SETA
1.     Evaluate 𝑓(−1) for
                                                                                                         5                 𝑖𝑓 𝑥 < 0
                                                                                                 𝑓(𝑥) = {
                                                                                                         𝑥+3               𝑖𝑓 𝑥 ≥ 0
       Solution:
           -1 is less than zero then𝑥 < 0, so 𝑓(𝑥) = 5.
2.     What is the domain for 𝑓(𝑥) = √𝑥 2 + 1?
       Solution: −∞ < 𝑥 < ∞
3.     𝑦 = 5𝑥 3 − 1
       Solution:
       𝑓(−𝑥) = 5(−𝑥)3 − 1 = −5𝑥 3 − 1
       𝑓(𝑥) ≠ 𝑓(−𝑥) ≠ −𝑓(𝑥) then it is neither odd nor even.
4.     𝑦 = 2𝑥 3 − 𝑥
       Solution:
       𝑓(−𝑥) = 2(−𝑥)3 − (−𝑥) = −2𝑥 3 + 𝑥
       𝑓(−𝑥) = −𝑓(𝑥) then it is odd
                1
                𝑥+
                𝑥
5.     lim       1
       𝑥→0 𝑥 2 −2𝑥
           𝑥2 + 1
                        𝑥2 + 1    2𝑥        2(𝑥 2 + 1)
       lim 3𝑥     = lim        ∙ 3    = lim            = _________
       𝑥→0 2𝑥 − 1   𝑥→0   𝑥     2𝑥 − 1 𝑥→0 2𝑥 3 − 1
             2𝑥
         √1−𝑥 3
6. lim
     𝑥→1 √1−𝑥 2
             √1 − 𝑥 3                             √(1 − 𝑥)(1 + 𝑥 + 𝑥 2 )                         √1 + 𝑥 + 𝑥 2                   √1 − 𝑥 3           √1 + 𝑥 + 𝑥 2
       lim                        = lim                                                = lim                            = lim              = lim
       𝑥→1 √1  − 𝑥 2 𝑥→1 √(1 + 𝑥)(1 − 𝑥)                                                   𝑥→1        √1 + 𝑥             𝑥→1 √1    − 𝑥2     𝑥→1      √1 + 𝑥
        (Substitute the value of limit!)
7.     𝑦 = (𝑥 3 − 2𝑥 2 + 7𝑥 − 3)4
       𝑑𝑦                                𝑑                                             𝑑                    𝑑
          = 4(𝑥 3 − 2𝑥 2 + 7𝑥 − 3)3 [ (𝑥 3 ) − 2                                           (𝑥 2 ) + 7            (1)]      (Finish this!)
       𝑑𝑥                                                           𝑑𝑥                 𝑑𝑥                   𝑑𝑥
                                                                1            1            3             3
                2         6           2           4           −            −            −             −
8.     𝑦=        1   +        1   −       3   −    3   = 2𝑥     2   + 6𝑥     3   − 2𝑥      2   − 4𝑥     4
             𝑥2          𝑥3           𝑥2          𝑥4
       𝑑𝑦          1  1             1      1              3     3             3     3
          = 2 (− ) 𝑥 −2−1 (1) + 6 (− ) 𝑥 (−3−1) (1) − 2 (− ) 𝑥 −2−1 (1) − 4 (− ) 𝑥 −4−1 (1)
       𝑑𝑥          2                3                     2                   4
                 3      4       5      7
       𝑑𝑦      −      −       −      −
          = −𝑥 − 2𝑥 + 3𝑥 + 3𝑥
                 2      3       2      4     (Simplify!)
       𝑑𝑥
                     1
9.     𝑦 = (1−𝑥)2 = (1 − 𝑥)−2
       𝑑𝑦
            = −2(1 − 𝑥)−3 (−1)                                      (Simplify!)
       𝑑𝑥
                     1
10. 𝑦 = (1+𝑥)2 = (1 + 𝑥)−2
       𝑑𝑦
            = −2(1 + 𝑥)−3 (1)                                       (Simplify!)
       𝑑𝑥
11. 𝑦 =      √𝑥 2        + 6𝑥 + 3
                                                        1                                                                   1
       𝑑𝑦            1                                         𝑑                  𝑑               1
            = ( ) (𝑥 2 + 6𝑥 + 3)2−1 [                               (𝑥 2 ) + 6         (𝑥)] = (𝑥 2 + 6𝑥 + 3)−2 (2𝑥 + 6)                            (Simplify!)
