Page 1 of 52
Isolated Footing Design(ACI 318-11) - Metric
Footing No. Group ID Foundation Geometry
- - Length Width Thickness
1 1 2.45m 2.45m 0.35m
31 16 2.50m 2.50m 0.35m
37 19 2.50m 2.50m 0.35m
61 31 2.50m 2.50m 0.35m
Footing No. Footing Reinforcement Pedestal Reinforcement
- Bottom Reinforcement(Mz) Bottom Reinforcement(Mx) Top Reinforcement(Mz) Top Reinforcement(Mx) Main Steel Trans Steel
1 16 - ϕ12 16 - ϕ12 N/A N/A N/A N/A
31 16 - ϕ12 16 - ϕ12 N/A N/A N/A N/A
37 16 - ϕ12 16 - ϕ12 N/A N/A N/A N/A
61 17 - ϕ12 17 - ϕ12 N/A N/A N/A N/A
Isolated Footing 1
0.84 m
0.35 m
Elevation
X 1.225 m
0.4 m
0.39 m
2.45 m
Plan
Input Values
Footing Geomtery
Calculate Dimension with user
Design Type : specified minimums as starting
value
Minimum Footing Length - X(Fl) : 1000.00 mm
Minimum Footing Width - Z (Fw) : 1000.00 mm
Footing Thickness (Ft) : 250.00 mm
Eccentricity along X (Oxd) : 0.00 mm
Eccentricity along Z (Ozd) : 0.00 mm
file:///D:/Desktop/STAAD/ISOLATED/ISOLATED/Reports/CalculationSheet.xml 19 Mar 2019
Page 2 of 52
Column Dimensions
Column Shape : Rectangular
Column Length - X (Dcol) : 0.40 m
Column Width - Z (Bcol) : 0.39 m
Pedestal
Include Pedestal : No
Pedestal Shape : N/A
Pedestal Height (Ph) : N/A
Pedestal Length - X (Pl) : N/A
Pedestal Width - Z (Pw) : : N/A
Design Parameters
Concrete and Rebar Properties
Unit Weight of Concrete : 24.00 kN/m3
Strength of Concrete : 28.00 N/mm2
Yield Strength of Steel : 415.00 N/mm2
Minimum Bar Size : ϕ12
Maximum Bar Size : ϕ25
Top Footing Minimum Bar Size : ϕ12
Top Footing Maximum Bar Size : ϕ25
Pedestal Minimum Bar Size : ϕ6
Pedestal Maximum Bar Size : ϕ22
Minimum Bar Spacing : 50.00 mm
Maximum Bar Spacing : 250.00 mm
Pedestal Clear Cover (P, CL) : 50.00 mm
Bottom Footing Clear Cover (F, CL) : 75.00 mm
Soil Properties
Soil Type : Cohesive Soil
Unit Weight : 17.60kN/m3
Soil Bearing Capacity : 120.00kPa
Multiplying factor for soil bearing capacity for ultimate
: 2.00
loads
Soil Bearing Capacity Type : Net Bearing Capacity
Soil Surcharge : 0.00kN/m2
Height of Soil above Footing : 950.00mm
Type of Depth : Fixed Bottom
Cohesion : 0.00kN/m2
Bearing Capacity Input Method : Fixed Bearing Capacity
Minimum Percentage of Slab area in Contact for Service
: 50.00
Loads
Minimum Percentage of Slab area in Contact for
: 50.00
Ultimate Loads
Sliding and Overturning
Coefficient of Friction : 0.50
Factor of Safety Against Sliding : 1.50
Factor of Safety Against Overturning : 1.50
Global Settings
Top Reinforcement Option : Calculate only when foundation is subjected to uplift forces
Concrete Design Option : Gross Pressure
file:///D:/Desktop/STAAD/ISOLATED/ISOLATED/Reports/CalculationSheet.xml 19 Mar 2019
Page 3 of 52
Top Reinforcement Factor : 1.00
------------------------------------------------------
Design Calculations
Footing Size
Initial Length (Lo) = 1.00 m
Initial Width (Wo) = 1.00 m
Load Combinations
Load Combination/s- Service Stress Level
Load Load Soil Self
Combination Load Combination Title Combination Bearing Weight
Number Factor (a) Factor (b) Factor (c)
a - Value specified in the Load Safety Factor table
b - Value specified in the Pile/Soil Bearing Capacity Factors table
c - Value specified in the Apply Self Weight and Dead Weight Factor table
301 1.0(DL1 + DL2) + 1.0(LL1 + LL2 + LLR) 1.00 1.00 1.00
302 1.0(DL1 + DL2) + 0.75(LL1 + LL2 + LLR) + 0.535EX 1.00 1.00 1.00
303 1.0(DL1 + DL2) + 0.75(LL1 + LL2 + LLR) - 0.535EX 1.00 1.00 1.00
304 1.0(DL1 + DL2) + 0.75(LL1 + LL2 + LLR) + 0.535EZ 1.00 1.00 1.00
305 1.0(DL1 + DL2) + 0.75(LL1 + LL2 + LLR) - 0.535EZ 1.00 1.00 1.00
306 0.6(DL1 + DL2) + 0.7EX 1.00 1.00 1.00
307 0.6(DL1 + DL2) - 0.7EX 1.00 1.00 1.00
308 0.6(DL1 + DL2) + 0.7EZ 1.00 1.00 1.00
309 0.6(DL1 + DL2) - 0.7EZ 1.00 1.00 1.00
310 1.0(DL1 + DL2) + 1.0(LL1 + LL2 + LLR) + 0.71EX 1.00 1.00 1.00
311 1.0(DL1 + DL2) + 1.0(LL1 + LL2 + LLR) - 0.71EX 1.00 1.00 1.00
312 1.0(DL1 + DL2) + 1.0(LL1 + LL2 + LLR) + 0.71EZ 1.00 1.00 1.00
313 1.0(DL1 + DL2) + 1.0(LL1 + LL2 + LLR) - 0.71EZ 1.00 1.00 1.00
Load Combination/s- Strength Level
Load Load Soil Self
Combination Load Combination Title Combination Bearing Weight
Number Factor (a) Factor (b) Factor (c)
a - Value specified in the Load Safety Factor table
b - Value specified in the Pile/Soil Bearing Capacity Factors table
c - Value specified in the Apply Self Weight and Dead Weight Factor table
401 1.4(DL1 + DL2) 1.00 1.00 1.00
402 1.2(DL1 + DL2) + 1.6(LL1 + LL2) + 0.5LLR 1.00 1.00 1.00
403 1.2(DL1 + DL2) + 1.6LLR + 0.5LL1 + 1.0LL2 1.00 1.00 1.00
404 1.2(DL1 + DL2) + 0.5LL1 + 0.5LLR + 1.0LL2 + 1.0EX 1.00 1.00 1.00
405 1.2(DL1 + DL2) + 0.5LL1 + 0.5LLR + 1.0LL2 - 1.0EX 1.00 1.00 1.00
406 1.2(DL1 + DL2) + 0.5LL1 + 0.5LLR + 1.0LL2 + 1.0EZ 1.00 1.00 1.00
407 1.2(DL1 + DL2) + 0.5LL1 + 0.5LLR + 1.0LL2 - 1.0EZ 1.00 1.00 1.00
408 0.9(DL1 + DL2) + 1.0EX 1.00 1.00 1.00
409 0.9(DL1 + DL2) - 1.0EX 1.00 1.00 1.00
410 0.9(DL1 + DL2) + 1.0EZ 1.00 1.00 1.00
411 0.9(DL1 + DL2) - 1.0EZ 1.00 1.00 1.00
Applied Loads on Top of Pedestal
Before consideration of self weight and load safety factor table
Moments are about the center of footing / pile cap (does not include moments caused by lateral loads)
For the loads shown in this table, the sign convention is the same as that for JOINT LOADS in STAAD.Pro when global Y is the vertical axis.
Applied Loads from Column - Service Stress Level
Fy
(kN)
Fx Fz Mx Mz
Load Case Downwards is
(kN) (kN) (kNm) (kNm)
negative Upwards
is positive
301 -2.87 -516.96 -13.00 0.00 0.00
302 26.32 -393.69 -14.05 0.00 0.00
303 -31.77 -590.52 -10.62 0.00 0.00
304 -2.65 -444.72 8.69 0.00 0.00
file:///D:/Desktop/STAAD/ISOLATED/ISOLATED/Reports/CalculationSheet.xml 19 Mar 2019
Page 4 of 52
Applied Loads from Column - Service Stress Level
Fy
(kN)
Fx Fz Mx Mz
Load Case Downwards is
(kN) (kN) (kNm) (kNm)
negative Upwards
is positive
305 -2.81 -539.49 -33.36 0.00 0.00
306 35.68 -288.76 -12.59 0.00 0.00
307 -40.32 -546.29 -8.10 0.00 0.00
308 -2.22 -355.52 17.16 0.00 0.00
309 -2.42 -479.52 -37.85 0.00 0.00
310 35.68 -386.36 -15.27 0.00 0.00
311 -41.41 -647.57 -10.72 0.00 0.00
312 -2.76 -454.08 14.90 0.00 0.00
313 -2.97 -579.85 -40.90 0.00 0.00
Applied Loads from Column - Strength Level
Fy
(kN)
Fx Fz Mx Mz
Load Case Downwards is
(kN) (kN) (kNm) (kNm)
negative Upwards
is positive
401 -3.25 -584.53 -14.48 0.00 0.00
402 -3.64 -641.99 -16.61 0.00 0.00
403 -3.07 -569.02 -13.79 0.00 0.00
404 51.23 -366.92 -16.95 0.00 0.00
405 -57.35 -734.83 -10.53 0.00 0.00
406 -2.91 -462.30 25.56 0.00 0.00
407 -3.20 -639.45 -53.04 0.00 0.00
408 52.20 -191.82 -12.52 0.00 0.00
409 -56.38 -559.72 -6.11 0.00 0.00
410 -1.94 -287.20 29.99 0.00 0.00
411 -2.23 -464.34 -48.61 0.00 0.00
Reduction of force due to buoyancy = 0.00 kN
Effect due to adhesion = 0.00 kN
Area from initial length and width, Ao = Lo X Wo = 1.00 m2
Min. area required from bearing pressure, Amin = 5.84 m2
Note: Amin is an initial estimation considering self-weight, axial load and moment against factored bearing capacity.
Final Footing Size
Length (L2) = 2.45 m Governing Load Case : # 311
Width (W2) = 2.45 m Governing Load Case : # 311
Depth (D2) = 0.35 m
Depth is governed by Ultimate Load Case
(Service check is performed with footing thickness requirements from concrete check)
Area (A2) = 6.00 m2
Final Soil Height = 0.85 m
Foundation Self Weight = 50.42 kN
Gross Soil Bearing Capacity = 282.24 kN/m2
Soil Weight On Top Of Footing = 87.43 kN
Pressures at 4 Corners
Please note that pressures values displayed in tables below are calculated after dividing by soil bearing factor
Pressure at Pressure at Pressure at Pressure at Area of footing
Load Case / top left top right bottom bottom left in uplift (Au)
Combination corner corner right corner corner 2
(kN/m2) (kN/m2) (kN/m2) (kN/m2) (m )
file:///D:/Desktop/STAAD/ISOLATED/ISOLATED/Reports/CalculationSheet.xml 19 Mar 2019
Page 5 of 52
Pressure at Pressure at Pressure at Pressure at Area of footing
Load Case / top left top right bottom bottom left in uplift (Au)
Combination corner corner right corner corner
(kN/m2) (kN/m2) (kN/m2) (kN/m2) (m2)
311 138.2932 126.4662 123.4041 135.2311 0.00
311 138.2932 126.4662 123.4041 135.2311 0.00
311 138.2932 126.4662 123.4041 135.2311 0.00
311 138.2932 126.4662 123.4041 135.2311 0.00
If Au is zero, there is no uplift and no pressure adjustment is necessary. Otherwise, to account for uplift, areas of negative pressure will be set to zero and the pressure
will be redistributed to remaining corners.
Summary of Adjusted Pressures at four Corners
Pressure at
Pressure at top Pressure at top bottom right Pressure at
Load Case / left corner right corner corner bottom left corner
Combination (kN/m2) (kN/m2) (kN/m2) (kN/m2)
311 138.2932 126.4662 123.4041 135.2311
311 138.2932 126.4662 123.4041 135.2311
311 138.2932 126.4662 123.4041 135.2311
311 138.2932 126.4662 123.4041 135.2311
Stability Check
0.84 m
OTM
Sliding Force
.
