0% found this document useful (0 votes)
86 views6 pages

Method of Joints

Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
86 views6 pages

Method of Joints

Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
You are on page 1/ 6

METHOD OF JOINTS

Getting the reactions at supports:

∑ 𝑴𝑷 = 0

RA (9.5) = -2.1175kN(1.1875m + 2.375m + 3.5625m) – 5.101kN(4.75m) –


7.1465kN(5.9375m + 7.125m + 8.3125m) - 3.8kN(9.5m) + 1.487kN (0.625m + 1.25m +
1.875m) + (0.744kN)(2.5m) + 0.478kN(2.5m) + 0.956 kN (1.875m + 1.25m +0.625m) +
3.279 kN (9.5m)
RA𝒚 = 19. 45332895 kN
∑ 𝑭𝒚 = 0
𝑅𝑃𝑌 = 3.8kN + 7.14653kN(3m) + 5.101kN + 2.1175 kN(3m) + 1.301kN –19.453kN –
3.279 kN
𝐑𝐏𝐘 = 11.98267105 kN
∑ 𝑭𝒙 = 0
𝑅𝐴𝑋 = 0.744 kN + 1.487kN(3) + 0.744kN + 0.478kN + (0.956kN)(3m) + (0.478kN)
𝑹𝑨𝑿 = 9.773 kN

METHOD OF JOINTS

At Joint A
ΣFy = 0
-1.721kN + 12.273071kN + AB sin(19.596) = 0
AB = 31.463 kN (C)

ΣFx = 0
(31.463kN) cos(19.596) + AC – 1.166 = 0
AC = 30. 807 kN (T)
METHOD OF SECTIONS

∑ 𝑴𝑨 = 0
-0.71kN(0.445m) + 3.158kN(1.25m) + BE cos(19.596)(0.445m) + BE
sin(19.596)(1.25m)=0
BE = 4.331 Kn (C)

METHOD OF JOINTS

At Joint B

ΣFy = 0
3.158 + 31.463 sin( 19.596) + BDsin(19.596) +
4.331 sin(19.596) = 0
BD = 26.378 kN (C)

4.33
-31.463 kN - 4.331 kN
kN kN

At Joint C

ΣFx = 0
-AC-CE = 0
-30.807 kN = CE
CE = 30.807 kN (T)
-30.807kN
CB = 0
∑ 𝑴𝑨 = 0
-0.71kN(0.445m) + 3.158kN(1.25m) – 0.71Kn(0.89m) + 3.158Kn(2.5m) +
DGcos(35.4508)(0.89) +DGsin(35.40((2.5m) =0
DG = 5.009 kN (C)

∑ 𝑴𝑬 = 0
12.273kN(2.5m) – 1.72kN(2.5m) – 3.158kN(1.25m) – (0.71kN)(0.445m) –
(0.71kN)(0.89m) –DGcos(35.451)(0.89m) +DFcos(19.596)(0.89m) = 0
DF = 21.293kN (C)

At Joint E
ΣFx = 0
-4.331 kN -EB cos (19.596) + EC + EG = 0
-4.33kN cos (19.596) + 30.807kN + EG = 0
EG = 26.726 kN (T)
ΣFy = 0
DE + EBsin19.596 =0
-30.807 kN
DE + 4.33kNsin(19.596) = 0
-30.807 kN DE = 1.453 kN (T)
∑ 𝑴𝑨 = 0
(-0.71kN)(0.445m) +3.158 kN(1.25m + 2.5 m +3.75m) – 0.71 kN(0.89 + 1.335) +
FIcos(46.883)(1.335m) + FIsin(46.833)(3.75m) = 0

FI = 5.970 kN (C)

At joint F

ΣFy = 0
-FHcos19.596 +5.967 kN cos(46.883) -
21.293kNcos(19.596) + 0.71 =0
FH= 16.209 kN (C)

-21.293kN -5.970 kN
At joint G

ΣFy = 0
5. 009 kN -GF + 5.009kNsin(35.4509) = 0
L GF = 2.905 kN (T)

ΣFx = 0
-GI + 26.726 - 5. 009cos35.450
=0

GI=22.646 kN (T)
26.726 kN

At joint I
5.970 kN 4.648 kN
ΣFy = 0

-IH + 5.970kNsin(46.883) +
4.648sin(46.883)=0
22.646 21.742 kN
kN
IH = 7.751 kN

You might also like