       𝑑𝑥            2                                         𝑑𝑥                 𝑑𝑥              2
             1           3            2
12. 𝑦 = +                     +           = 𝑥 −1 + 3𝑥          −2
                                                                    + 2𝑥 −3
             𝑥        𝑥3 𝑥2
       𝑑𝑦            −2
            =   (−1)𝑥 (1)                     + 3(−2)𝑥 −3 (1) + 2(−3)𝑥 −4 (1)                                    (Simplify!)
       𝑑𝑥
             𝑢−1
13. 𝑦 =        and 𝑢 = √𝑥
             𝑢+1
                     𝑑                 𝑑
       𝑑𝑦 (𝑢 + 1) 𝑑𝑢 (𝑢 − 1) − (𝑢 − 1) 𝑑𝑢 (𝑢 + 1) (𝑢 + 1)(1) − (𝑢 − 1)(1) 𝑢 + 1 − 𝑢 + 1      2
          =                          2
                                                 =               2
                                                                         =          2
                                                                                        =
       𝑑𝑢                    (𝑢 + 1)                     (𝑢 + 1)            (𝑢 + 1)       (𝑢 + 1)2
       𝑑𝑢 1 1−1                1
          = (𝑥 2 ) (1) =
       𝑑𝑥 2                 2√ 𝑥
       𝑑𝑦   𝑑𝑦 𝑑𝑢
          = ∙      (Simplify!)
       𝑑𝑥       𝑑𝑢       𝑑𝑥
14. 𝑦 = √𝑢 , 𝑢 = 𝑣(3 − 2𝑣) and 𝑣 = 𝑥 2
     𝑑𝑦 1      1         1
        = (𝑢)2−1 (1) =
     𝑑𝑢 2               2√ 𝑢
    𝑑𝑢       𝑑                      𝑑
        =𝑣      (3 − 2𝑣) + (3 − 2𝑣)    (𝑣) = 𝑣(−2) + (3 − 2𝑣)
    𝑑𝑣      𝑑𝑣                      𝑑𝑣
    𝑑𝑣
        = 2𝑥
    𝑑𝑥
    𝑑𝑦 𝑑𝑦 𝑑𝑢 𝑑𝑣
        =     ∙    ∙
    𝑑𝑥 𝑑𝑢 𝑑𝑣 𝑑𝑥
    (Simplify!)
15. 𝑦 = 𝑥 2 − 3𝑥 − 1 and 𝑥 = 𝑡 2 − 2
     𝑑𝑦
          = 2𝑥 − 3
     𝑑𝑥
     𝑑𝑥
          = 2𝑡
     𝑑𝑡
     𝑑𝑦 𝑑𝑦 𝑑𝑥
          =      ∙   = ______
     𝑑𝑡 𝑑𝑥 𝑑𝑡
     (Simplify!)
16. 𝑥 = 𝑡 2 + 2𝑡 and 𝑦 = 2𝑡 3 − 6𝑡
     𝑑𝑥
          = 2𝑡 + 2
     𝑑𝑡
     𝑑𝑦
          = 6𝑡 2 − 6
     𝑑𝑡
              𝑑𝑦
     𝑑𝑦
          = 𝑑𝑡 = ____________
     𝑑𝑥 𝑑𝑥
              𝑑𝑡
17. 𝑥𝑦 + 𝑥 − 2𝑦 − 1 = 0
     𝑥𝑦 ′ + 𝑦(1) + 1 − 2𝑦 ′ − 0 = 0
     1 + 𝑦 = 𝑦′(2 − 𝑥)
     (Simplify!)
18. 𝑥 2 𝑦 + 3𝑦 − 4 = 0
     𝑥 2 𝑦 ′ + 2𝑥𝑦 + 3𝑦 ′ = 0
                 2𝑥𝑦
     𝑦′ = − 2
               𝑥 +3
19. 𝑥 2 − 𝑥𝑦 + 𝑦 2 = 3
     2𝑥 − 𝑥𝑦 ′ − 𝑦 + 2𝑦𝑦 ′ = 0
     (2𝑥 − 𝑦) = 𝑦′(𝑥 − 2𝑦)
     (Simplify!)