Frictional Force 0.35 m
Passive Earth Pressure Resistance
Resisting Force Along X on Pedestal : 2.50 kN
Resisting Force Along Z on Pedestal : 2.50 kN
Resisting Force Along X on Footing : 15.47 kN
Resisting Force Along Z on Footing : 15.47 kN
Resisting moment about X on Pedestal : 1.61 kNm
Resisting moment about Z on pedestal : 1.58 kNm
Resisting moment about X on Footing : 2.55 kNm
Resisting moment about Z on Footing : 2.55 kNm
Factor of safety against
- Factor of safety against sliding
overturning
Load
Along X- Along Z- Required About X- About Z- Required
Case Resultant
Direction Direction FOS Direction Direction FOS
No.
301 120.50 26.58 25.95 1.50 177.25 803.70 1.50
302 10.78 20.20 9.51 1.50 133.26 71.15 1.50
303 12.03 35.99 11.41 1.50 241.17 80.60 1.50
304 116.60 35.60 34.04 1.50 236.02 773.24 1.50
305 127.04 10.69 10.65 1.50 71.42 848.65 1.50
306 6.48 18.37 6.11 1.50 119.55 42.18 1.50
307 8.93 44.44 8.75 1.50 297.00 59.68 1.50
file:///D:/Desktop/STAAD/ISOLATED/ISOLATED/Reports/CalculationSheet.xml 19 Mar 2019
Page 6 of 52
Factor of safety against
- Factor of safety against sliding
overturning
Load
Along X- Along Z- Required About X- About Z- Required
Case Resultant
Direction Direction FOS Direction Direction FOS
No.
308 119.28 15.42 15.30 1.50 101.31 783.60 1.50
309 134.88 8.63 8.61 1.50 57.40 897.12 1.50
310 7.85 18.34 7.22 1.50 120.91 51.75 1.50
311 9.92 38.31 9.60 1.50 257.50 66.67 1.50
312 113.61 21.07 20.71 1.50 139.81 754.00 1.50
313 126.91 9.21 9.19 1.50 61.71 849.96 1.50
Critical Load Case And The Governing Factor Of Safety For Overturning And Sliding - X Direction
Critical Load Case for Sliding along X-Direction : 306
Governing Disturbing Force : 35.68 kN
Governing Restoring Force : 231.28 kN
Minimum Sliding Ratio for the Critical Load Case : 6.48
Critical Load Case for Overturning about X-Direction : 309
Governing Overturning Moment : -13.25 kNm
Governing Resisting Moment : 760.43 kNm
Minimum Overturning Ratio for the Critical Load Case : 57.40
Critical Load Case And The Governing Factor Of Safety For Overturning And Sliding - Z Direction
Critical Load Case for Sliding along Z-Direction : 309
Governing Disturbing Force : -37.85 kN
Governing Restoring Force : 326.71 kN
Minimum Sliding Ratio for the Critical Load Case : 8.63
Critical Load Case for Overturning about Z-Direction : 306
Governing Overturning Moment : -12.49 kNm
Governing Resisting Moment : 526.72 kNm
Minimum Overturning Ratio for the Critical Load Case : 42.18
Critical Load Case And The Governing Factor Of Safety For Sliding Along Resultant Direction
Critical Load Case for Sliding along Resultant Direction : 306
Governing Disturbing Force : 37.84 kN
Governing Restoring Force : 231.30 kN
Minimum Sliding Ratio for the Critical Load Case : 6.11
Compression Development Length Check
Development length calculation skipped as column reinforcement is not specified in input (Column Dimension Task Pane)
Ultimate Pressures
The base pressures reported in this table do not include the effect of buoyancy. However, the area of footing in contact includes the effect of
buoyancy (if any).
Area of
Load Case / Pressure at Pressure at Pressure at Pressure at
footing in
Load top left top right bottom right bottom left
Contact with
Combination corner corner corner corner
soil (Au)
ID (kN/m2) (kN/m2) (kN/m2) (kN/m2)
(m2)
401 122.8793 121.9516 117.8150 118.7427 6.00
402 132.8109 131.7710 127.0282 128.0680 6.00
403 120.1702 119.2921 115.3535 116.2316 6.00
404 79.1980 93.8295 88.9901 74.3585 6.00
405 155.0789 138.7008 135.6921 152.0701 6.00
406 96.7505 95.9187 103.2176 104.0495 6.00
407 137.5263 136.6117 121.4645 122.3792 6.00
408 49.2553 64.1638 60.5891 45.6807 6.00
file:///D:/Desktop/STAAD/ISOLATED/ISOLATED/Reports/CalculationSheet.xml 19 Mar 2019
Page 7 of 52
409 125.1362 109.0350 107.2911 123.3923 6.00
410 66.8079 66.2529 74.8167 75.3717 6.00
411 107.5837 106.9459 93.0636 93.7014 6.00
Minimum Required Contact Area for Ultimate Loads : 3.00 m2
Actual Area in Contact for all ultimate load cases exceeds the minimum required. Hence Safe
Gross Bearing Capacity for Ultimate Loads : 282.24 kN/m2
Maximum Corner Pressure from all ultimate load cases is less than the allowable. Hence Safe
Shear Calculation
Punching Shear Check
X 1.225 m
Z
0.13 m
Plan
Total Footing Depth, D = 0.35m
Calculated Effective Depth, d = D - Ccover - 1 * db = 0.26 m
For rectangular column, = Bcol / Dcol = 1.02
Effective depth, d, increased until 0.75XVc Punching Shear Force
Punching Shear Force, Vu = 717.54kN, Load Case # 405
From ACI Cl.11.11.2.1, bo for
= 2.64 m
column=
Equation 11-31, Vc1 = = 1851.55 kN
Equation 11-32, Vc2 = = 1825.60 kN
Equation 11-33, Vc3 = = 1213.50 kN
Punching shear strength, Vc = 0.75 X minimum of (Vc1, Vc2, Vc3) = 910.12 kN
0.75 X Vc > Vu hence, OK
One-Way Shear Along X
file:///D:/Desktop/STAAD/ISOLATED/ISOLATED/Reports/CalculationSheet.xml 19 Mar 2019
Page 8 of 52
(Shear Plane Parallel to Global X Axis)
X 1.225 m
Z 0.77 m
0.77 m
Plan
From ACI Cl.11.2.1.1, Vc = = 566.40 kN
Distance of critical section from top left corner
along Z, DZ = = 0.77 m
Check that 0.75 X Vc > Vux where Vux is the shear force for the critical load cases at a distance d from the face of the column caused by bending about the X axis.
From above calculations, 0.75 X Vc = 424.80 kN
Critical load case for Vux is # 405 = 233.54 kN
0.75 X Vc > Vux hence, OK
One-Way Shear Along Z
(Shear Plane Parallel to Global Z Axis)
X 1.225 m
0.765 m 0.765 m
Plan
From ACI Cl.11.2.1.1, Vc = = 566.40 kN
Distance of critical section from top left corner along
X, DX = = 0.77 m
Check that 0.75 X Vc > Vuz where Vuz is the shear force for the critical load cases at a distance d from the face of the column caused by bending about the Z axis.
From above calculations, 0.75 X Vc = 424.80 kN
Critical load case for Vuz is # 405 = 240.96 kN
0.75 X Vc > Vuz hence, OK
Flexure About Z-Axis
file:///D:/Desktop/STAAD/ISOLATED/ISOLATED/Reports/CalculationSheet.xml 19 Mar 2019
Page 9 of 52
Design For Bottom Reinforcement Parallel to X Axis
16 - ϕ12
Calculate the flexural reinforcement along the X direction of the footing. Find the area of steel required, A, as per Section 3.8 of Reinforced Concrete Design (5th ed.) by
Salmon and Wang (Ref. 1)
Critical Load Case # 405
The strength values of steel and concrete used in the formulae are in Mpa
Bars parallel to X Direction are placed at bottom
Effective Depth d = 0.26 m
Factor from ACI Cl.10.2.7.3 =
= 0.85
From Appendix B 8.4.2, = = 0.02871
From Appendix B 10.3.3, = = 0.02153
From ACI Cl. 7.12.2, = = 0.00200
From Ref.1, Eq. 3.8.4a, constant m = = 17.44
Calculate reinforcement ratio for critical load case
Design for flexure about Z axis is performed at the
= 1.02 m
face of the column at a distance, Dx =
Ultimate moment = = 164.93 kNm
Nominal moment capacity, Mn = = 183.26 kNm
(Based on effective depth) Required = = 0.00280
(Based on gross depth) x d / Depth = 0.00205
Since ρmin < ρ < ρmax OK
Area of Steel Required, As = = 1761.23 mm2
Selected bar Size = 12
Minimum spacing allowed (Smin) = 50.00mm
Selected spacing (S) = 152.53mm
Smin<= S <= Smax and selected bar size < selected maximum bar size...
The reinforcement is accepted.
According to ACI 318 Clause No- 10.6.4 1st
Max spacing for Cracking Consideration = 196.96mm
Safe for Cracking Aspect.
file:///D:/Desktop/STAAD/ISOLATED/ISOLATED/Reports/CalculationSheet.xml 19 Mar 2019
Page 10 of 52
Based on spacing reinforcement increment; provided reinforcement is
#12 @ 150mm o.c.
Required development length for bars = = 0.45 m
Available development length for bars,DL = = 0.95 m
Try bar size # 12 Area of one bar = 113.10 mm2
Number of bars required, Nbar = = 16
Because the number of bars is rounded up, make sure new reinforcement ratio < ρmax
Total reinforcement area, As_total = Nbar X (Area of one bar) = 1809.54 mm2
d= D - Ccover - 0.5 X (dia. of = 0.26 m
one bar)
Reinforcement ratio, = = 0.00287
From ACI Cl.7.6.1, minimum req'd clear distance between bars
Cd = max (Diameter of one bar, 1.0" (25.4mm), Min. User Spacing) = 50.00mm
Provided Steel Area / Required Steel Area = 1.03
Flexure About X-Axis
Design For Bottom Reinforcement Parallel to Z Axis
16 - ϕ12
Calculate the flexural reinforcement along the Z direction of the footing. Find the area of steel required, A, as per Section 3.8 of Reinforced Concrete Design (5th ed.) by
Salmon and Wang (Ref. 1)
Critical Load Case # 405
The strength values of steel and concrete used in the formulae are in Mpa
Bars parallel to X Direction are placed at bottom
Effective Depth d = 0.26 m
Factor from ACI Cl.10.2.7.3 =
= 0.85
From Appendix B 8.4.2, = = 0.02871
From Appendix B 10.3.3, = = 0.02153
From ACI Cl. 7.12.2, = = 0.00200
From Ref.1, Eq. 3.8.4a, constant m = = 17.44
file:///D:/Desktop/STAAD/ISOLATED/ISOLATED/Reports/CalculationSheet.xml 19 Mar 2019
Page 11 of 52
Calculate reinforcement ratio for critical load case
Design for flexure about X axis is performed
at the face of the column at a distance, Dz = 1.03 m
=
Ultimate moment = = 159.92 kNm
Nominal moment capacity, Mn = = 177.69 kNm
(Based on effective depth) Required = = 0.00271
(Based on gross depth) x d / Depth = 0.00199
Since ρ < ρmin, select ρ= ρmin ρmin Governs
Area of Steel Required, As = = 1715.00 mm2
Selected Bar Size = #12
Minimum spacing allowed (Smin) = 50.00mm
Selected spacing (S) = 152.53mm
Smin<= S <= Smax and selected bar size < selected maximum bar size...
The reinforcement is accepted.
According to ACI 318 Clause No- 10.6.4 3rd
Testing.... Max spacing for Cracking Consideration = 196.96mm
Safe for Cracking Aspect.
Based on spacing reinforcement increment; provided reinforcement is
#12 @ 150mm o.c.
