524            23.027   0.0893   0.0318 0.1026
1996      sh          32   17.777       87        9        3       8
                                                  -        -       -
       Banglade   24.568   17.798   23.090   0.0454   0.0100 0.0400
1997      sh          24       81       47        7        2       9
       Banglade   24.618   17.820   23.177   0.0050   0.0117 0.0471
1998      sh          72        6       68       01       68      26
       Banglade   24.664   17.842   23.260   0.0506   0.0334 0.1295
1999      sh          36       24       06       45        1      04
       Banglade   24.715   17.863   23.328   0.1022   0.0547 0.1982
2000      sh          94        6       82       24       72      62
       Banglade   24.765   17.890   23.405   0.1517   0.0817 0.2746
2001      sh          47       63       18        5       99      18
       Banglade   24.803   17.917   23.476   0.1893   0.1086 0.3461
2002      sh          08       47       75       65       34      96
       Banglade   24.849   17.943   23.550   0.2356   0.1348 0.4199
2003      sh          39       71       54       72       79      79
       Banglade   24.900   17.968   23.629   0.2867   0.1601 0.4988
2004      sh          46       99       43       41       59       7
       Banglade   24.963   17.993   23.722   0.3500   0.1843 0.5920
2005      sh          77       15       59       53       16      29
              Banglade      25.028    18.014     23.816     0.4146                0.6863
      2006       sh             36        73         88          4     0.2059          2
              Banglade      25.096    18.035     23.885     0.4828     0.2266     0.7553
      2007       sh             57        47         91         47         42          5
              Banglade      25.154    18.055     23.979     0.5412     0.2468     0.8489
      2008       sh             96        69         54         46          6         78
              Banglade      25.204    18.075     24.050     0.5904     0.2669     0.9202
      2009       sh             18        76         81         66         24         58
              Banglade      25.258    18.095     24.132     0.6446     0.2871     1.0024
      2010       sh             41        98         99         87         49         33
              Banglade      25.321    18.118     24.224     0.7073     0.3100     1.0937
      2011       sh             05        88          3         27         47         44
              Banglade      25.384    18.141     24.324     0.7705     0.3327     1.1942
      2012       sh             22        53         76         03         01         02
              Banglade      25.442    18.163     24.377                0.3551     1.2464
      2013       sh             62        95         02     0.8289         19         59
              Banglade      25.501    18.186     24.471     0.8882     0.3773     1.3404
      2014       sh             98        16         01         65         25          5
Table: Calculation of SP( X 1 ,Y), SP( X 2 , Y), SS( X 1 ), SS( X 2 ) and SP( X 1 , X 2 ).
Thus, we have,
 ^
 Pi = 881696.4987 L−0.33221
                   i        K 0.728058
                              i
Since α^ cannot be negative for an underdeveloped country like Bangladesh, OLS method is
not applicable for this country. After applying AR (Auto Regressive) model, we have,
 α^   = 0.243714,   ^β = 0.5189 and α^0 = 8.3050
Thus, we have,
 ^
 Pi = 4044.042138 L0.243714
                   i
                             0.5189
                            Ki
Comment: From the estimated result, it is found that the output elasticity with respect to labor
is 0.243714 which means that for increasing 100% input labor the output will be increased by
24.3714% while the input capital is constant, and the output elasticity of capital is 0.5189 which
means that for increasing 100% input capital the output will be increased by 51.89% while the
input labor is constant. Since, 0.243714 + 0.5189 is less than 1, the production function is said
to be decreasing return to scale. From the estimated value of R2 , it can be said that 99.7% of
the total variation in the dependent variable GDP is explained by the fitted regression equation
and 0.3% is explained by the random factors. Thus, the fit is very good.