20. 5𝑥 2 − 2𝑥𝑦 + 𝑦 2 = 0
     10𝑥 − 2𝑥𝑦 ′ − 2𝑦 + 2𝑦𝑦 ′ = 0
     10𝑥 − 2𝑦 = 2𝑦′(𝑥 − 𝑦)
     (Simplify!)
21. 𝑥 2 + 𝑦 2 = 𝑎2
     2𝑥 + 2𝑦𝑦 ′ = 0
             𝑥
     𝑦′ = −
             𝑦
     1 + 𝑦𝑦" + 𝑦′𝑦′ = 0
           −1 − (𝑦 ′ )2
     𝑦" =
                 𝑦
     (Simplify!)
22. 𝑥𝑦 + 𝑦 2 = 1
     𝑥𝑦 ′ + 𝑦 + 2𝑦𝑦 ′ = 0
                 𝑦
     𝑦′ = −
             𝑥 + 2𝑦
     𝑥𝑦" + 𝑦′ + 𝑦′ + 2𝑦𝑦" + 2𝑦′𝑦′ = 0
           −2(𝑦 ′ + 𝑦 ′ 𝑦 ′ )
     𝑦" =
               𝑥 + 2𝑦
     (Simplify!)
23. 4𝑥 2 + 8𝑦 2 = 36
     𝑥 2 + 2𝑦 2 = 9
     2𝑥 + 4𝑦𝑦 ′ = 0
               𝑥
    𝑦′ = −
              2𝑦
     2 + 4𝑦𝑦" + 4𝑦′𝑦′ = 0
           −(1 + 2𝑦′𝑦′)
     𝑦" =
                  2𝑦
     (Simplify!)
24. Determine the slope of the tangent line to a curve 𝑥 2 + 𝑦 2 − 6𝑥 − 4𝑦 − 21 = 0 at (0, 7).
     2𝑥 + 2𝑦𝑦 ′ − 6 − 4𝑦 ′ = 0
           2(3 − 𝑥) 3 − 𝑥 3 − 0
     𝑦′ =             =        =
           2(𝑦 − 2) 𝑦 − 2 7 − 2
     (Simplify!)
25. Find the slope of the line whose parametric equations are: 𝑥 = 4𝑡 + 6 and 𝑦 = 𝑡 − 1
     𝑑𝑥
         =4
     𝑑𝑡
     𝑑𝑦
         =1
     𝑑𝑡
            𝑑𝑦
     𝑑𝑦
         = 𝑑𝑡 = _______
     𝑑𝑥 𝑑𝑥
            𝑑𝑡
26. Determine the horizontal tangents of the curve 𝑥 2 − `4𝑥𝑦 + 16𝑦 2 = 27.
     2𝑥 − 4𝑥𝑦 ′ − 4𝑦 + 32𝑦𝑦 ′ = 0
           2(𝑥 − 2𝑦) 𝑥 − 2𝑦
     𝑦′ =               =
            4(𝑦 − 8)      𝑦−8
     𝑥 − 2𝑦 = 0
     𝑥 = 2𝑦
     (2𝑦)2 − 4(2𝑦)𝑦 + 16𝑦 2 = 27
     4𝑦 2 − 8𝑦 2 + 16𝑦 2 = 27
     12𝑦 2 = 27
           9
     𝑦2 =
           4
             3
     𝑦=±
             2
     𝑥 = ±3
27. Find the equation of the line normal to 𝑥 2 − 𝑦 2 = 7 at the point (4, − 3)
     2𝑥 − 2𝑦𝑦 ′ = 0
           𝑥      4
     𝑦′ = =
           𝑦 −3
                 1    3
     𝑚1 = −         =
                 4    4
               −3
     3 𝑦+3
        =
     4 𝑥−4
     (Simplify!)
28. Find the equation of the normal to the parabola 𝑦 = 4𝑥 2 at the point (-1, 4)
     𝑦 ′ = 8𝑥
     𝑦 ′ = 8(−1) = −8
                1     1
     𝑚1 = −         =
               −8 8
     1 𝑦−4
        =
     8 𝑥+1
     (Simplify!)
