Cancers 10 00006
Cancers 10 00006
Review
Immune Evasion in Pancreatic Cancer:
From Mechanisms to Therapy
Neus Martinez-Bosch 1          ID
                                    , Judith Vinaixa 1 and Pilar Navarro 1,2, *
 1   Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona 08003, Spain;
     nmartinez@imim.es (N.M.-B.); jvinaixa@imim.es (J.V.)
 2   Institute of Biomedical Research of Barcelona (IIBB-CSIC), Barcelona 08036, Spain
 *   Correspondence: pnavarro@imim.es; Tel.: +34-93-316-0400
 Abstract: Pancreatic ductal adenocarcinoma (PDA), the most frequent type of pancreatic cancer,
 remains one of the most challenging problems for the biomedical and clinical fields, with abysmal
 survival rates and poor therapy efficiency. Desmoplasia, which is abundant in PDA, can be blamed
 for much of the mechanisms behind poor drug performance, as it is the main source of the cytokines
 and chemokines that orchestrate rapid and silent tumor progression to allow tumor cells to be
 isolated into an extensive fibrotic reaction, which results in inefficient drug delivery. However,
 since immunotherapy was proclaimed as the breakthrough of the year in 2013, the focus on the
 stroma of pancreatic cancer has interestingly moved from activated fibroblasts to the immune
 compartment, trying to understand the immunosuppressive factors that play a part in the strong
 immune evasion that characterizes PDA. The PDA microenvironment is highly immunosuppressive
 and is basically composed of T regulatory cells (Tregs), tumor-associated macrophages (TAMs),
 and myeloid-derived suppressive cells (MDSCs), which block CD8+ T-cell duties in tumor recognition
 and clearance. Interestingly, preclinical data have highlighted the importance of this immune evasion
 as the source of resistance to single checkpoint immunotherapies and cancer vaccines and point at
 pathways that inhibit the immune attack as a key to solve the therapy puzzle. Here, we will discuss
 the molecular mechanisms involved in PDA immune escape as well as the state of the art of the
 PDA immunotherapy.
1. Introduction
      The immune system plays a key role in both the positive and negative regulation of tumor
development and progression, and crosstalk between cancer cells and immune cells has been
incorporated into the list of major hallmarks of cancer [1]. While immune surveillance [2,3] is the first
filter to identify and eliminate aberrant or malignant cells, some tumor cells have developed numerous
strategies to avoid recognition by the host immune cells, allowing them to escape from immune control
and continue cancer progression. Different mechanisms are involved in tumor immune evasion. First,
cancer cells can decrease immune recognition by downregulating antigen presentation pathways,
like the major histocompatibility complex (MHC) I proteins, TAP (transporter associated with
antigen processing) protein and latent membrane proteins (LMP2 and LMP7) [4–9]. Moreover, genetic
instability of tumors and constant cell division can result in the loss of tumor antigens recognized by
effector T-cells (CD8+ or CD4+ T-cells). These changes in the immunogenicity of cancer cells leading
to immune-resistant clones have been called tumor “immunoediting” [10]. Second, tumor cells and
other cells from the tumor microenvironment can promote an immune privilege status by secretion
of immunosuppressive cytokines—such as IL-1, IL-6, IL-10, TGFβ, TNFα, or VEGF [11–18]—or
correlate with reduced tumor-infiltrating leukocytes (TILs) and worse prognosis [38,39]. Accordingly,
downregulation of PDL1 inhibits pancreatic tumor cell proliferation [40]. Furthermore, increased
expression of inhibitory molecules on inactivated T cells has been suggested as another way to induce
pancreatic cancer immunosuppression. Thus, pancreatic tumors show a high expression of CD40, a cell
membrane receptor of the tumor necrosis factor family that modulates immune response, and this
overexpression is associated to higher TNM Classification of Malignant Tumours (TNM) staging and
metastasis [41].
      Another reason to explain the PDA immunosuppressive phenotype might be its mutational
signature. Indeed, recent cancer mutational analyses have demonstrated high variability among
tumors, indicating that those tumors with increased mutation rate, like melanoma or lung, are highly
immunogenic while those with low mutation rate, as PDA [23], are poorly antigenic [42–44].