                                                                             X1i =      X2i =
                          GDP (     Labor (     Capital (     Y i = ln     ln ( Li   ln ( K i
   Year        Country      Pi )       Li )        Ki )          Pi            )          )
                         5.93E+1    1.14E+0     1.18E+1     29.4116443      18.5554 27.7928
   1980         USA         2          8           2                   6           4          8
                         6.09E+1    1.16E+0                                 18.5698 27.8115
   1981         USA         2          8        1.2E+12     29.4372592             5          9
                         5.97E+1    1.18E+0     1.13E+1     29.4179650      18.5829 27.7563
   1982         USA         2          8           2                 4             9          1
                         6.25E+1    1.19E+0     1.22E+1     29.4632477      18.5946 27.8269
   1983         USA         2          8           2                 3             6          1
                                    1.21E+0                 29.5333253      18.6104 27.9670
   1984         USA      6.7E+12       8        1.4E+12              2             9          5
                         6.99E+1    1.23E+0                 29.5748385      18.6289 28.0347
   1985         USA         2          8        1.5E+12              2             6          6
                         7.23E+1    1.25E+0     1.54E+1     29.6093527      18.6461 28.0653
   1986         USA         2          8           2                 1             2          8
                         7.48E+1    1.27E+0     1.57E+1     29.6433844      18.6629 28.0830
   1987         USA         2          8           2                 3             5          9
                                                1.61E+1     29.6845642      18.6793
   1988         USA      7.8E+12    1.3E+08        2                 3             4 28.1064
                         8.08E+1    1.32E+0     1.66E+1     29.7207088      18.6984 28.1353
   1989         USA         2          8           2                 4             5          4
                         8.24E+1    1.31E+0     1.65E+1     29.7397202      18.6918 28.1343
   1990         USA         2          8           2                 6             8          4
   1991         USA      8.23E+1    1.31E+0     1.59E+1     29.7389796      18.6940 28.0920
                2         8         2               2         4         8
             8.52E+1   1.33E+0   1.65E+1   29.7739159   18.7060   28.1326
1992   USA      2         8         2               8         5         8
             8.76E+1   1.34E+0   1.74E+1   29.8010036   18.7138
1993   USA      2         8         2               4         5   28.1825
             9.11E+1   1.36E+0   1.84E+1   29.8405868   18.7295
1994   USA      2         8         2               5         8   28.2418
             9.36E+1   1.38E+0   1.94E+1   29.8674139   18.7427   28.2922
1995   USA      2         8         2               1         2         9
             9.71E+1             2.09E+1   29.9046698   18.7571   28.3663
1996   USA      2      1.4E+08      2               4         1         1
             1.02E+1   1.43E+0   2.24E+1   29.9485622   18.7750   28.4376
1997   USA      3         8         2               1         5         8
             1.06E+1   1.45E+0   2.44E+1   29.9920996   18.7899   28.5229
1998   USA      3         8         2               6         3         2
             1.11E+1   1.47E+0   2.64E+1   30.0378872   18.8045   28.6030
1999   USA      3         8         2               2         8         8
             1.16E+1   1.49E+0   2.81E+1   30.0779938   18.8175
2000   USA      3         8         2               5         9   28.6643
             1.17E+1                       30.0877063   18.8259   28.6588
2001   USA      3      1.5E+08   2.8E+12            5         3         9
             1.19E+1   1.51E+0   2.75E+1   30.1054099   18.8333
2002   USA      3         8         2               9         4   28.6411
             1.22E+1   1.52E+0   2.85E+1   30.1330910   18.8395   28.6795
2003   USA      3         8         2               6         9         8
             1.27E+1   1.53E+0   3.02E+1   30.1702494   18.8474   28.7359
2004   USA      3         8         2               9         2         8
             1.31E+1   1.55E+0   3.19E+1                18.8601   28.7904
2005   USA      3         8         2      30.2031543         7         9
             1.34E+1   1.57E+0   3.26E+1   30.2294712   18.8716   28.8120
2006   USA      3         8         2               1         9         4
             1.37E+1   1.58E+0   3.22E+1                18.8791   28.7995
2007   USA      3         8         2      30.2471006         7         7
             1.36E+1             3.06E+1   30.2441801             28.7499
2008   USA      3      1.6E+08      2               2    18.889         2
             1.33E+1             2.66E+1   30.2160323   18.8887   28.6098
2009   USA      3      1.6E+08      2               7         6         5
             1.36E+1   1.59E+0   2.69E+1   30.2410363             28.6209
2010   USA      3         8         2               6   18.8863         7
             1.38E+1   1.61E+0   2.79E+1   30.2569240   18.8946   28.6572
2011   USA      3         8         2               2         5         7
             1.41E+1   1.62E+0   2.97E+1   30.2798695   18.9025   28.7181
2012   USA      3         8         2               9         9         2
                          1.45E+1    1.63E+0     3.06E+1          30.3018199     18.9102              28.7481
  2013          USA          3          8           2                      9           8                    6
                          1.48E+1    1.64E+0     3.19E+1          30.3254215     18.9178              28.7896
  2014          USA          3          8           2                      4           3                    6
                                                                                 656.698              993.261
                                                                  1047.26059           3                    3
                  n                                   n                                     n
Here, Ý    =
                ∑Yi       = 29.92173115,    X́ 1 =   ∑ X1i        = 18.76281,   X́ 2 =     ∑ X2i          =
                 i=1                                 i=1                                   i =1
                      n                                    n                                      n
28.37889.