29. At what points on the curve 𝑦 = 2𝑥 3 + 13𝑥 2 + 5𝑥 + 9 does its tangent pass through the origin.
     𝑦 ′ = 6𝑥 2 + 26𝑥 + 5
     𝑦 − 0 = (6𝑥 2 + 26𝑥 + 5)(𝑥 − 0)
     𝑦 = 6𝑥 3 + 26𝑥 2 + 5𝑥
     2𝑥 3 + 13𝑥 2 + 5𝑥 + 9 = 6𝑥 3 + 26𝑥 2 + 5𝑥
     4𝑥 3 + 13𝑥 2 − 9 = 0
     (𝑥 + 1)(𝑥 + 3)(4𝑥 − 3) = 0
     𝑥 = −1, 𝑦 = 15
     𝑥 = −3, 𝑦 = 57
       3     669
    𝑥 = ,𝑦 =
       4      32
SET B
    1.   Evaluate 𝑓(𝑢2 + 𝑣) for 𝑓(𝑥) = 4𝑥 + 6
         𝑓(𝑢2 + 𝑣) = 4(𝑢2 + 𝑣) + 6 = 4𝑢2 + 4𝑣 + 24
                                                          𝑥
    2.   Find the domain of the function 𝑦 = √
                                                         2−𝑥
         −2 ≤ 𝑥 ≤ 2
    3.   𝑦 = 5𝑥 4 − 2𝑥 2 + 1
         𝑓(−𝑥) = 5(−𝑥)4 − 2(−𝑥)2 + 1 = 5𝑥 4 − 2𝑥 2 + 1
         𝑓(𝑥) = 𝑓(−𝑥) Then it is even.
    4.   𝑔(𝑥) = 1 − 𝑥 4
         𝑔(−𝑥) = 1 − (−𝑥)4 = 1 − 𝑥 4
         𝑔(−𝑥) = 𝑔(𝑥) Then it is even
                                       1
               2𝑥 2 +1             2+ 2         2
                                     𝑥
    5.   lim               = lim   6   1   =−
         𝑥→∞ 6+𝑥−3𝑥 2        𝑥→∞ 2 +𝑥−3         3
                                𝑥
                                                                 1
               𝑥−2                 𝑥−2               (𝑥−2)(𝑥−2)−2            √𝑥−2
    6.   lim           = lim                 = lim           1       = lim          =0
         𝑥→2 √𝑥 2 −4       𝑥→2 √(𝑥+2)(𝑥−2)     𝑥→2      (𝑥+2)2        𝑥→2 √𝑥+2
    7.  𝑦 = 4 + 2𝑥 − 3𝑥 − 5𝑥 − 8𝑥 + 9𝑥 5
                                2      3       4
        𝑑𝑦        𝑑       𝑑            𝑑         𝑑            𝑑
            = 2 (𝑥) − 3 (𝑥 2 ) − 5 (𝑥 3 ) − 8 (𝑥 4 ) + 9 (𝑥 5 )
        𝑑𝑥      𝑑𝑥        𝑑𝑥          𝑑𝑥        𝑑𝑥           𝑑𝑥
                         = 2(1) − 3(2𝑥)(1) − 5(3𝑥 2 )(1) − 8(4𝑥 3 )(1) + 9(5𝑥 5 )(1)
              𝑥+5
    8. 𝑦 = 2
             𝑥 −1
                  2    𝑑                   𝑑 2
        𝑑𝑦 (𝑥 − 1) 𝑑𝑥 (𝑥 + 5) − (𝑥 + 5) 𝑑𝑥 (𝑥 − 1) (𝑥 2 − 1)(1) − (𝑥 + 5)(2𝑥)
            =                                          =
        𝑑𝑥                   (𝑥 2 − 1)2                            (𝑥 2 − 1)2
    (Simplify!)
             3−2𝑥
    9. 𝑦 =
             3+2𝑥
                       𝑑                     𝑑
        𝑑𝑦 (3 + 2𝑥) 𝑑𝑥 (3 − 2𝑥) − (3 − 2𝑥) 𝑑𝑥 (3 + 2𝑥) (3 + 2𝑥)(−2) − (3 − 2𝑥)(2)
            =                                             =
        𝑑𝑥                     (3 + 2𝑥)2                                (3 + 2𝑥)2
    (Simplify!)