Interestingly, very recent data have indicated that neoantigen quality, rather than quantity, may
modulate immunogenicity of PDA [45]. This study suggests that the immune response against
neoantigens with unique qualities generated during pancreatic tumor evolution, such as neoantigens
in mucin 16, can lead to decreased relapse and the best prognosis. Further studies to identify other PDA
immunogenic hotspots could be encouraging for the development of neoantigen-targeted strategies
for treating checkpoint blockade-resistant patients which, unfortunately, are the vast majority.
expressed in about half of pancreatic tumor cytotoxic infiltrates [59]. Overexpression of PDL1 is also
found in the KPC mouse model of PDA, for which moderate staining was observed in around 40% of
tumor cells as well as in stromal dendritic cells (DCs) and macrophages, which express higher PDL1
levels than their counterparts in the spleen. Moreover, tumor-infiltrating T-lymphocytes, including
Tregs and few CD4+ and CD8+ T cells, also express PD1 at higher levels than that of the spleen
populations [56]. These results point to a role of the PD1/PDL1 immune checkpoint in PDA immune
evasion. Similar to α-CTLA4 therapy, Pan02 tumors provide objective responses to α-PD1 or α-PDL1
therapies [38,60]. However, KPC tumors are refractory to α-PD1 or α-PDL1 mAbs, either alone or in
combination with α-CTLA4 therapy; this resistance could be reverted, however, by combined treatment
with α-CD40 and chemotherapy [56]. Importantly, Winograd et al. demonstrated that this combined
regimen not only induces tumor rejection in a CD8+ T-cell-dependent manner, but also increases the
capability of mice to reject subsequent tumor insults, suggesting that an anti-tumor immune memory
with high therapeutic potential is generated. Indeed ongoing clinical trials in patients with α-CD40 are
giving promising results [61] (see below).
      Gal-3 regulates immune system responses that act as a chemoattractant for monocytes and
macrophages [82], impairing NK anti-tumor function. It also controls expansion of DCs [77] and is
able to modulate T-cell responses through apoptosis, T-cell receptor downregulation and crosslinking,
consequently inhibiting T-cell activation [83]. Gal-3 also promotes reduced immune response by
decreasing IL-5 production and blocking B lymphocyte differentiation [84]. Interestingly, in PDA,
treating tumor-infiltrating CD8+ T-cells with α-Gal-3 mAb boosts their activation by increased IFNγ
secretion. Upon ex vivo restimulation, the polysaccharide GCS-100, which is in clinical development,
can detach Gal-3 from TILs. This favors activation of both CD8+ and CD4+ T cells and secretion of
anti-tumor cytokines. Importantly, in vaccinated tumor-bearing mice, GCS-100 injections result in
tumor regression [85]. Of note, Gal-3 binding to LAG-3 induces CD8+ T cell suppression in vitro and
Gal-3 KO mice show increased T effector functions upon GM-CSF vaccine administration [86]. Indeed,
phase I clinical trials (with still inconclusive results) have already been designed with Gal-3 inhibitors
in combination with peptide vaccines, as well as with the immune checkpoint inhibitors ipilimumab
(α-CTLA4) and pembrolizumab (α-PD1), in metastatic melanoma. Importantly, Gal-3 has already been
added to the list of “new generation” checkpoints in immunotherapy [47].
      Finally, Gal-9 also has crucial roles in controlling immune regulatory circuits, both in immune
cell homeostasis and during cancer immune surveillance. Gal-9 can induce Treg cell differentiation
and promote expansion of immunosuppressive MDSCs. Importantly, it specifically triggers apoptosis
by interacting with TIM-3 in Th1 and CD8+ T cells [77,87], which has also placed Gal-9 in the
“new generation” checkpoint list [47,88]. Interestingly, Gal-9 has the ability to modulate immune
responses in PDA [89]. Gal-9 is a ligand for dectin-1, which is an innate immune receptor highly
expressed in macrophages in PDA. The dectin-1/Gal-9 axis plays a key role in promoting differentiation
of TAMs to a M2-like phenotype. Importantly, Gal-9 inhibition restores intratumoral T-cell infiltrates
in PDA, but this function is impaired in the context of a dectin-1 deletion, suggesting that the
dectin-1/Gal-9 interaction is key in reprogramming CD4+ and CD8+ T-cells for regulating tumor
progression; thus, highlighting these players as targets in immunotherapy [89].
      Multiple additional different designs have been proposed in preclinical studies to target the
PDA immunosuppressive microenvironment and to increase immunotherapy efficiency, such as
combinations with chemotherapy, radiation, therapeutic vaccines, or even several of these together [95].
For instance, addition of α-PDL1 to high radiotherapy doses improved responses in KPC and
Pan02 allografts, by shifting the balance towards increased CD8+ T cells at the expense of reducing
CD11b+ Gr1+ myeloid infiltrations [96]. The combination of checkpoint inhibitors with therapeutic
vaccines to prime the microenvironment with effector T cells before repressing the inhibitory
signals [97] has also shown impressive results. For example, GVAX together with α-PD1 therapy
improves survival of tumor-bearing mice [98]. More sophisticated mechanisms have also provided
alternatives to increase immunotherapy efficiency, such as targeting the MLL1-H3K4me3 epigenetic
axis [59] or using antiangiogenic therapy to form intratumoral HEVs (high endothelial venules) to
facilitate CTL tumor infiltration [99].