Required development length for bars
= 0.45 m
=
Available development length for bars,
= 0.95 m
DL =
Try bar size # 12 Area of one bar = 113.10 mm2
Number of bars required, Nbar= = 16
Because the number of bars is rounded up, make sure new reinforcement ratio < ρmax
Total reinforcement area, As_total = Nbar X (Area of one bar) = 1809.54 mm2
d= D - Ccover - 1.5 X (dia. of 0.26 m
=
one bar)
Reinforcement ratio, = = 0.00287
From ACI Cl.7.6.1, minimum req'd clear distance between bars
Cd = max (Diameter of one bar, 1.0" (25.4mm), Min. User Spacing) = 50.00mm
Provided Steel Area / Required Steel Area = 1.06
Material Take Off
Footing Reinforcement
Direction Size Number Length (m) Weight (kgf)
Along Z on Bottom
ϕ12 16 36.80 32.69
Face
Along X on Bottom
ϕ12 16 36.80 32.69
Face
Along Z on Top
N/A N/A N/A N/A
Face
Along X on Top
N/A N/A N/A N/A
Face
Total Reinforcement Weight : 65.39 kgf
file:///D:/Desktop/STAAD/ISOLATED/ISOLATED/Reports/CalculationSheet.xml 19 Mar 2019
Page 12 of 52
Concrete
- Length Width Thickness Weight
Footing 2.45m 2.45m 0.35m 50.42kN
Pedestal 0.61m 0.61m 0.00m 0.00kN
Total Concrete Weight : 50.42 kN
Soil Excavation
Pad Depth : 1.20 m
Pad Slope (a : b) : 1 : 1 (Assumed)
Side Distance, s : 0 (Assumed)
Excavation Volume : 16.56 m3
Backfill Volume : 14.46 m3
file:///D:/Desktop/STAAD/ISOLATED/ISOLATED/Reports/CalculationSheet.xml 19 Mar 2019
Page 13 of 52
1.225 m 1.225 m
Isolated Footing 31
file:///D:/Desktop/STAAD/ISOLATED/ISOLATED/Reports/CalculationSheet.xml 19 Mar 2019
Page 14 of 52
0.84 m
0.35 m
Elevation
X 1.25 m
0.4 m
0.39 m
2.5 m
Plan
Input Values
Footing Geomtery
Calculate Dimension with user
Design Type : specified minimums as starting
value
Minimum Footing Length - X(Fl) : 1000.00 mm
Minimum Footing Width - Z (Fw) : 1000.00 mm
Footing Thickness (Ft) : 250.00 mm
Eccentricity along X (Oxd) : 0.00 mm
Eccentricity along Z (Ozd) : 0.00 mm
Column Dimensions
Column Shape : Rectangular
Column Length - X (Dcol) : 0.40 m
Column Width - Z (Bcol) : 0.39 m
Pedestal
Include Pedestal : No
Pedestal Shape : N/A
Pedestal Height (Ph) : N/A
Pedestal Length - X (Pl) : N/A
Pedestal Width - Z (Pw) : : N/A
Design Parameters
Concrete and Rebar Properties
file:///D:/Desktop/STAAD/ISOLATED/ISOLATED/Reports/CalculationSheet.xml 19 Mar 2019
Page 15 of 52
Unit Weight of Concrete : 24.00 kN/m3
Strength of Concrete : 28.00 N/mm2
Yield Strength of Steel : 415.00 N/mm2
Minimum Bar Size : ϕ12
Maximum Bar Size : ϕ25
Top Footing Minimum Bar Size : ϕ12
Top Footing Maximum Bar Size : ϕ25
Pedestal Minimum Bar Size : ϕ6
Pedestal Maximum Bar Size : ϕ22
Minimum Bar Spacing : 50.00 mm
Maximum Bar Spacing : 250.00 mm
Pedestal Clear Cover (P, CL) : 50.00 mm
Bottom Footing Clear Cover (F, CL) : 75.00 mm
Soil Properties
Soil Type : Cohesive Soil
Unit Weight : 17.60kN/m3
Soil Bearing Capacity : 120.00kPa
Multiplying factor for soil bearing capacity for ultimate
: 2.00
loads
Soil Bearing Capacity Type : Net Bearing Capacity
Soil Surcharge : 0.00kN/m2
Height of Soil above Footing : 950.00mm
Type of Depth : Fixed Bottom
Cohesion : 0.00kN/m2
Bearing Capacity Input Method : Fixed Bearing Capacity
Minimum Percentage of Slab area in Contact for Service
: 50.00
Loads
Minimum Percentage of Slab area in Contact for
: 50.00
Ultimate Loads
Sliding and Overturning
Coefficient of Friction : 0.50
Factor of Safety Against Sliding : 1.50
Factor of Safety Against Overturning : 1.50
Global Settings
Top Reinforcement Option : Calculate only when foundation is subjected to uplift forces
Concrete Design Option : Gross Pressure
Top Reinforcement Factor : 1.00
------------------------------------------------------
Design Calculations
Footing Size
Initial Length (Lo) = 1.00 m
Initial Width (Wo) = 1.00 m
Load Combinations
file:///D:/Desktop/STAAD/ISOLATED/ISOLATED/Reports/CalculationSheet.xml 19 Mar 2019
Page 16 of 52
Load Combination/s- Service Stress Level
Load Load Soil Self
Combination Load Combination Title Combination Bearing Weight
Number Factor (a) Factor (b) Factor (c)
a - Value specified in the Load Safety Factor table
b - Value specified in the Pile/Soil Bearing Capacity Factors table
c - Value specified in the Apply Self Weight and Dead Weight Factor table
301 1.0(DL1 + DL2) + 1.0(LL1 + LL2 + LLR) 1.00 1.00 1.00
302 1.0(DL1 + DL2) + 0.75(LL1 + LL2 + LLR) + 0.535EX 1.00 1.00 1.00
303 1.0(DL1 + DL2) + 0.75(LL1 + LL2 + LLR) - 0.535EX 1.00 1.00 1.00
304 1.0(DL1 + DL2) + 0.75(LL1 + LL2 + LLR) + 0.535EZ 1.00 1.00 1.00
305 1.0(DL1 + DL2) + 0.75(LL1 + LL2 + LLR) - 0.535EZ 1.00 1.00 1.00
306 0.6(DL1 + DL2) + 0.7EX 1.00 1.00 1.00
307 0.6(DL1 + DL2) - 0.7EX 1.00 1.00 1.00
308 0.6(DL1 + DL2) + 0.7EZ 1.00 1.00 1.00
309 0.6(DL1 + DL2) - 0.7EZ 1.00 1.00 1.00
310 1.0(DL1 + DL2) + 1.0(LL1 + LL2 + LLR) + 0.71EX 1.00 1.00 1.00
311 1.0(DL1 + DL2) + 1.0(LL1 + LL2 + LLR) - 0.71EX 1.00 1.00 1.00
312 1.0(DL1 + DL2) + 1.0(LL1 + LL2 + LLR) + 0.71EZ 1.00 1.00 1.00
313 1.0(DL1 + DL2) + 1.0(LL1 + LL2 + LLR) - 0.71EZ 1.00 1.00 1.00
Load Combination/s- Strength Level
Load Load Soil Self
Combination Load Combination Title Combination Bearing Weight
Number Factor (a) Factor (b) Factor (c)
a - Value specified in the Load Safety Factor table
b - Value specified in the Pile/Soil Bearing Capacity Factors table
c - Value specified in the Apply Self Weight and Dead Weight Factor table
401 1.4(DL1 + DL2) 1.00 1.00 1.00
402 1.2(DL1 + DL2) + 1.6(LL1 + LL2) + 0.5LLR 1.00 1.00 1.00
403 1.2(DL1 + DL2) + 1.6LLR + 0.5LL1 + 1.0LL2 1.00 1.00 1.00
404 1.2(DL1 + DL2) + 0.5LL1 + 0.5LLR + 1.0LL2 + 1.0EX 1.00 1.00 1.00
405 1.2(DL1 + DL2) + 0.5LL1 + 0.5LLR + 1.0LL2 - 1.0EX 1.00 1.00 1.00
406 1.2(DL1 + DL2) + 0.5LL1 + 0.5LLR + 1.0LL2 + 1.0EZ 1.00 1.00 1.00
407 1.2(DL1 + DL2) + 0.5LL1 + 0.5LLR + 1.0LL2 - 1.0EZ 1.00 1.00 1.00
408 0.9(DL1 + DL2) + 1.0EX 1.00 1.00 1.00
409 0.9(DL1 + DL2) - 1.0EX 1.00 1.00 1.00
410 0.9(DL1 + DL2) + 1.0EZ 1.00 1.00 1.00
411 0.9(DL1 + DL2) - 1.0EZ 1.00 1.00 1.00
Applied Loads on Top of Pedestal
Before consideration of self weight and load safety factor table
Moments are about the center of footing / pile cap (does not include moments caused by lateral loads)
For the loads shown in this table, the sign convention is the same as that for JOINT LOADS in STAAD.Pro when global Y is the vertical axis.
Applied Loads from Column - Service Stress Level
Fy
(kN)
Fx Fz Mx Mz
Load Case Downwards is
(kN) (kN) (kNm) (kNm)
negative Upwards
is positive
301 1.22 -594.50 -8.45 0.00 0.00
302 36.53 -560.51 -7.79 0.00 0.00
303 -34.29 -560.52 -7.79 0.00 0.00
304 1.20 -504.45 15.49 0.00 0.00
305 1.04 -616.59 -31.07 0.00 0.00
306 47.16 -458.56 -5.83 0.00 0.00
307 -45.51 -458.57 -5.83 0.00 0.00
308 0.92 -385.21 24.63 0.00 0.00
309 0.72 -531.93 -36.29 0.00 0.00
310 48.22 -594.50 -8.44 0.00 0.00
311 -45.78 -594.51 -8.45 0.00 0.00
312 1.32 -520.09 22.45 0.00 0.00
313 1.12 -668.91 -39.34 0.00 0.00
file:///D:/Desktop/STAAD/ISOLATED/ISOLATED/Reports/CalculationSheet.xml 19 Mar 2019
Page 17 of 52
Applied Loads from Column - Strength Level
Fy
(kN)
Fx Fz Mx Mz
Load Case Downwards is
(kN) (kN) (kNm) (kNm)
negative Upwards
is positive
401 1.15 -642.00 -8.16 0.00 0.00
402 1.62 -732.14 -11.15 0.00 0.00
403 1.18 -654.09 -8.34 0.00 0.00
404 67.38 -618.44 -8.31 0.00 0.00
405 -65.01 -618.46 -8.31 0.00 0.00
406 1.33 -513.65 35.21 0.00 0.00
407 1.04 -723.25 -51.83 0.00 0.00
408 66.93 -412.71 -5.24 0.00 0.00
409 -65.46 -412.72 -5.25 0.00 0.00
410 0.89 -307.91 38.27 0.00 0.00
411 0.59 -517.51 -48.76 0.00 0.00
Reduction of force due to buoyancy = 0.00 kN
Effect due to adhesion = 0.00 kN
2
Area from initial length and width, Ao = Lo X Wo = 1.00 m
Min. area required from bearing pressure, Amin = 6.00 m2
Note: Amin is an initial estimation considering self-weight, axial load and moment against factored bearing capacity.
Final Footing Size
Length (L2) = 2.50 m Governing Load Case : # 301
Width (W2) = 2.50 m Governing Load Case : # 301
Depth (D2) = 0.35 m
Depth is governed by Ultimate Load Case
(Service check is performed with footing thickness requirements from concrete check)
Area (A2) = 6.25 m2
Final Soil Height = 0.85 m
Foundation Self Weight = 52.50 kN
Gross Soil Bearing Capacity = 282.24 kN/m2
Soil Weight On Top Of Footing = 91.13 kN
Pressures at 4 Corners
Please note that pressures values displayed in tables below are calculated after dividing by soil bearing factor
Pressure at Pressure at Pressure at Pressure at Area of footing
Load Case / top left top right bottom bottom left in uplift (Au)
Combination corner corner right corner corner 2
(kN/m2) (kN/m2) (kN/m2) (kN/m2) (m )
313 135.1443 135.4441 124.8688 124.5690 0.00
313 135.1443 135.4441 124.8688 124.5690 0.00
313 135.1443 135.4441 124.8688 124.5690 0.00
313 135.1443 135.4441 124.8688 124.5690 0.00
If Au is zero, there is no uplift and no pressure adjustment is necessary. Otherwise, to account for uplift, areas of negative pressure will be set to zero and the pressure
will be redistributed to remaining corners.
Summary of Adjusted Pressures at four Corners
Pressure at
Pressure at top Pressure at top bottom right Pressure at
Load Case / left corner right corner corner bottom left corner
Combination (kN/m2) (kN/m2) (kN/m2) (kN/m2)
313 135.1443 135.4441 124.8688 124.5690
file:///D:/Desktop/STAAD/ISOLATED/ISOLATED/Reports/CalculationSheet.xml 19 Mar 2019
Page 18 of 52
Pressure at
Pressure at top Pressure at top bottom right Pressure at
Load Case / left corner right corner corner bottom left corner
Combination (kN/m2) (kN/m2) (kN/m2) (kN/m2)
313 135.1443 135.4441 124.8688 124.5690
313 135.1443 135.4441 124.8688 124.5690
313 135.1443 135.4441 124.8688 124.5690
Stability Check
0.84 m
OTM
Sliding Force
.