                 1
    10. 𝑦 = (3𝑥 2 4 = (3𝑥 2 + 5)−4
                     +5)
        𝑑𝑦                         𝑑
            = −4(3𝑥 2 + 5)−5 (3 (𝑥 2 )) = −4(3𝑥 2 + 5)−5 (3)(2𝑥)
        𝑑𝑥                         𝑑𝑥
    (Simplify!)
    11. 𝑦 = 𝑥 2 + 3𝑥 + 1 and 𝑥 = 𝑡 2 + 2
        𝑑𝑦
            = 2𝑥 + 3
        𝑑𝑥
        𝑑𝑥
            = 2𝑡
        𝑑𝑡
        𝑑𝑦 𝑑𝑦 𝑑𝑥
            =     ∙
        𝑑𝑡 𝑑𝑥 𝑑𝑡
    (Simplify!)
    12. 𝑦 = √1 + 𝑢 𝑎𝑛𝑑 𝑢 = √𝑥
        𝑑𝑦 1               1 𝑑𝑢       1
            = (1 + 𝑢)1−2         =
        𝑑𝑢 2                 𝑑𝑥 2√1 + 𝑢
        𝑑𝑢 1        1
                      −1     1
            = (𝑥)2 =
        𝑑𝑥 2               2√ 𝑥
        𝑑𝑦 𝑑𝑦 𝑑𝑢
            =     ∙
        𝑑𝑥 𝑑𝑢 𝑑𝑥
    (Simplify!)
             𝑢+1
    13. 𝑦 =      and 𝑢 = √𝑥
             𝑢−1
                         𝑑               𝑑
        𝑑𝑦 (𝑢 − 1) 𝑑𝑢 (𝑢 + 1) − (𝑢 + 1) 𝑑𝑢 (𝑢 − 1) (𝑢 − 1)(1) − (𝑢 + 1)(1)
            =                                      =
        𝑑𝑢                      (𝑢 − 1)2                      (𝑢 − 1)2
    𝑑𝑢 1 1−1             1
         = (𝑥 2 ) =
    𝑑𝑥 2                2√ 𝑥
    𝑑𝑦 𝑑𝑦 𝑑𝑢
         =     ∙
    𝑑𝑥 𝑑𝑢 𝑑𝑥
(Simplify!)
14. 𝑥 2 𝑦 − 𝑥𝑦 2 + 𝑥 2 + 𝑦 2 = 0
    𝑥 2 𝑦 ′ + 2𝑥𝑦 − 2𝑥𝑦𝑦 ′ − 𝑦 2 + 2𝑥 + 2𝑦𝑦 ′ = 0
    𝑥 2 𝑦 ′ − 2𝑥𝑦𝑦 ′ + 2𝑦𝑦 ′ = 𝑦 2 − 2𝑥𝑦 − 2𝑥
(Simplify!)
15. 4𝑥 2 − 2𝑥𝑦 + 𝑦 2 = 0
    8𝑥 − 2𝑥𝑦 ′ − 2𝑦 + 2𝑦𝑦 ′ = 0
    2𝑦𝑦 ′ − 2𝑥𝑦 ′ = 2𝑦 − 8𝑥
    2𝑦 ′ (𝑦 − 𝑥) = 2(𝑦 − 4𝑥)
(Simplify!)
16. 𝑥 2 𝑦 + 3𝑦 − 4 = 0
    𝑥 2 𝑦 ′ + 2𝑥𝑦 + 3𝑦 ′ = 0
    𝑥 2 𝑦 ′ + 3𝑦 ′ = −2𝑥𝑦
(Simplify!)
17. 𝑥𝑦 + 𝑦 2 = 1
    𝑥𝑦 ′ + 𝑦 + 2𝑦𝑦 ′ = 0
    𝑥𝑦 ′ + 2𝑦𝑦 ′ = −𝑦
18. 𝑥 3 − 𝑦 3 = 1
    3𝑥 2 − 3𝑦 2 𝑦 ′ = 0
            𝑥2
    𝑦′ = 2
            𝑦
    𝑦 2 𝑦" + 2𝑦𝑦′𝑦′ − 2𝑥 = 0
            2𝑥 − 2𝑦𝑦′𝑦′
    𝑦" =
                𝑦2
                           2
                        𝑥2     2𝑥𝑦 3 − 2𝑥 4
            2𝑥 − 2𝑦 ( 2 )
                        𝑦           𝑦3
    𝑦" =             2
                             =
                   𝑦                𝑦2
(Simplify!)