Algenpantucel-L have also been published in a phase II study [108] in combination with gemcitabine
or fluorouracil, leading to ongoing promising phase III clinical trials (IMPRESS and PILLAR trials).
Clinical trials with peptide vaccines instead of whole-cell vaccines have also been organized. A phase
I/II trial with K-Ras peptides in combination with GM-CSF was performed, with partial positive
responses [109]. Further evidence for the potential of using a Ras vaccine in pancreatic cancer was
demonstrated by a subsequent trials [110–112], with encouraging results and impressive 10-year
follow-ups. Interestingly, the GI-4000 vaccine (which triggers an immune response against mutated
Ras) has also drawn clinician’s attention [113]. The telomerase peptide vaccine (GV1001) showed
successful results in a phase I/II trial [114], although phase III clinical trials with chemotherapy
regimens have not been able to show a survival advantage [115]. Although different results have
been achieved depending on combinations, other peptide-based vaccines have also led to pancreatic
cancer patients inducing an antibody response but without achieving impressive results; these include
the MUC1 vaccines [116], anti-VEGFR vaccines [117,118], survivin [119], anti-gastrin [120], anti-heat
shock protein vaccine [121], and anti-WT-1 [122]. Dendritic cell vaccines are also under investigation
in pancreatic cancer clinical trials, highlighting carcinoembryonic antigen (CEA)-loaded DCs [123],
mutated p53 and K-Ras loaded DCs [124], MUC1 [125], and WT-1 pulsed DCS [126]. Interestingly,
very recently publications have shown that therapy with DCs together with CIK (cytokine-induced
killer cells) and chemotherapy associates with increased immune responses, resulting in favorable
progression    free
Cancers 2018, 10, 6 survival and OS [127].                                                        7 of 16
      Figure 1.
      Figure   1. Immunotherapy
                  Immunotherapy strategies
                                     strategies that   have been
                                                 that have   been considered
                                                                    considered inin PDA
                                                                                    PDA therapy.
                                                                                          therapy. Targeting
                                                                                                     Targeting immune
                                                                                                                 immune
      checkpoints,  the  use of  vaccines,   CAR    T-cells or immune     modulating   molecules    have
      checkpoints, the use of vaccines, CAR T-cells or immune modulating molecules have been included     been  included
      in pancreatic
      in pancreatic cancer
                     cancer clinical
                             clinical trials.
                                       trials. CEA:
                                               CEA: carcinoembryonic
                                                      carcinoembryonic antigen;
                                                                            antigen; Her2:
                                                                                     Her2: human
                                                                                            human epidermal
                                                                                                      epidermal growth
                                                                                                                  growth
      factor  receptor  2; Muc-1:    mucin-1;    CD24:    Cluster  of  differentiation  24;  PSCA:    prostate
      factor receptor 2; Muc-1: mucin-1; CD24: Cluster of differentiation 24; PSCA: prostate stem cell antigen; stem  cell
      antigen;  NK  Rc: natural   killer receptor;  GM-CSF:     granulocyte-macrophage       colony-stimulating
      NK Rc: natural killer receptor; GM-CSF: granulocyte-macrophage colony-stimulating factor; VEGFR:             factor;
      VEGFR: endothelial
      vascular  vascular endothelial     growth
                            growth factor;        factor;
                                               HSP:  heat HSP:
                                                           shockheat  shock
                                                                  protein;   protein;
                                                                           WT-1:       WT-1:
                                                                                   Wilms  tumorWilms   tumorcytotoxic
                                                                                                  1; CTLA4:    1; CTLA4:T
      cytotoxic T lymphocyte–associated
      lymphocyte–associated      protein 4; protein    4; PD1: programmed
                                              PD1: programmed                 cell
                                                                     cell death    death 1;
                                                                                protein  protein
                                                                                            PDL1:1;programmed
                                                                                                     PDL1: programmed
                                                                                                                    death
      death ligand-1;
      ligand-1;  CD40:CD40:
                        clustercluster  of differentiation
                                 of differentiation         40; CCR2:
                                                      40; CCR2:         C-C motif
                                                                  C-C motif        chemokine
                                                                              chemokine         receptor
                                                                                           receptor  2. 2.