Frictional Force 0.35 m
Passive Earth Pressure Resistance
Resisting Force Along X on Pedestal : 2.50 kN
Resisting Force Along Z on Pedestal : 2.50 kN
Resisting Force Along X on Footing : 15.78 kN
Resisting Force Along Z on Footing : 15.78 kN
Resisting moment about X on Pedestal : 1.61 kNm
Resisting moment about Z on pedestal : 1.58 kNm
Resisting moment about X on Footing : 2.61 kNm
Resisting moment about Z on Footing : 2.61 kNm
Factor of safety against
- Factor of safety against sliding
overturning
Load
Along X- Along Z- Required About X- About Z- Required
Case Resultant
Direction Direction FOS Direction Direction FOS
No.
301 317.64 45.87 45.40 1.50 313.58 2171.53 1.50
302 10.14 47.55 9.92 1.50 324.40 69.16 1.50
303 10.80 47.54 10.53 1.50 324.29 73.68 1.50
304 285.67 22.10 22.03 1.50 150.19 1941.46 1.50
305 382.53 12.82 12.82 1.50 87.77 2618.42 1.50
306 6.77 54.83 6.72 1.50 371.23 45.86 1.50
307 7.02 54.80 6.96 1.50 371.02 47.52 1.50
308 306.02 11.48 11.47 1.50 77.16 2057.42 1.50
309 495.53 9.81 9.81 1.50 66.82 3374.33 1.50
310 8.03 45.88 7.91 1.50 313.64 54.92 1.50
311 8.46 45.86 8.32 1.50 313.52 57.85 1.50
312 264.55 15.60 15.57 1.50 106.11 1799.98 1.50
313 380.64 10.79 10.79 1.50 74.07 2612.43 1.50
Critical Load Case And The Governing Factor Of Safety For Overturning And Sliding - X Direction
Critical Load Case for Sliding along X-Direction : 306
Governing Disturbing Force : 47.16 kN
Governing Restoring Force : 319.39 kN
Minimum Sliding Ratio for the Critical Load Case : 6.77
Critical Load Case for Overturning about X-Direction : 309
file:///D:/Desktop/STAAD/ISOLATED/ISOLATED/Reports/CalculationSheet.xml 19 Mar 2019
Page 19 of 52
Governing Overturning Moment : -12.70 kNm
Governing Resisting Moment : 848.65 kNm
Minimum Overturning Ratio for the Critical Load Case : 66.82
Critical Load Case And The Governing Factor Of Safety For Overturning And Sliding - Z Direction
Critical Load Case for Sliding along Z-Direction : 309
Governing Disturbing Force : -36.29 kN
Governing Restoring Force : 356.12 kN
Minimum Sliding Ratio for the Critical Load Case : 9.81
Critical Load Case for Overturning about Z-Direction : 306
Governing Overturning Moment : -16.50 kNm
Governing Resisting Moment : 756.91 kNm
Minimum Overturning Ratio for the Critical Load Case : 45.86
Critical Load Case And The Governing Factor Of Safety For Sliding Along Resultant Direction
Critical Load Case for Sliding along Resultant Direction : 306
Governing Disturbing Force : 47.52 kN
Governing Restoring Force : 319.41 kN
Minimum Sliding Ratio for the Critical Load Case : 6.72
Compression Development Length Check
Development length calculation skipped as column reinforcement is not specified in input (Column Dimension Task Pane)
Ultimate Pressures
The base pressures reported in this table do not include the effect of buoyancy. However, the area of footing in contact includes the effect of
buoyancy (if any).
Area of
Load Case / Pressure at Pressure at Pressure at Pressure at
footing in
Load top left top right bottom right bottom left
Contact with
Combination corner corner corner corner
soil (Au)
ID (kN/m2) (kN/m2) (kN/m2) (kN/m2)
(m2)
401 126.6424 126.9514 124.7584 124.4494 6.25
402 141.4037 141.8398 138.8421 138.4059 6.25
403 128.5964 128.9149 126.6740 126.3556 6.25
404 113.9927 132.1041 129.8717 111.7602 6.25
405 131.7883 114.3137 112.0800 129.5545 6.25
406 100.2540 100.6118 110.0763 109.7184 6.25
407 145.5270 145.8060 131.8754 131.5964 6.25
408 80.7227 98.7143 97.3052 79.3135 6.25
409 98.5183 80.9239 79.5135 97.1078 6.25
410 66.9840 67.2220 77.5098 77.2717 6.25
411 112.2570 112.4162 99.3089 99.1497 6.25
Minimum Required Contact Area for Ultimate Loads : 3.13 m2
Actual Area in Contact for all ultimate load cases exceeds the minimum required. Hence Safe
Gross Bearing Capacity for Ultimate Loads : 282.24 kN/m2
Maximum Corner Pressure from all ultimate load cases is less than the allowable. Hence Safe
Shear Calculation
Punching Shear Check
file:///D:/Desktop/STAAD/ISOLATED/ISOLATED/Reports/CalculationSheet.xml 19 Mar 2019
Page 20 of 52
X 1.25 m
Z
0.13 m
Plan
Total Footing Depth, D = 0.35m
Calculated Effective Depth, d = D - Ccover - 1 * db = 0.26 m
For rectangular column, = Bcol / Dcol = 1.02
Effective depth, d, increased until 0.75XVc Punching Shear Force
Punching Shear Force, Vu = 705.67kN, Load Case # 407
From ACI Cl.11.11.2.1, bo for
= 2.64 m
column=
Equation 11-31, Vc1 = = 1851.55 kN
Equation 11-32, Vc2 = = 1825.60 kN
Equation 11-33, Vc3 = = 1213.50 kN
Punching shear strength, Vc = 0.75 X minimum of (Vc1, Vc2, Vc3) = 910.12 kN
0.75 X Vc > Vu hence, OK
One-Way Shear Along X
(Shear Plane Parallel to Global X Axis)
file:///D:/Desktop/STAAD/ISOLATED/ISOLATED/Reports/CalculationSheet.xml 19 Mar 2019
Page 21 of 52
X 1.25 m
Z 0.795 m
0.795 m
Plan
From ACI Cl.11.2.1.1, Vc = = 577.96 kN
Distance of critical section from top left corner
along Z, DZ = = 0.80 m
Check that 0.75 X Vc > Vux where Vux is the shear force for the critical load cases at a distance d from the face of the column caused by bending about the X axis.
From above calculations, 0.75 X Vc = 433.47 kN
Critical load case for Vux is # 407 = 240.14 kN
0.75 X Vc > Vux hence, OK
One-Way Shear Along Z
(Shear Plane Parallel to Global Z Axis)
X 1.25 m
0.79 m 0.79 m
Plan
From ACI Cl.11.2.1.1, Vc = = 577.96 kN
Distance of critical section from top left corner along
X, DX = = 1.71 m
Check that 0.75 X Vc > Vuz where Vuz is the shear force for the critical load cases at a distance d from the face of the column caused by bending about the Z axis.
From above calculations, 0.75 X Vc = 433.47 kN
Critical load case for Vuz is # 402 = 232.62 kN
0.75 X Vc > Vuz hence, OK
Flexure About Z-Axis
Design For Bottom Reinforcement Parallel to X Axis
file:///D:/Desktop/STAAD/ISOLATED/ISOLATED/Reports/CalculationSheet.xml 19 Mar 2019
Page 22 of 52
16 - ϕ12
Calculate the flexural reinforcement along the X direction of the footing. Find the area of steel required, A, as per Section 3.8 of Reinforced Concrete Design (5th ed.) by
Salmon and Wang (Ref. 1)
Critical Load Case # 402
The strength values of steel and concrete used in the formulae are in Mpa
Bars parallel to X Direction are placed at bottom
Effective Depth d = 0.26 m
Factor from ACI Cl.10.2.7.3 =
= 0.85
From Appendix B 8.4.2, = = 0.02871
From Appendix B 10.3.3, = = 0.02153
From ACI Cl. 7.12.2, = = 0.00200
From Ref.1, Eq. 3.8.4a, constant m = = 17.44
Calculate reinforcement ratio for critical load case
Design for flexure about Z axis is performed at the face
= 1.45 m
of the column at a distance, Dx =
Ultimate moment = = 161.44 kNm
Nominal moment capacity, Mn = = 179.38 kNm
(Based on effective depth) Required = = 0.00268
(Based on gross depth) x d / Depth = 0.00197
Since ρ < ρmin, select ρ= ρmin ρmin Governs
Area of Steel Required, As = = 1750.00 mm2
Selected bar Size = 12
Minimum spacing allowed (Smin) = 50.00mm
Selected spacing (S) = 155.87mm
Smin<= S <= Smax and selected bar size < selected maximum bar size...
The reinforcement is accepted.
According to ACI 318 Clause No- 10.6.4 1st
Max spacing for Cracking Consideration = 196.96mm
Safe for Cracking Aspect.
Based on spacing reinforcement increment; provided reinforcement is
file:///D:/Desktop/STAAD/ISOLATED/ISOLATED/Reports/CalculationSheet.xml 19 Mar 2019
Page 23 of 52
#12 @ 155mm o.c.
Required development length for bars = = 0.45 m
Available development length for bars,DL = = 0.97 m
Try bar size # 12 Area of one bar = 113.10 mm2
Number of bars required, Nbar = = 16
Because the number of bars is rounded up, make sure new reinforcement ratio < ρmax
Total reinforcement area, As_total = Nbar X (Area of one bar) = 1809.54 mm2
d= D - Ccover - 0.5 X (dia. of = 0.26 m
one bar)
Reinforcement ratio, = = 0.00282
From ACI Cl.7.6.1, minimum req'd clear distance between bars
Cd = max (Diameter of one bar, 1.0" (25.4mm), Min. User Spacing) = 50.00mm
Provided Steel Area / Required Steel Area = 1.03
Flexure About X-Axis
Design For Bottom Reinforcement Parallel to Z Axis
16 - ϕ12
Calculate the flexural reinforcement along the Z direction of the footing. Find the area of steel required, A, as per Section 3.8 of Reinforced Concrete Design (5th ed.) by
Salmon and Wang (Ref. 1)
Critical Load Case # 407
The strength values of steel and concrete used in the formulae are in Mpa
Bars parallel to X Direction are placed at bottom
Effective Depth d = 0.26 m
Factor from ACI Cl.10.2.7.3 =
= 0.85
From Appendix B 8.4.2, = = 0.02871
From Appendix B 10.3.3, = = 0.02153
From ACI Cl. 7.12.2, = = 0.00200
From Ref.1, Eq. 3.8.4a, constant m = = 17.44
file:///D:/Desktop/STAAD/ISOLATED/ISOLATED/Reports/CalculationSheet.xml 19 Mar 2019
Page 24 of 52
Calculate reinforcement ratio for critical load case
Design for flexure about X axis is performed
at the face of the column at a distance, Dz = 1.05 m
=
Ultimate moment = = 167.37 kNm
Nominal moment capacity, Mn = = 185.97 kNm
(Based on effective depth) Required = = 0.00278
(Based on gross depth) x d / Depth = 0.00204
Since ρmin < ρ < ρmax OK
Area of Steel Required, As = = 1786.99 mm2
Selected Bar Size = #12
Minimum spacing allowed (Smin) = 50.00mm
Selected spacing (S) = 155.87mm
Smin<= S <= Smax and selected bar size < selected maximum bar size...
The reinforcement is accepted.
According to ACI 318 Clause No- 10.6.4 3rd
Testing.... Max spacing for Cracking Consideration = 196.96mm
Safe for Cracking Aspect.
Based on spacing reinforcement increment; provided reinforcement is
#12 @ 155mm o.c.