19. 𝑥 = 𝑡 3 + 2𝑡 − 4 and 𝑦 = 𝑡 3 − 𝑡 + 2
    𝑑𝑥
         = 3𝑡 2 + 2
    𝑑𝑡
    𝑑𝑦
         = 3𝑡 2 − 1
    𝑑𝑡
             𝑑𝑦
    𝑑𝑦              3𝑡 2 − 1
         = 𝑑𝑡 = 2
    𝑑𝑥 𝑑𝑥 3𝑡 + 2
             𝑑𝑡
                 2        𝑑    2            2 𝑑 2
    𝑑 𝑦 (3𝑡 + 2) 𝑑𝑡 (3𝑡 − 1) − (3𝑡 − 1) 𝑑𝑡 (3𝑡 + 1) (3𝑡 2 + 2)(6𝑡) − (3𝑡 2 − 1)(6𝑡)
      2
           =                                       =
    𝑑𝑥 2                         (3𝑡 2 + 2)2                  (3𝑡 2 + 2)2
(Simplify!)
20. 𝑥 2 − 𝑦 2 = 𝑎2
    2𝑥 − 2𝑦𝑦 ′ = 0
            𝑥
    𝑦′ =
            𝑦
    𝑦 ′ 𝑦 ′ + 𝑦𝑦" − 1 = 0
    𝑦" = (1 − 𝑦′𝑦′)/𝑦
                  𝑥 2     𝑦2 − 𝑥 2
             1−( )
                  𝑦         𝑦2
    𝑦=(               )=
                𝑦            𝑦
(Simplify!)
21. Find the equations of the tangents to 9𝑥 2 + 16𝑦 2 = 52 that are parallel to the line 9𝑥 − 8𝑦 = 1.
    Find the slope of the curve
    18𝑥 + 32𝑦𝑦 ′ = 0
             18𝑥 (−2)(9𝑥)           9𝑥
    𝑦′ = −       =             =−
             32𝑦 (2)(16𝑦)          16𝑦
    Find the slope of the line
    9𝑥 − 8𝑦 = 1
    9𝑥 − 1 = 8𝑦
    9𝑥 1
       − =𝑦
     8 8
          9
    𝑚=
          8
    Equate 𝑦’ to 𝑚, then find x and y
    9       9𝑥
      =−
    8       16𝑦
    −2𝑦 = 𝑥
    9(−2𝑦)2 + 16𝑦 2 = 52
    36𝑦 2 + 16𝑦 2 = 52
    52𝑦 2 = 52
    𝑦 = ±1
    𝑥 = ∓2
    (−2, 1)(2, −1)
    Find the equation of the line;
    9 𝑦−1
      =
    8 𝑥+2
    9(𝑥 + 2) = 8(𝑦 − 1)
    9𝑥 + 18 − 8𝑦 + 8 = 0
    9𝑥 − 8𝑦 + 26 = 0
    9 𝑦+1
       =
    8 𝑥−2
    9(𝑥 − 2) = 8(𝑦 + 1)