                                             X1i =        X2i =        yi =       x 1i =              x 2i =
                              Y i = ln     ln ( Li         ln (        Yi -       X1i -               X2i -
    Year        Country          Pi           )            Ki )         Ý         X́ 1                X́ 2
                            29.4116443     18.5554      27.7928
    1980         USA                 6           4            8     -0.510087   -0.20737          -0.58602
                                           18.5698      27.8115
    1981         USA        29.4372592           5            9     -0.484472   -0.19296           -0.5673
                            29.4179650     18.5829      27.7563
    1982         USA                 4           9            1     -0.503766   -0.17982          -0.62259
                            29.4632477     18.5946      27.8269
    1983         USA                 3           6            1     -0.458483   -0.16815          -0.55198
                            29.5333253     18.6104      27.9670
    1984         USA                 2           9            5     -0.388406   -0.15232          -0.41185
                            29.5748385     18.6289      28.0347
    1985         USA                 2           6            6     -0.346893   -0.13385          -0.34413
                            29.6093527     18.6461      28.0653
    1986         USA                 1           2            8     -0.312378   -0.11669          -0.31352
                            29.6433844     18.6629      28.0830
    1987         USA                 3           5            9     -0.278347   -0.09986           -0.2958
                            29.6845642     18.6793
    1988         USA                 3           4      28.1064     -0.237167   -0.08347           -0.2725
                            29.7207088     18.6984      28.1353
    1989         USA                 4           5            4     -0.201022   -0.06436          -0.24355
                            29.7397202     18.6918      28.1343
    1990         USA                 6           8            4     -0.182011   -0.07093          -0.24456
                            29.7389796     18.6940      28.0920
    1991         USA                 2           4            8     -0.182752   -0.06877          -0.28681
                            29.7739159     18.7060      28.1326
    1992         USA                 8           5            8     -0.147815   -0.05676          -0.24621
                            29.8010036     18.7138
    1993         USA                 4           5      28.1825     -0.120728   -0.04896          -0.19639
                            29.8405868     18.7295
    1994         USA                 5           8      28.2418     -0.081144   -0.03323          -0.13709
                            29.8674139        18.7427       28.2922
  1995          USA                  1              2             9         -0.054317       -0.02009         -0.0866
                            29.9046698        18.7571       28.3663
  1996          USA                  4              1             1         -0.017061        -0.0057     -0.01259
                            29.9485622        18.7750       28.4376          0.026831                     0.05878
  1997          USA                  1              5             8                 1       0.01224             3
                            29.9920996        18.7899       28.5229          0.070368       0.02712       0.14402
  1998          USA                  6              3             2                 5             2             1
                            30.0378872        18.8045       28.6030          0.116156       0.04177       0.22418
  1999          USA                  2              8             8                 1             2             3
                            30.0779938        18.8175                        0.156262       0.05478
  2000          USA                  5              9       28.6643                 7             4          0.28541
                            30.0877063        18.8259       28.6588          0.165975       0.06311          0.27999
  2001          USA                  5              3             9                 2             5                8
                            30.1054099        18.8333                        0.183678       0.07052          0.26220
  2002          USA                  9              4       28.6411                 8             7                3
                            30.1330910        18.8395       28.6795          0.211359       0.07677          0.30068
  2003          USA                  6              9             8                 9             6                1
                            30.1702494        18.8474       28.7359          0.248518       0.08461          0.35708
  2004          USA                  9              2             8                 3             4                9
                                              18.8601       28.7904          0.281423                        0.41159
  2005          USA         30.2031543              7             9                 1       0.09736                8
                            30.2294712        18.8716       28.8120          0.307740       0.10888          0.43314
  2006          USA                  1              9             4                 1             5                8
                                              18.8791       28.7995          0.325369       0.11635          0.42067
  2007          USA         30.2471006              7             7                 4             7                2
                            30.2441801                      28.7499                         0.12618          0.37102
  2008          USA                  2         18.889             2         0.322449              9                8
                            30.2160323        18.8887       28.6098         0.294301        0.12594          0.23095
  2009          USA                  7              6             5                2              8                9
                            30.2410363                      28.6209         0.319305        0.12348          0.24207
  2010          USA                  6        18.8863             7                2              9                9
                            30.2569240        18.8946       28.6572         0.335192        0.13183          0.27837
  2011          USA                  2              5             7                9              7                7
                            30.2798695        18.9025       28.7181         0.358138        0.13978
  2012          USA                  9              9             2                4              4          0.33923
                            30.3018199        18.9102       28.7481         0.380088        0.14746
  2013          USA                  9              8             6                8              9          0.36927
                            30.3254215        18.9178       28.7896         0.403690        0.15502          0.41076
  2014          USA                  4              3             6                4              4                9
Table: Calculation of SP( X 1 ,Y), SP( X 2 , Y), SS( X 1 ), SS( X 2 ) and SP( X 1 ,                            X 2 ).