Required development length for bars
= 0.45 m
=
Available development length for bars,
= 0.98 m
DL =
Try bar size # 12 Area of one bar = 113.10 mm2
Number of bars required, Nbar= = 16
Because the number of bars is rounded up, make sure new reinforcement ratio < ρmax
Total reinforcement area, As_total = Nbar X (Area of one bar) = 1809.54 mm2
d= D - Ccover - 1.5 X (dia. of 0.26 m
=
one bar)
Reinforcement ratio, = = 0.00282
From ACI Cl.7.6.1, minimum req'd clear distance between bars
Cd = max (Diameter of one bar, 1.0" (25.4mm), Min. User Spacing) = 50.00mm
Provided Steel Area / Required Steel Area = 1.01
Material Take Off
Footing Reinforcement
Direction Size Number Length (m) Weight (kgf)
Along Z on Bottom
ϕ12 16 37.60 33.41
Face
Along X on Bottom
ϕ12 16 37.60 33.41
Face
Along Z on Top
N/A N/A N/A N/A
Face
Along X on Top
N/A N/A N/A N/A
Face
Total Reinforcement Weight : 66.81 kgf
Concrete
file:///D:/Desktop/STAAD/ISOLATED/ISOLATED/Reports/CalculationSheet.xml 19 Mar 2019
Page 25 of 52
- Length Width Thickness Weight
Footing 2.50m 2.50m 0.35m 52.50kN
Pedestal 0.61m 0.61m 0.00m 0.00kN
Total Concrete Weight : 52.50 kN
Soil Excavation
Pad Depth : 1.20 m
Pad Slope (a : b) : 1 : 1 (Assumed)
Side Distance, s : 0 (Assumed)
Excavation Volume : 17.00 m3
Backfill Volume : 14.82 m3
file:///D:/Desktop/STAAD/ISOLATED/ISOLATED/Reports/CalculationSheet.xml 19 Mar 2019
Page 26 of 52
1.25 m 1.25 m
Isolated Footing 37
file:///D:/Desktop/STAAD/ISOLATED/ISOLATED/Reports/CalculationSheet.xml 19 Mar 2019
Page 27 of 52
0.84 m
0.35 m
Elevation
X 1.25 m
0.4 m
0.39 m
2.5 m
Plan
Input Values
Footing Geomtery
Calculate Dimension with user
Design Type : specified minimums as starting
value
Minimum Footing Length - X(Fl) : 1000.00 mm
Minimum Footing Width - Z (Fw) : 1000.00 mm
Footing Thickness (Ft) : 250.00 mm
Eccentricity along X (Oxd) : 0.00 mm
Eccentricity along Z (Ozd) : 0.00 mm
Column Dimensions
Column Shape : Rectangular
Column Length - X (Dcol) : 0.40 m
Column Width - Z (Bcol) : 0.39 m
Pedestal
Include Pedestal : No
Pedestal Shape : N/A
Pedestal Height (Ph) : N/A
Pedestal Length - X (Pl) : N/A
Pedestal Width - Z (Pw) : : N/A
Design Parameters
Concrete and Rebar Properties
file:///D:/Desktop/STAAD/ISOLATED/ISOLATED/Reports/CalculationSheet.xml 19 Mar 2019
Page 28 of 52
Unit Weight of Concrete : 24.00 kN/m3
Strength of Concrete : 28.00 N/mm2
Yield Strength of Steel : 415.00 N/mm2
Minimum Bar Size : ϕ12
Maximum Bar Size : ϕ25
Top Footing Minimum Bar Size : ϕ12
Top Footing Maximum Bar Size : ϕ25
Pedestal Minimum Bar Size : ϕ6
Pedestal Maximum Bar Size : ϕ22
Minimum Bar Spacing : 50.00 mm
Maximum Bar Spacing : 250.00 mm
Pedestal Clear Cover (P, CL) : 50.00 mm
Bottom Footing Clear Cover (F, CL) : 75.00 mm
Soil Properties
Soil Type : Cohesive Soil
Unit Weight : 17.60kN/m3
Soil Bearing Capacity : 120.00kPa
Multiplying factor for soil bearing capacity for ultimate
: 2.00
loads
Soil Bearing Capacity Type : Net Bearing Capacity
Soil Surcharge : 0.00kN/m2
Height of Soil above Footing : 950.00mm
Type of Depth : Fixed Bottom
Cohesion : 0.00kN/m2
Bearing Capacity Input Method : Fixed Bearing Capacity
Minimum Percentage of Slab area in Contact for Service
: 50.00
Loads
Minimum Percentage of Slab area in Contact for
: 50.00
Ultimate Loads
Sliding and Overturning
Coefficient of Friction : 0.50
Factor of Safety Against Sliding : 1.50
Factor of Safety Against Overturning : 1.50
Global Settings
Top Reinforcement Option : Calculate only when foundation is subjected to uplift forces
Concrete Design Option : Gross Pressure
Top Reinforcement Factor : 1.00
------------------------------------------------------
Design Calculations
Footing Size
Initial Length (Lo) = 1.00 m
Initial Width (Wo) = 1.00 m
Load Combinations
file:///D:/Desktop/STAAD/ISOLATED/ISOLATED/Reports/CalculationSheet.xml 19 Mar 2019
Page 29 of 52
Load Combination/s- Service Stress Level
Load Load Soil Self
Combination Load Combination Title Combination Bearing Weight
Number Factor (a) Factor (b) Factor (c)
a - Value specified in the Load Safety Factor table
b - Value specified in the Pile/Soil Bearing Capacity Factors table
c - Value specified in the Apply Self Weight and Dead Weight Factor table
301 1.0(DL1 + DL2) + 1.0(LL1 + LL2 + LLR) 1.00 1.00 1.00
302 1.0(DL1 + DL2) + 0.75(LL1 + LL2 + LLR) + 0.535EX 1.00 1.00 1.00
303 1.0(DL1 + DL2) + 0.75(LL1 + LL2 + LLR) - 0.535EX 1.00 1.00 1.00
304 1.0(DL1 + DL2) + 0.75(LL1 + LL2 + LLR) + 0.535EZ 1.00 1.00 1.00
305 1.0(DL1 + DL2) + 0.75(LL1 + LL2 + LLR) - 0.535EZ 1.00 1.00 1.00
306 0.6(DL1 + DL2) + 0.7EX 1.00 1.00 1.00
307 0.6(DL1 + DL2) - 0.7EX 1.00 1.00 1.00
308 0.6(DL1 + DL2) + 0.7EZ 1.00 1.00 1.00
309 0.6(DL1 + DL2) - 0.7EZ 1.00 1.00 1.00
310 1.0(DL1 + DL2) + 1.0(LL1 + LL2 + LLR) + 0.71EX 1.00 1.00 1.00
311 1.0(DL1 + DL2) + 1.0(LL1 + LL2 + LLR) - 0.71EX 1.00 1.00 1.00
312 1.0(DL1 + DL2) + 1.0(LL1 + LL2 + LLR) + 0.71EZ 1.00 1.00 1.00
313 1.0(DL1 + DL2) + 1.0(LL1 + LL2 + LLR) - 0.71EZ 1.00 1.00 1.00
Load Combination/s- Strength Level
Load Load Soil Self
Combination Load Combination Title Combination Bearing Weight
Number Factor (a) Factor (b) Factor (c)
a - Value specified in the Load Safety Factor table
b - Value specified in the Pile/Soil Bearing Capacity Factors table
c - Value specified in the Apply Self Weight and Dead Weight Factor table
401 1.4(DL1 + DL2) 1.00 1.00 1.00
402 1.2(DL1 + DL2) + 1.6(LL1 + LL2) + 0.5LLR 1.00 1.00 1.00
403 1.2(DL1 + DL2) + 1.6LLR + 0.5LL1 + 1.0LL2 1.00 1.00 1.00
404 1.2(DL1 + DL2) + 0.5LL1 + 0.5LLR + 1.0LL2 + 1.0EX 1.00 1.00 1.00
405 1.2(DL1 + DL2) + 0.5LL1 + 0.5LLR + 1.0LL2 - 1.0EX 1.00 1.00 1.00
406 1.2(DL1 + DL2) + 0.5LL1 + 0.5LLR + 1.0LL2 + 1.0EZ 1.00 1.00 1.00
407 1.2(DL1 + DL2) + 0.5LL1 + 0.5LLR + 1.0LL2 - 1.0EZ 1.00 1.00 1.00
408 0.9(DL1 + DL2) + 1.0EX 1.00 1.00 1.00
409 0.9(DL1 + DL2) - 1.0EX 1.00 1.00 1.00
410 0.9(DL1 + DL2) + 1.0EZ 1.00 1.00 1.00
411 0.9(DL1 + DL2) - 1.0EZ 1.00 1.00 1.00
Applied Loads on Top of Pedestal
Before consideration of self weight and load safety factor table
Moments are about the center of footing / pile cap (does not include moments caused by lateral loads)
For the loads shown in this table, the sign convention is the same as that for JOINT LOADS in STAAD.Pro when global Y is the vertical axis.
Applied Loads from Column - Service Stress Level
Fy
(kN)
Fx Fz Mx Mz
Load Case Downwards is
(kN) (kN) (kNm) (kNm)
negative Upwards
is positive
301 -1.19 -594.49 -8.44 0.00 0.00
302 34.31 -560.44 -7.76 0.00 0.00
303 -36.50 -560.58 -7.82 0.00 0.00
304 -1.02 -504.54 15.45 0.00 0.00
305 -1.17 -616.48 -31.03 0.00 0.00
306 45.52 -458.47 -5.79 0.00 0.00
307 -47.13 -458.66 -5.87 0.00 0.00
308 -0.70 -385.34 24.58 0.00 0.00
309 -0.91 -531.79 -36.23 0.00 0.00
310 45.79 -594.39 -8.40 0.00 0.00
311 -48.18 -594.59 -8.49 0.00 0.00
312 -1.09 -520.22 22.39 0.00 0.00
313 -1.30 -668.76 -39.28 0.00 0.00
file:///D:/Desktop/STAAD/ISOLATED/ISOLATED/Reports/CalculationSheet.xml 19 Mar 2019
Page 30 of 52
Applied Loads from Column - Strength Level
Fy
(kN)
Fx Fz Mx Mz
Load Case Downwards is
(kN) (kN) (kNm) (kNm)
negative Upwards
is positive
401 -1.12 -641.99 -8.16 0.00 0.00
402 -1.59 -732.13 -11.15 0.00 0.00
403 -1.16 -654.08 -8.34 0.00 0.00
404 65.02 -618.31 -8.25 0.00 0.00
405 -67.34 -618.58 -8.37 0.00 0.00
406 -1.01 -513.83 35.13 0.00 0.00
407 -1.31 -723.05 -51.74 0.00 0.00
408 65.46 -412.57 -5.19 0.00 0.00
409 -66.90 -412.85 -5.30 0.00 0.00
410 -0.57 -308.10 38.19 0.00 0.00
411 -0.87 -517.32 -48.68 0.00 0.00
Reduction of force due to buoyancy = 0.00 kN
Effect due to adhesion = 0.00 kN
2
Area from initial length and width, Ao = Lo X Wo = 1.00 m
Min. area required from bearing pressure, Amin = 6.00 m2
Note: Amin is an initial estimation considering self-weight, axial load and moment against factored bearing capacity.
Final Footing Size
Length (L2) = 2.50 m Governing Load Case : # 301
Width (W2) = 2.50 m Governing Load Case : # 301
Depth (D2) = 0.35 m
Depth is governed by Ultimate Load Case
(Service check is performed with footing thickness requirements from concrete check)
Area (A2) = 6.25 m2
Final Soil Height = 0.85 m
Foundation Self Weight = 52.50 kN
Gross Soil Bearing Capacity = 282.24 kN/m2
Soil Weight On Top Of Footing = 91.13 kN
Pressures at 4 Corners
Please note that pressures values displayed in tables below are calculated after dividing by soil bearing factor
Pressure at Pressure at Pressure at Pressure at Area of footing
Load Case / top left top right bottom bottom left in uplift (Au)
Combination corner corner right corner corner 2
(kN/m2) (kN/m2) (kN/m2) (kN/m2) (m )
313 135.4374 135.0883 124.5292 124.8783 0.00
313 135.4374 135.0883 124.5292 124.8783 0.00
313 135.4374 135.0883 124.5292 124.8783 0.00
313 135.4374 135.0883 124.5292 124.8783 0.00
If Au is zero, there is no uplift and no pressure adjustment is necessary. Otherwise, to account for uplift, areas of negative pressure will be set to zero and the pressure
will be redistributed to remaining corners.
Summary of Adjusted Pressures at four Corners
Pressure at
Pressure at top Pressure at top bottom right Pressure at
Load Case / left corner right corner corner bottom left corner
Combination (kN/m2) (kN/m2) (kN/m2) (kN/m2)
313 135.4374 135.0883 124.5292 124.8783
file:///D:/Desktop/STAAD/ISOLATED/ISOLATED/Reports/CalculationSheet.xml 19 Mar 2019
Page 31 of 52
Pressure at
Pressure at top Pressure at top bottom right Pressure at
Load Case / left corner right corner corner bottom left corner
Combination (kN/m2) (kN/m2) (kN/m2) (kN/m2)
313 135.4374 135.0883 124.5292 124.8783
313 135.4374 135.0883 124.5292 124.8783
313 135.4374 135.0883 124.5292 124.8783
Stability Check
0.84 m
OTM
Sliding Force
.
Frictional Force 0.35 m
Passive Earth Pressure Resistance
Resisting Force Along X on Pedestal : 2.50 kN
Resisting Force Along Z on Pedestal : 2.50 kN
Resisting Force Along X on Footing : 15.78 kN
Resisting Force Along Z on Footing : 15.78 kN
Resisting moment about X on Pedestal : 1.61 kNm
Resisting moment about Z on pedestal : 1.58 kNm
Resisting moment about X on Footing : 2.61 kNm
Resisting moment about Z on Footing : 2.61 kNm
Factor of safety against
- Factor of safety against sliding
overturning
Load
Along X- Along Z- Required About X- About Z- Required
Case Resultant
Direction Direction FOS Direction Direction FOS
No.