    9𝑥 − 18 − 8𝑦 − 8 = 0
    9𝑥 − 8𝑦 − 26 = 0
22. Examine 2𝑥 2 − 4𝑥𝑦 + 3𝑦 2 − 8𝑥 + 8𝑦 − 1 = 0 for minimum points.
    4𝑥 − 4𝑥𝑦 ′ − 4𝑦 + 6𝑦𝑦 ′ − 8 + 8𝑦 ′ = 0
    8𝑦 ′ + 6𝑦𝑦 ′ − 4𝑥𝑦 ′ = 8 + 4𝑦 − 4𝑥
    2𝑦 ′ (4 + 3𝑦 − 4𝑥) = 2(4 + 2𝑦 − 2𝑥)
           4 + 2𝑦 − 2𝑥
    𝑦′ =
           4 + 3𝑦 − 4𝑥
    Let y’=0
    0 = 4 + 2𝑦 − 2𝑥
    𝑥 =2+𝑦
    Find y;
    2(2 + 𝑦)2 − 4(2 + 𝑦)𝑦 + 3𝑦 2 − 8(2 + 𝑦) + 8𝑦 − 1 = 0
    2(4 + 4𝑦 + 𝑦 2 ) − 8𝑦 − 4𝑦 2 + 3𝑦 2 − 16 − 8𝑦 + 8𝑦 − 1 = 0
    8 + 8𝑦 + 2𝑦 2 − 8𝑦 − 4𝑦 2 + 3𝑦 2 − 16 − 8𝑦 + 8𝑦 − 1
    −9 + 𝑦 2 = 0
    𝑦2 = 9
    𝑦 = ±3
    Then find x
    𝑥 = 5 𝑎𝑛𝑑 − 1
    (5,3) and (-1, -3)
23. Determine the point of inflection of the function 𝑦 = 3𝑥 4 − 10𝑥 3 − 12𝑥 2 − 7
    Point of inflection is at y”=0
    𝑦 ′ = 12𝑥 3 − 30𝑥 2 − 24𝑥
    𝑦" = 36𝑥 2 − 60𝑥 − 24
    0 = 12(3𝑥 2 − 5𝑥 − 2)
    0 = (3𝑥 + 1)(𝑥 − 2)
            1
    𝑥 = − 𝑜𝑟 𝑥 = 2
            3
            322
    𝑦=−           𝑜𝑟 𝑦 = −63
             27
24. Find the equation of the line tangent to 𝑥 2 − 𝑦 2 = 7 at the point (4, − 3)
    2𝑥 − 2𝑦𝑦 ′ = 0
         𝑥     4
    𝑦′ = =
         𝑦 −3
             4
    𝑚1 = −
             3
      4 𝑦+3
    − =
      3 𝑥−4
    −4(𝑥 − 4) = 3(𝑦 + 3)
    −4𝑥 + 16 = 3𝑦 + 9
    4𝑥 + 3𝑦 = 7
25. Find the acute angles of the intersection of the circle 𝑥 2 − 4𝑥 + 𝑦 2 = 0 and 𝑥 2 + 𝑦 2 = 8
    Point of intersection
    (𝑥 2 − 4𝑥 + 𝑦 2 = 0)
    −(𝑥 2 + 𝑦 2 = 8)
    −4𝑥 = −8
    𝑥=2
    𝑦 2 = 8 − 𝑥 2 = 8 − 22
    𝑦 = ±2
    Slope 1
    2𝑥 − 4 + 2𝑦𝑦 ′ = 0
           2−𝑥
    𝑦′ =
             𝑦
            2−2
    𝑚1 =            =0
              2
    Slope 2
    2𝑥 + 2𝑦𝑦 ′ = 0
             𝑥
    𝑦′ = −
             𝑦
              2
    𝑚2 = − = 1
              2
                 0−1
    tan 𝜃 =               =1
              1 + (0)(1)
    𝜃 = tan−1 1 = ______
(Simplify!)
         1        1
26. 𝑦 = 𝑥 3 + 𝑥 2 − 6𝑥 + 8
         3        2
      ′
           1     2
                      1
    𝑦 = (3𝑥 ) + (2𝑥) − 6
           3          2
    𝑦′ = 𝑥 2 + 𝑥 − 6
    0 = (𝑥 + 3)(𝑥 − 2)
                       43
    𝑎𝑡 𝑥 = −3 𝑦 =
                        2
                     2
    𝑎𝑡 𝑥 = 2 𝑦 =
                     3
27. 𝑥 = 𝑦 2 − 4𝑦
    When it crosses the y-axis, 𝑥 = 0
    0 = 𝑦(𝑦 − 4)
    𝑦 = 0 𝑎𝑛𝑑 𝑦 = 4
    𝑎𝑡 𝑦 = 0 𝑥 = 0
    𝑎𝑡 𝑦 = 4 𝑥 = 0
    Slope is
    1 = 2𝑦𝑦 ′ − 4𝑦 ′
              1
    𝑦′ =
           2𝑦 − 4
      ′
                1           1
    𝑦 =                =−
           (2)(0) − 4       4
                1         1
    𝑦′ =               =
           (2)(4) − 4 4