                                                                        2               2
         Year     Country         yi x1 i         yi x2 i        x 1i              x 2i          x 1i x 2i
                                 0.10577                                         0.34341
         1980         USA                 4      0.29892          0.043                 7        0.12152
             0.09348    0.27484   0.03723    0.32183   0.10946
1981   USA         4          3         4          3         7
             0.09058    0.31363   0.03233    0.38761   0.11195
1982   USA         6          8         4          4         2
             0.07709    0.25307   0.02827    0.30468   0.09281
1983   USA         6          5         6          6         8
             0.05916    0.15996   0.02320    0.16961   0.06273
1984   USA         2          4         1          9         2
             0.04643    0.11937   0.01791    0.11842   0.04606
1985   USA         3          8         7          8         3
             0.03645    0.09793   0.01361    0.09829   0.03658
1986   USA         3          6         7          3         6
             0.02779    0.08233   0.00997              0.02953
1987   USA         6          6         2     0.0875         9
             0.01979    0.06462   0.00696    0.07425   0.02274
1988   USA         7          7         8          4         7
             0.01293              0.00414    0.05931   0.01567
1989   USA         7    0.04896         2          9         4
                        0.04451   0.00503    0.05980   0.01734
1990   USA   0.01291          2         1          8         6
             0.01256    0.05241                        0.01972
1991   USA         8          5   0.00473    0.08226         4
                        0.03639   0.00322    0.06062   0.01397
1992   USA   0.00839          4         2          1         5
             0.00591              0.00239    0.03857   0.00961
1993   USA         1    0.02371         7          1         5
             0.00269    0.01112   0.00110    0.01879   0.00455
1994   USA         7          4         4          4         6
             0.00109    0.00470   0.00040              0.00173
1995   USA         1          4         3     0.0075         9
                        0.00021              0.00015
1996   USA   9.73E-05         5   3.25E-05         8   7.18E-05
              0.00032   0.00157              0.00345
1997   USA          8         7   0.00015          5   0.00072
              0.00190   0.01013   0.00073    0.02074   0.00390
1998   USA          9         5         6          2         6
              0.00485             0.00174    0.05025   0.00936
1999   USA          2   0.02604         5          8         5
              0.00856   0.04459   0.00300    0.08145   0.01563
2000   USA          1         9         1          9         6
              0.01047   0.04647   0.00398    0.07839   0.01767
2001   USA          6         3         4          9         2
2002   USA    0.01295   0.04816   0.00497    0.06875   0.01849
                                       4           1           4                      2
                                 0.01622     0.06355     0.00589      0.09040   0.02308
           2003       USA              7           2           5            9         5
                                 0.02102     0.08874     0.00715      0.12751   0.03021
           2004       USA              8           3           9            2         5
                                 0.02739     0.11583     0.00947      0.16941   0.04007
           2005       USA              9           3           9            3         3
                                 0.03350     0.13329     0.01185      0.18761   0.04716
           2006       USA              8           7           6            8         3
                                 0.03785     0.13687     0.01353      0.17696   0.04894
           2007       USA              9           4           9            5         8
                                 0.04068     0.11963     0.01592      0.13766   0.04681
           2008       USA              9           7           4            1         9
                                 0.03706     0.06797     0.01586      0.05334   0.02908
           2009       USA              7           2           3            2         9
                                 0.03943     0.07729                  0.05860   0.02989
           2010       USA              1           7     0.01525            2         4
                                 0.04419                 0.01738      0.07749   0.03670
           2011       USA              1     0.09331           1            4         1
                                 0.05006     0.12149                  0.11507   0.04741
           2012       USA              2           1     0.01954            7         9
                                 0.05605     0.14035     0.02174                0.05445
           2013       USA              1           5           7      0.13636         6
                                 0.06258     0.16582     0.02403      0.16873   0.06367
           2014       USA              2           4           2            1         9
                                 1.11835     3.38792     0.42583      4.03492   1.27945
                                       4           1           3            4         7
Comment: From the estimated result, it is found that the output elasticity with respect to labor
is 2.189478 which means that for increasing 100% input labor the output will be increased by
218.94% while the input capital is constant, and the output elasticity of capital is 0.145375
which means that for increasing 100% input capital the output will be increased by 14.53%
while the input labor is constant. Since, 2.189478 + 0.145375 is greater than 1, the production
function is said to be increasing return to scale. From the estimated value of R2 , it can be
said that 99.8% of the total variation in the dependent variable GDP is explained by the fitted
regression equation and 0.2% is explained by the random factors. Thus, the fit is very good.