301 324.63 45.88 45.42 1.50 313.60 2219.32 1.50
302 10.79 47.73 10.53 1.50 325.62 73.64 1.50
303 10.15 47.36 9.92 1.50 323.11 69.23 1.50
304 337.09 22.17 22.12 1.50 150.64 2290.93 1.50
305 339.11 12.84 12.83 1.50 87.88 2321.20 1.50
306 7.01 55.19 6.96 1.50 373.64 47.50 1.50
307 6.78 54.44 6.73 1.50 368.62 45.90 1.50
308 405.66 11.51 11.50 1.50 77.36 2727.31 1.50
309 393.34 9.83 9.82 1.50 66.91 2678.44 1.50
310 8.46 46.09 8.32 1.50 315.09 57.82 1.50
311 8.04 45.66 7.92 1.50 312.13 54.97 1.50
312 321.97 15.64 15.62 1.50 106.41 2190.68 1.50
313 326.86 10.81 10.80 1.50 74.17 2243.31 1.50
Critical Load Case And The Governing Factor Of Safety For Overturning And Sliding - X Direction
Critical Load Case for Sliding along X-Direction : 307
Governing Disturbing Force : -47.13 kN
Governing Restoring Force : 319.43 kN
Minimum Sliding Ratio for the Critical Load Case : 6.78
Critical Load Case for Overturning about X-Direction : 309
file:///D:/Desktop/STAAD/ISOLATED/ISOLATED/Reports/CalculationSheet.xml 19 Mar 2019
Page 32 of 52
Governing Overturning Moment : -12.68 kNm
Governing Resisting Moment : 848.48 kNm
Minimum Overturning Ratio for the Critical Load Case : 66.91
Critical Load Case And The Governing Factor Of Safety For Overturning And Sliding - Z Direction
Critical Load Case for Sliding along Z-Direction : 309
Governing Disturbing Force : -36.23 kN
Governing Restoring Force : 356.05 kN
Minimum Sliding Ratio for the Critical Load Case : 9.83
Critical Load Case for Overturning about Z-Direction : 307
Governing Overturning Moment : 16.49 kNm
Governing Resisting Moment : 757.03 kNm
Minimum Overturning Ratio for the Critical Load Case : 45.90
Critical Load Case And The Governing Factor Of Safety For Sliding Along Resultant Direction
Critical Load Case for Sliding along Resultant Direction : 307
Governing Disturbing Force : 47.49 kN
Governing Restoring Force : 319.46 kN
Minimum Sliding Ratio for the Critical Load Case : 6.73
Compression Development Length Check
Development length calculation skipped as column reinforcement is not specified in input (Column Dimension Task Pane)
Ultimate Pressures
The base pressures reported in this table do not include the effect of buoyancy. However, the area of footing in contact includes the effect of
buoyancy (if any).
Area of
Load Case / Pressure at Pressure at Pressure at Pressure at
footing in
Load top left top right bottom right bottom left
Contact with
Combination corner corner corner corner
soil (Au)
ID (kN/m2) (kN/m2) (kN/m2) (kN/m2)
(m2)
401 126.9467 126.6452 124.4521 124.7536 6.25
402 141.8336 141.4064 138.4088 138.8360 6.25
403 128.9095 128.5985 126.3578 126.6688 6.25
404 114.2797 131.7575 129.5399 112.0621 6.25
405 132.1284 114.0284 111.7798 129.8798 6.25
406 100.6092 100.3380 109.7799 110.0511 6.25
407 145.7990 145.4479 131.5398 131.8909 6.25
408 80.8917 98.4868 97.0925 79.4974 6.25
409 98.7404 80.7577 79.3324 97.3151 6.25
410 67.2212 67.0673 77.3324 77.4863 6.25
411 112.4110 112.1772 99.0924 99.3261 6.25
Minimum Required Contact Area for Ultimate Loads : 3.13 m2
Actual Area in Contact for all ultimate load cases exceeds the minimum required. Hence Safe
Gross Bearing Capacity for Ultimate Loads : 282.24 kN/m2
Maximum Corner Pressure from all ultimate load cases is less than the allowable. Hence Safe
Shear Calculation
Punching Shear Check
file:///D:/Desktop/STAAD/ISOLATED/ISOLATED/Reports/CalculationSheet.xml 19 Mar 2019
Page 33 of 52
X 1.25 m
Z
0.13 m
Plan
Total Footing Depth, D = 0.35m
Calculated Effective Depth, d = D - Ccover - 1 * db = 0.26 m
For rectangular column, = Bcol / Dcol = 1.02
Effective depth, d, increased until 0.75XVc Punching Shear Force
Punching Shear Force, Vu = 705.43kN, Load Case # 407
From ACI Cl.11.11.2.1, bo for
= 2.64 m
column=
Equation 11-31, Vc1 = = 1851.55 kN
Equation 11-32, Vc2 = = 1825.60 kN
Equation 11-33, Vc3 = = 1213.50 kN
Punching shear strength, Vc = 0.75 X minimum of (Vc1, Vc2, Vc3) = 910.12 kN
0.75 X Vc > Vu hence, OK
One-Way Shear Along X
(Shear Plane Parallel to Global X Axis)
file:///D:/Desktop/STAAD/ISOLATED/ISOLATED/Reports/CalculationSheet.xml 19 Mar 2019
Page 34 of 52
X 1.25 m
Z 0.795 m
0.795 m
Plan
From ACI Cl.11.2.1.1, Vc = = 577.96 kN
Distance of critical section from top left corner
along Z, DZ = = 0.80 m
Check that 0.75 X Vc > Vux where Vux is the shear force for the critical load cases at a distance d from the face of the column caused by bending about the X axis.
From above calculations, 0.75 X Vc = 433.47 kN
Critical load case for Vux is # 407 = 240.07 kN
0.75 X Vc > Vux hence, OK
One-Way Shear Along Z
(Shear Plane Parallel to Global Z Axis)
X 1.25 m
0.79 m 0.79 m
Plan
From ACI Cl.11.2.1.1, Vc = = 577.96 kN
Distance of critical section from top left corner along
X, DX = = 0.79 m
Check that 0.75 X Vc > Vuz where Vuz is the shear force for the critical load cases at a distance d from the face of the column caused by bending about the Z axis.
From above calculations, 0.75 X Vc = 433.47 kN
Critical load case for Vuz is # 402 = 232.61 kN
0.75 X Vc > Vuz hence, OK
Flexure About Z-Axis
Design For Bottom Reinforcement Parallel to X Axis
file:///D:/Desktop/STAAD/ISOLATED/ISOLATED/Reports/CalculationSheet.xml 19 Mar 2019
Page 35 of 52
16 - ϕ12
Calculate the flexural reinforcement along the X direction of the footing. Find the area of steel required, A, as per Section 3.8 of Reinforced Concrete Design (5th ed.) by
Salmon and Wang (Ref. 1)
Critical Load Case # 402
The strength values of steel and concrete used in the formulae are in Mpa
Bars parallel to X Direction are placed at bottom
Effective Depth d = 0.26 m
Factor from ACI Cl.10.2.7.3 =
= 0.85
From Appendix B 8.4.2, = = 0.02871
From Appendix B 10.3.3, = = 0.02153
From ACI Cl. 7.12.2, = = 0.00200
From Ref.1, Eq. 3.8.4a, constant m = = 17.44
Calculate reinforcement ratio for critical load case
Design for flexure about Z axis is performed at the face
= 1.05 m
of the column at a distance, Dx =
Ultimate moment = = 161.43 kNm
Nominal moment capacity, Mn = = 179.37 kNm
(Based on effective depth) Required = = 0.00268
(Based on gross depth) x d / Depth = 0.00197
Since ρ < ρmin, select ρ= ρmin ρmin Governs
Area of Steel Required, As = = 1750.00 mm2
Selected bar Size = 12
Minimum spacing allowed (Smin) = 50.00mm
Selected spacing (S) = 155.87mm
Smin<= S <= Smax and selected bar size < selected maximum bar size...
The reinforcement is accepted.
According to ACI 318 Clause No- 10.6.4 1st
Max spacing for Cracking Consideration = 196.96mm
Safe for Cracking Aspect.
Based on spacing reinforcement increment; provided reinforcement is
file:///D:/Desktop/STAAD/ISOLATED/ISOLATED/Reports/CalculationSheet.xml 19 Mar 2019
Page 36 of 52
#12 @ 155mm o.c.
Required development length for bars = = 0.45 m
Available development length for bars,DL = = 0.97 m
Try bar size # 12 Area of one bar = 113.10 mm2
Number of bars required, Nbar = = 16
Because the number of bars is rounded up, make sure new reinforcement ratio < ρmax
Total reinforcement area, As_total = Nbar X (Area of one bar) = 1809.54 mm2
d= D - Ccover - 0.5 X (dia. of = 0.26 m
one bar)
Reinforcement ratio, = = 0.00282
From ACI Cl.7.6.1, minimum req'd clear distance between bars
Cd = max (Diameter of one bar, 1.0" (25.4mm), Min. User Spacing) = 50.00mm
Provided Steel Area / Required Steel Area = 1.03
Flexure About X-Axis
Design For Bottom Reinforcement Parallel to Z Axis
16 - ϕ12
Calculate the flexural reinforcement along the Z direction of the footing. Find the area of steel required, A, as per Section 3.8 of Reinforced Concrete Design (5th ed.) by
Salmon and Wang (Ref. 1)
Critical Load Case # 407
The strength values of steel and concrete used in the formulae are in Mpa
Bars parallel to X Direction are placed at bottom
Effective Depth d = 0.26 m
Factor from ACI Cl.10.2.7.3 =
= 0.85
From Appendix B 8.4.2, = = 0.02871
From Appendix B 10.3.3, = = 0.02153
From ACI Cl. 7.12.2, = = 0.00200
From Ref.1, Eq. 3.8.4a, constant m = = 17.44
file:///D:/Desktop/STAAD/ISOLATED/ISOLATED/Reports/CalculationSheet.xml 19 Mar 2019
Page 37 of 52
Calculate reinforcement ratio for critical load case
Design for flexure about X axis is performed
at the face of the column at a distance, Dz = 1.05 m
=
Ultimate moment = = 167.31 kNm
Nominal moment capacity, Mn = = 185.90 kNm
(Based on effective depth) Required = = 0.00278
(Based on gross depth) x d / Depth = 0.00204
Since ρmin < ρ < ρmax OK
Area of Steel Required, As = = 1786.38 mm2
Selected Bar Size = #12
Minimum spacing allowed (Smin) = 50.00mm
Selected spacing (S) = 155.87mm
Smin<= S <= Smax and selected bar size < selected maximum bar size...
The reinforcement is accepted.
According to ACI 318 Clause No- 10.6.4 3rd
Testing.... Max spacing for Cracking Consideration = 196.96mm
Safe for Cracking Aspect.
Based on spacing reinforcement increment; provided reinforcement is
#12 @ 155mm o.c.
Required development length for bars
= 0.45 m
=
Available development length for bars,
= 0.98 m
DL =
Try bar size # 12 Area of one bar = 113.10 mm2
Number of bars required, Nbar= = 16
Because the number of bars is rounded up, make sure new reinforcement ratio < ρmax
Total reinforcement area, As_total = Nbar X (Area of one bar) = 1809.54 mm2
d= D - Ccover - 1.5 X (dia. of 0.26 m
=
one bar)
Reinforcement ratio, = = 0.00282
From ACI Cl.7.6.1, minimum req'd clear distance between bars
Cd = max (Diameter of one bar, 1.0" (25.4mm), Min. User Spacing) = 50.00mm
Provided Steel Area / Required Steel Area = 1.01
Material Take Off
Footing Reinforcement
Direction Size Number Length (m) Weight (kgf)
Along Z on Bottom
ϕ12 16 37.60 33.41
Face
Along X on Bottom
ϕ12 16 37.60 33.41
Face
Along Z on Top
N/A N/A N/A N/A
Face
Along X on Top
N/A N/A N/A N/A
Face
Total Reinforcement Weight : 66.81 kgf
Concrete
file:///D:/Desktop/STAAD/ISOLATED/ISOLATED/Reports/CalculationSheet.xml 19 Mar 2019
Page 38 of 52
- Length Width Thickness Weight
Footing 2.50m 2.50m 0.35m 52.50kN
Pedestal 0.61m 0.61m 0.00m 0.00kN
Total Concrete Weight : 52.50 kN
Soil Excavation
Pad Depth : 1.20 m
Pad Slope (a : b) : 1 : 1 (Assumed)
Side Distance, s : 0 (Assumed)
Excavation Volume : 17.00 m3
Backfill Volume : 14.82 m3
file:///D:/Desktop/STAAD/ISOLATED/ISOLATED/Reports/CalculationSheet.xml 19 Mar 2019
Page 39 of 52
1.25 m 1.25 m
Isolated Footing 61
file:///D:/Desktop/STAAD/ISOLATED/ISOLATED/Reports/CalculationSheet.xml 19 Mar 2019
Page 40 of 52
0.84 m
0.35 m
Elevation
X 1.25 m
0.4 m
0.39 m
2.5 m
Plan
Input Values
Footing Geomtery
Calculate Dimension with user
Design Type : specified minimums as starting
value
Minimum Footing Length - X(Fl) : 1000.00 mm
Minimum Footing Width - Z (Fw) : 1000.00 mm
Footing Thickness (Ft) : 250.00 mm
Eccentricity along X (Oxd) : 0.00 mm
Eccentricity along Z (Ozd) : 0.00 mm
Column Dimensions
Column Shape : Rectangular
Column Length - X (Dcol) : 0.40 m
Column Width - Z (Bcol) : 0.39 m
Pedestal
Include Pedestal : No
Pedestal Shape : N/A
Pedestal Height (Ph) : N/A
Pedestal Length - X (Pl) : N/A
Pedestal Width - Z (Pw) : : N/A
Design Parameters
Concrete and Rebar Properties
file:///D:/Desktop/STAAD/ISOLATED/ISOLATED/Reports/CalculationSheet.xml 19 Mar 2019
Page 41 of 52
Unit Weight of Concrete : 24.00 kN/m3
Strength of Concrete : 28.00 N/mm2
Yield Strength of Steel : 415.00 N/mm2
Minimum Bar Size : ϕ12
Maximum Bar Size : ϕ25
Top Footing Minimum Bar Size : ϕ12
Top Footing Maximum Bar Size : ϕ25
Pedestal Minimum Bar Size : ϕ6
Pedestal Maximum Bar Size : ϕ22
Minimum Bar Spacing : 50.00 mm
Maximum Bar Spacing : 250.00 mm
Pedestal Clear Cover (P, CL) : 50.00 mm
Bottom Footing Clear Cover (F, CL) : 75.00 mm
Soil Properties
Soil Type : Cohesive Soil
Unit Weight : 17.60kN/m3
Soil Bearing Capacity : 120.00kPa
Multiplying factor for soil bearing capacity for ultimate
: 2.00
loads
Soil Bearing Capacity Type : Net Bearing Capacity
Soil Surcharge : 0.00kN/m2
Height of Soil above Footing : 950.00mm
Type of Depth : Fixed Bottom
Cohesion : 0.00kN/m2
Bearing Capacity Input Method : Fixed Bearing Capacity
Minimum Percentage of Slab area in Contact for Service
: 50.00
Loads
Minimum Percentage of Slab area in Contact for
: 50.00
Ultimate Loads
Sliding and Overturning
Coefficient of Friction : 0.50
Factor of Safety Against Sliding : 1.50
Factor of Safety Against Overturning : 1.50
Global Settings
Top Reinforcement Option : Calculate only when foundation is subjected to uplift forces
Concrete Design Option : Gross Pressure
Top Reinforcement Factor : 1.00
------------------------------------------------------
Design Calculations
Footing Size
Initial Length (Lo) = 1.00 m
Initial Width (Wo) = 1.00 m
Load Combinations
file:///D:/Desktop/STAAD/ISOLATED/ISOLATED/Reports/CalculationSheet.xml 19 Mar 2019
Page 42 of 52
Load Combination/s- Service Stress Level
Load Load Soil Self
Combination Load Combination Title Combination Bearing Weight
Number Factor (a) Factor (b) Factor (c)
a - Value specified in the Load Safety Factor table
b - Value specified in the Pile/Soil Bearing Capacity Factors table
c - Value specified in the Apply Self Weight and Dead Weight Factor table
301 1.0(DL1 + DL2) + 1.0(LL1 + LL2 + LLR) 1.00 1.00 1.00
302 1.0(DL1 + DL2) + 0.75(LL1 + LL2 + LLR) + 0.535EX 1.00 1.00 1.00
303 1.0(DL1 + DL2) + 0.75(LL1 + LL2 + LLR) - 0.535EX 1.00 1.00 1.00
304 1.0(DL1 + DL2) + 0.75(LL1 + LL2 + LLR) + 0.535EZ 1.00 1.00 1.00
305 1.0(DL1 + DL2) + 0.75(LL1 + LL2 + LLR) - 0.535EZ 1.00 1.00 1.00
306 0.6(DL1 + DL2) + 0.7EX 1.00 1.00 1.00
307 0.6(DL1 + DL2) - 0.7EX 1.00 1.00 1.00
308 0.6(DL1 + DL2) + 0.7EZ 1.00 1.00 1.00
309 0.6(DL1 + DL2) - 0.7EZ 1.00 1.00 1.00
310 1.0(DL1 + DL2) + 1.0(LL1 + LL2 + LLR) + 0.71EX 1.00 1.00 1.00
311 1.0(DL1 + DL2) + 1.0(LL1 + LL2 + LLR) - 0.71EX 1.00 1.00 1.00
312 1.0(DL1 + DL2) + 1.0(LL1 + LL2 + LLR) + 0.71EZ 1.00 1.00 1.00
313 1.0(DL1 + DL2) + 1.0(LL1 + LL2 + LLR) - 0.71EZ 1.00 1.00 1.00
Load Combination/s- Strength Level
Load Load Soil Self
Combination Load Combination Title Combination Bearing Weight
Number Factor (a) Factor (b) Factor (c)
a - Value specified in the Load Safety Factor table
b - Value specified in the Pile/Soil Bearing Capacity Factors table
c - Value specified in the Apply Self Weight and Dead Weight Factor table
401 1.4(DL1 + DL2) 1.00 1.00 1.00
402 1.2(DL1 + DL2) + 1.6(LL1 + LL2) + 0.5LLR 1.00 1.00 1.00
403 1.2(DL1 + DL2) + 1.6LLR + 0.5LL1 + 1.0LL2 1.00 1.00 1.00
404 1.2(DL1 + DL2) + 0.5LL1 + 0.5LLR + 1.0LL2 + 1.0EX 1.00 1.00 1.00
405 1.2(DL1 + DL2) + 0.5LL1 + 0.5LLR + 1.0LL2 - 1.0EX 1.00 1.00 1.00
406 1.2(DL1 + DL2) + 0.5LL1 + 0.5LLR + 1.0LL2 + 1.0EZ 1.00 1.00 1.00
407 1.2(DL1 + DL2) + 0.5LL1 + 0.5LLR + 1.0LL2 - 1.0EZ 1.00 1.00 1.00
408 0.9(DL1 + DL2) + 1.0EX 1.00 1.00 1.00
409 0.9(DL1 + DL2) - 1.0EX 1.00 1.00 1.00
410 0.9(DL1 + DL2) + 1.0EZ 1.00 1.00 1.00
411 0.9(DL1 + DL2) - 1.0EZ 1.00 1.00 1.00
Applied Loads on Top of Pedestal
Before consideration of self weight and load safety factor table
Moments are about the center of footing / pile cap (does not include moments caused by lateral loads)
For the loads shown in this table, the sign convention is the same as that for JOINT LOADS in STAAD.Pro when global Y is the vertical axis.
Applied Loads from Column - Service Stress Level
Fy
(kN)
Fx Fz Mx Mz
Load Case Downwards is
(kN) (kN) (kNm) (kNm)
negative Upwards
is positive
301 2.84 -545.82 -12.98 0.00 0.00
302 31.74 -619.37 -10.60 0.00 0.00
303 -26.34 -422.55 -14.03 0.00 0.00
304 2.75 -471.29 9.67 0.00 0.00
305 2.64 -570.63 -34.30 0.00 0.00
306 40.29 -575.14 -8.08 0.00 0.00
307 -35.71 -317.62 -12.57 0.00 0.00
308 2.36 -381.39 18.44 0.00 0.00
309 2.22 -511.37 -39.09 0.00 0.00
310 41.38 -676.42 -10.70 0.00 0.00
311 -35.71 -415.22 -15.25 0.00 0.00
312 2.91 -479.90 16.20 0.00 0.00
313 2.76 -611.74 -42.15 0.00 0.00
file:///D:/Desktop/STAAD/ISOLATED/ISOLATED/Reports/CalculationSheet.xml 19 Mar 2019
Page 43 of 52
Applied Loads from Column - Strength Level
Fy
(kN)
Fx Fz Mx Mz
Load Case Downwards is
(kN) (kN) (kNm) (kNm)
negative Upwards
is positive
401 3.21 -624.93 -14.45 0.00 0.00
402 3.60 -676.62 -16.58 0.00 0.00
403 3.04 -603.64 -13.77 0.00 0.00
404 57.30 -769.45 -10.51 0.00 0.00
405 -51.26 -401.56 -16.92 0.00 0.00
406 3.13 -492.66 27.38 0.00 0.00
407 2.92 -678.35 -54.81 0.00 0.00
408 56.34 -585.69 -6.09 0.00 0.00
409 -52.22 -217.79 -12.50 0.00 0.00
410 2.17 -308.90 31.80 0.00 0.00
411 1.96 -494.59 -50.39 0.00 0.00
Reduction of force due to buoyancy = 0.00 kN
Effect due to adhesion = 0.00 kN
2
Area from initial length and width, Ao = Lo X Wo = 1.00 m
Min. area required from bearing pressure, Amin = 6.08 m2
Note: Amin is an initial estimation considering self-weight, axial load and moment against factored bearing capacity.
Final Footing Size
Length (L2) = 2.50 m Governing Load Case : # 310
Width (W2) = 2.50 m Governing Load Case : # 310
Depth (D2) = 0.35 m
Depth is governed by Ultimate Load Case
(Service check is performed with footing thickness requirements from concrete check)
Area (A2) = 6.25 m2
Final Soil Height = 0.85 m
Foundation Self Weight = 52.50 kN
Gross Soil Bearing Capacity = 282.24 kN/m2
Soil Weight On Top Of Footing = 91.13 kN
Pressures at 4 Corners
Please note that pressures values displayed in tables below are calculated after dividing by soil bearing factor
Pressure at Pressure at Pressure at Pressure at Area of footing
Load Case / top left top right bottom bottom left in uplift (Au)
Combination corner corner right corner corner 2
(kN/m2) (kN/m2) (kN/m2) (kN/m2) (m )
310 127.0861 138.2082 135.3315 124.2094 0.00
310 127.0861 138.2082 135.3315 124.2094 0.00
310 127.0861 138.2082 135.3315 124.2094 0.00
310 127.0861 138.2082 135.3315 124.2094 0.00
If Au is zero, there is no uplift and no pressure adjustment is necessary. Otherwise, to account for uplift, areas of negative pressure will be set to zero and the pressure
will be redistributed to remaining corners.
Summary of Adjusted Pressures at four Corners
Pressure at
Pressure at top Pressure at top bottom right Pressure at
Load Case / left corner right corner corner bottom left corner
Combination (kN/m2) (kN/m2) (kN/m2) (kN/m2)
310 127.0861 138.2082 135.3315 124.2094
file:///D:/Desktop/STAAD/ISOLATED/ISOLATED/Reports/CalculationSheet.xml 19 Mar 2019
Page 44 of 52
Pressure at
Pressure at top Pressure at top bottom right Pressure at
Load Case / left corner right corner corner bottom left corner
Combination (kN/m2) (kN/m2) (kN/m2) (kN/m2)
310 127.0861 138.2082 135.3315 124.2094
310 127.0861 138.2082 135.3315 124.2094
310 127.0861 138.2082 135.3315 124.2094
Stability Check
0.84 m
OTM
Sliding Force
.
Frictional Force 0.35 m
Passive Earth Pressure Resistance
Resisting Force Along X on Pedestal : 2.50 kN
Resisting Force Along Z on Pedestal : 2.50 kN
Resisting Force Along X on Footing : 15.78 kN
Resisting Force Along Z on Footing : 15.78 kN
Resisting moment about X on Pedestal : 1.61 kNm
Resisting moment about Z on pedestal : 1.58 kNm
Resisting moment about X on Footing : 2.61 kNm
Resisting moment about Z on Footing : 2.61 kNm
Factor of safety against
- Factor of safety against sliding
overturning
Load
Along X- Along Z- Required About X- About Z- Required
Case Resultant
Direction Direction FOS Direction Direction FOS
No.
301 128.04 27.98 27.33 1.50 190.67 872.72 1.50
302 12.60 37.72 11.95 1.50 258.22 86.23 1.50
303 11.44 21.49 10.10 1.50 145.00 77.21 1.50
304 118.25 33.69 32.40 1.50 228.33 801.55 1.50
305 142.05 10.95 10.91 1.50 74.72 969.74 1.50
306 9.37 46.74 9.19 1.50 319.12 64.01 1.50
307 6.97 19.81 6.58 1.50 132.03 46.47 1.50
308 118.83 15.23 15.10 1.50 102.33 798.56 1.50
309 156.00 8.85 8.83 1.50 60.15 1060.73 1.50
310 10.35 40.03 10.02 1.50 274.79 71.07 1.50
311 8.34 19.52 7.67 1.50 131.65 56.23 1.50
312 113.44 20.38 20.05 1.50 138.21 769.52 1.50
313 143.42 9.39 9.37 1.50 64.28 981.46 1.50
Critical Load Case And The Governing Factor Of Safety For Overturning And Sliding - X Direction
Critical Load Case for Sliding along X-Direction : 307
Governing Disturbing Force : -35.71 kN
Governing Restoring Force : 248.91 kN
Minimum Sliding Ratio for the Critical Load Case : 6.97
Critical Load Case for Overturning about X-Direction : 309
file:///D:/Desktop/STAAD/ISOLATED/ISOLATED/Reports/CalculationSheet.xml 19 Mar 2019
Page 45 of 52
Governing Overturning Moment : -13.68 kNm
Governing Resisting Moment : 822.95 kNm
Minimum Overturning Ratio for the Critical Load Case : 60.15
Critical Load Case And The Governing Factor Of Safety For Overturning And Sliding - Z Direction
Critical Load Case for Sliding along Z-Direction : 309
Governing Disturbing Force : -39.09 kN
Governing Restoring Force : 345.84 kN
Minimum Sliding Ratio for the Critical Load Case : 8.85
Critical Load Case for Overturning about Z-Direction : 307
Governing Overturning Moment : 12.50 kNm
Governing Resisting Moment : 580.73 kNm
Minimum Overturning Ratio for the Critical Load Case : 46.47
Critical Load Case And The Governing Factor Of Safety For Sliding Along Resultant Direction
Critical Load Case for Sliding along Resultant Direction : 307
Governing Disturbing Force : 37.86 kN
Governing Restoring Force : 248.94 kN
Minimum Sliding Ratio for the Critical Load Case : 6.58
Compression Development Length Check
Development length calculation skipped as column reinforcement is not specified in input (Column Dimension Task Pane)
Ultimate Pressures
The base pressures reported in this table do not include the effect of buoyancy. However, the area of footing in contact includes the effect of
buoyancy (if any).
Area of
Load Case / Pressure at Pressure at Pressure at Pressure at
footing in
Load top left top right bottom right bottom left
Contact with
Combination corner corner corner corner
soil (Au)
ID (kN/m2) (kN/m2) (kN/m2) (kN/m2)
(m2)
401 124.4819 125.3436 121.4581 120.5964 6.25
402 132.9848 133.9534 129.4959 128.5273 6.25
403 121.0058 121.8223 118.1221 117.3055 6.25
404 139.8041 155.2077 152.3823 136.9787 6.25
405 96.3936 82.6140 78.0660 91.8456 6.25
406 97.7065 98.5466 105.9059 105.0659 6.25
407 138.4912 139.2751 124.5423 123.7585 6.25
408 109.9368 125.0824 123.4458 108.3003 6.25
409 66.5263 52.4887 49.1296 63.1672 6.25
410 67.8393 68.4213 76.9695 76.3875 6.25
411 108.6239 109.1498 95.6059 95.0801 6.25
Minimum Required Contact Area for Ultimate Loads : 3.12 m2
Actual Area in Contact for all ultimate load cases exceeds the minimum required. Hence Safe
Gross Bearing Capacity for Ultimate Loads : 282.24 kN/m2
Maximum Corner Pressure from all ultimate load cases is less than the allowable. Hence Safe
Shear Calculation
Punching Shear Check
file:///D:/Desktop/STAAD/ISOLATED/ISOLATED/Reports/CalculationSheet.xml 19 Mar 2019
Page 46 of 52
X 1.25 m
Z
0.13 m
Plan
Total Footing Depth, D = 0.35m
Calculated Effective Depth, d = D - Ccover - 1 * db = 0.26 m
For rectangular column, = Bcol / Dcol = 1.02
Effective depth, d, increased until 0.75XVc Punching Shear Force
Punching Shear Force, Vu = 751.89kN, Load Case # 404
From ACI Cl.11.11.2.1, bo for
= 2.64 m
column=
Equation 11-31, Vc1 = = 1851.55 kN
Equation 11-32, Vc2 = = 1825.60 kN
Equation 11-33, Vc3 = = 1213.50 kN
Punching shear strength, Vc = 0.75 X minimum of (Vc1, Vc2, Vc3) = 910.12 kN
0.75 X Vc > Vu hence, OK
One-Way Shear Along X
(Shear Plane Parallel to Global X Axis)
file:///D:/Desktop/STAAD/ISOLATED/ISOLATED/Reports/CalculationSheet.xml 19 Mar 2019
Page 47 of 52
X 1.25 m
Z 0.795 m
0.795 m
Plan
From ACI Cl.11.2.1.1, Vc = = 577.96 kN
Distance of critical section from top left corner
along Z, DZ = = 0.80 m
Check that 0.75 X Vc > Vux where Vux is the shear force for the critical load cases at a distance d from the face of the column caused by bending about the X axis.
From above calculations, 0.75 X Vc = 433.47 kN
Critical load case for Vux is # 404 = 247.34 kN
0.75 X Vc > Vux hence, OK
One-Way Shear Along Z
(Shear Plane Parallel to Global Z Axis)
X 1.25 m
0.79 m 0.79 m
Plan
From ACI Cl.11.2.1.1, Vc = = 577.96 kN
Distance of critical section from top left corner along
X, DX = = 1.71 m
Check that 0.75 X Vc > Vuz where Vuz is the shear force for the critical load cases at a distance d from the face of the column caused by bending about the Z axis.
From above calculations, 0.75 X Vc = 433.47 kN
Critical load case for Vuz is # 404 = 254.59 kN
0.75 X Vc > Vuz hence, OK
Flexure About Z-Axis
Design For Bottom Reinforcement Parallel to X Axis
file:///D:/Desktop/STAAD/ISOLATED/ISOLATED/Reports/CalculationSheet.xml 19 Mar 2019
Page 48 of 52
17 - ϕ12
Calculate the flexural reinforcement along the X direction of the footing. Find the area of steel required, A, as per Section 3.8 of Reinforced Concrete Design (5th ed.) by
Salmon and Wang (Ref. 1)
Critical Load Case # 404
The strength values of steel and concrete used in the formulae are in Mpa
Bars parallel to X Direction are placed at bottom
Effective Depth d = 0.26 m
Factor from ACI Cl.10.2.7.3 =
= 0.85
From Appendix B 8.4.2, = = 0.02871
From Appendix B 10.3.3, = = 0.02153
From ACI Cl. 7.12.2, = = 0.00200
From Ref.1, Eq. 3.8.4a, constant m = = 17.44
Calculate reinforcement ratio for critical load case
Design for flexure about Z axis is performed at the
= 1.45 m
face of the column at a distance, Dx =
Ultimate moment = = 177.07 kNm
Nominal moment capacity, Mn = = 196.75 kNm
(Based on effective depth) Required = = 0.00295
(Based on gross depth) x d / Depth = 0.00216
Since ρmin < ρ < ρmax OK
Area of Steel Required, As = = 1893.39 mm2
Selected bar Size = 12
Minimum spacing allowed (Smin) = 50.00mm
Selected spacing (S) = 146.12mm
Smin<= S <= Smax and selected bar size < selected maximum bar size...
The reinforcement is accepted.
According to ACI 318 Clause No- 10.6.4 1st
Max spacing for Cracking Consideration = 196.96mm
Safe for Cracking Aspect.
Based on spacing reinforcement increment; provided reinforcement is
file:///D:/Desktop/STAAD/ISOLATED/ISOLATED/Reports/CalculationSheet.xml 19 Mar 2019
Page 49 of 52
#12 @ 145mm o.c.
Required development length for bars = = 0.45 m
Available development length for bars,DL = = 0.97 m
Try bar size # 12 Area of one bar = 113.10 mm2
Number of bars required, Nbar = = 17
Because the number of bars is rounded up, make sure new reinforcement ratio < ρmax
Total reinforcement area, As_total = Nbar X (Area of one bar) = 1922.64 mm2
d= D - Ccover - 0.5 X (dia. of = 0.26 m
one bar)
Reinforcement ratio, = = 0.00299
From ACI Cl.7.6.1, minimum req'd clear distance between bars
Cd = max (Diameter of one bar, 1.0" (25.4mm), Min. User Spacing) = 50.00mm
Provided Steel Area / Required Steel Area = 1.02
Flexure About X-Axis
Design For Bottom Reinforcement Parallel to Z Axis
17 - ϕ12
Calculate the flexural reinforcement along the Z direction of the footing. Find the area of steel required, A, as per Section 3.8 of Reinforced Concrete Design (5th ed.) by
Salmon and Wang (Ref. 1)
Critical Load Case # 404
The strength values of steel and concrete used in the formulae are in Mpa
Bars parallel to X Direction are placed at bottom
Effective Depth d = 0.26 m
Factor from ACI Cl.10.2.7.3 =
= 0.85
From Appendix B 8.4.2, = = 0.02871
From Appendix B 10.3.3, = = 0.02153
From ACI Cl. 7.12.2, = = 0.00200
From Ref.1, Eq. 3.8.4a, constant m = = 17.44
file:///D:/Desktop/STAAD/ISOLATED/ISOLATED/Reports/CalculationSheet.xml 19 Mar 2019
Page 50 of 52
Calculate reinforcement ratio for critical load case
Design for flexure about X axis is performed
at the face of the column at a distance, Dz = 1.05 m
=
Ultimate moment = = 172.08 kNm
Nominal moment capacity, Mn = = 191.20 kNm
(Based on effective depth) Required = = 0.00286
(Based on gross depth) x d / Depth = 0.00210
Since ρmin < ρ < ρmax OK
Area of Steel Required, As = = 1838.61 mm2
Selected Bar Size = #12
Minimum spacing allowed (Smin) = 50.00mm
Selected spacing (S) = 146.12mm
Smin<= S <= Smax and selected bar size < selected maximum bar size...
The reinforcement is accepted.
According to ACI 318 Clause No- 10.6.4 3rd
Testing.... Max spacing for Cracking Consideration = 196.96mm
Safe for Cracking Aspect.
Based on spacing reinforcement increment; provided reinforcement is
#12 @ 145mm o.c.
Required development length for bars
= 0.45 m
=
Available development length for bars,
= 0.98 m
DL =
Try bar size # 12 Area of one bar = 113.10 mm2
Number of bars required, Nbar= = 17
Because the number of bars is rounded up, make sure new reinforcement ratio < ρmax
Total reinforcement area, As_total = Nbar X (Area of one bar) = 1922.64 mm2
d= D - Ccover - 1.5 X (dia. of 0.26 m
=
one bar)
Reinforcement ratio, = = 0.00299
From ACI Cl.7.6.1, minimum req'd clear distance between bars
Cd = max (Diameter of one bar, 1.0" (25.4mm), Min. User Spacing) = 50.00mm
Provided Steel Area / Required Steel Area = 1.05
Material Take Off
Footing Reinforcement
Direction Size Number Length (m) Weight (kgf)
Along Z on Bottom
ϕ12 17 39.95 35.49
Face
Along X on Bottom
ϕ12 17 39.95 35.49
Face
Along Z on Top
N/A N/A N/A N/A
Face
Along X on Top
N/A N/A N/A N/A
Face
Total Reinforcement Weight : 70.99 kgf
Concrete
file:///D:/Desktop/STAAD/ISOLATED/ISOLATED/Reports/CalculationSheet.xml 19 Mar 2019
Page 51 of 52
- Length Width Thickness Weight
Footing 2.50m 2.50m 0.35m 52.50kN
Pedestal 0.61m 0.61m 0.00m 0.00kN
Total Concrete Weight : 52.50 kN
Soil Excavation
Pad Depth : 1.20 m
Pad Slope (a : b) : 1 : 1 (Assumed)
Side Distance, s : 0 (Assumed)
Excavation Volume : 17.00 m3
Backfill Volume : 14.82 m3
file:///D:/Desktop/STAAD/ISOLATED/ISOLATED/Reports/CalculationSheet.xml 19 Mar 2019
Page 52 of 52
1.25 m 1.25 m
Print Calculation Sheet
file:///D:/Desktop/STAAD/ISOLATED/ISOLATED/Reports/CalculationSheet.xml 19 Mar 2019