     Therapeutic cancer vaccines using cancer cell antigens mixed with agents that stimulate patient
immune responses have shown impressive results in several tumors and are also in the spotlight in
pancreatic cancer clinical trials (Figure 1). For instance, GVAX (a GM-CSF vaccine) presented
favorable results in a phase I study [104] and phase II studies in combination with
cyclophosphamide (to reduce Tregs) [105] or chemoradiation [106], uncovering an interesting
prognostic factor through the correlation between induction of mesothelin-specific T-cell responses
Cancers 2018, 10, 6                                                                                  8 of 16
7. Concluding Remarks
     Pancreatic cancer has a complex molecular landscape that handicaps both research advances and
therapy efficiency. The strong immunosuppressive microenvironment in PDA, which mainly consists
of Tregs, macrophages, and MDSCs, blocks T effector cells, leading to immune evasion and rapid
tumor progression. Indeed, checkpoint monotherapies have failed in clinical trials due to this strong
immunological barrier. The main actor driving this process to bypass immune surveillance is a tangled
combination of chemokines and receptor-ligand signaling pathways, both in the tumor and the stroma,
and understanding this is critical to target the key regulators and allow immunotherapy to be efficient.
In this direction, basic research and preclinical trials with immunocompetent mice have shed some
light on the exact molecular mechanisms involved but are also raising concerns about the complexity
of the issue and the feasibility of deriving a combination that is suitable for a high percentage of
patients. Indeed, of the roughly a hundred clinical trials with immunotherapy in pancreatic cancer
that have been designed, none have achieved impressive results, although clearly some of the patients
have had with objective responses and may benefit from the therapies boosting their immune systems.
In this regard, new ultrasequencing data from cancer international consortiums have allowed human
pancreatic tumors to be classified according to their molecular signature; this has unveiled a new
Cancers 2018, 10, 6                                                                                               9 of 16
immunogenic subtype that might be more sensitive to immunotherapy. Once again, it seems that we
are underestimating the heterogeneity of cancer disease, and that although economic issues cannot be
undervalued, the real solution will need to approach the issue through personalized medicine.
Acknowledgments: The authors would like to thank Veronica A. Raker for English proofreading and manuscript
editing, and SMART (Servier Medical Art, http://smart.servier.com/) for providing images for figure preparation.
This work was supported by grants from the Spanish Ministerio de Economía y Competitividad/ ISCIII-FEDER
(PI14/00125; PI17/00199), the Carmen Delgado/Miguel Pérez-Mateo AESPANC-ACANPAN 2016 and the
“Generalitat de Catalunya” (2014/SGR/143) to Pilar Navarro.
Author Contributions: Neus Martinez-Bosch, Judith Vinaixa and Pilar Navarro wrote and revised the manuscript.
Conflicts of Interest: The authors declare no conflict of interest.
References
1.    Hanahan, D.; Weinberg, R.A. Hallmarks of Cancer: The Next Generation. Cell 2011, 144, 646–674. [CrossRef]
2.    Ehrlich, P. Über den jetzigen stand der Chemotherapie. Eur. J. Inorg. Chem. 1909, 42, 17–47. (In German)
      [CrossRef]
3.    Burnet, F.M. The concept of immunological surveillance. Prog. Exp. Tumor. Res. 1970, 13, 1–27. [PubMed]
4.    Garrido, F.; Ruiz-Cabello, F.; Cabrera, T.; Pérez-Villar, J.J.; López-Botet, M.; Duggan-Keen, M.; Stern, P.L.
      Implications for immunosurveillance of altered HLA class I phenotypes in human tumours. Immunol. Today
      1997, 18, 89–95. [CrossRef]
5.    Hicklin, D.J.; Marincola, F.M.; Ferrone, S. HLA class I antigen downregulation in human cancers: T-cell
      immunotherapy revives an old story. Mol. Med. Today 1999, 5, 178–186. [CrossRef]
6.    Johnsen, A.K.; Templeton, D.J.; Sy, M.; Harding, C.V. Deficiency of transporter for antigen presentation (TAP)
      in tumor cells allows evasion of immune surveillance and increases tumorigenesis. J. Immunol. 1999, 163,
      4224–4231. [PubMed]
7.    Restifo, N.P.; Esquivel, F.; Kawakami, Y.; Yewdell, J.W.; Mulé, J.J.; Rosenberg, S.A.; Bennink, J.R. Identification
      of human cancers deficient in antigen processing. J. Exp. Med. 1993, 177, 265–272. [CrossRef] [PubMed]
8.    Rotem-Yehudar, R.; Groettrup, M.; Soza, A.; Kloetzel, P.M.; Ehrlich, R. LMP-associated proteolytic activities
      and TAP-dependent peptide transport for class 1 MHC molecules are suppressed in cell lines transformed
      by the highly oncogenic adenovirus 12. J. Exp. Med. 1996, 183, 499–514. [CrossRef] [PubMed]
9.    Seliger, B.; Maeurer, M.J.; Ferrone, S. TAP off—Tumors on. Immunol. Today 1997, 18, 292–299. [PubMed]
10.   Dunn, G.P.; Bruce, A.T.; Ikeda, H.; Old, L.J.; Schreiber, R.D. Cancer immunoediting: From immunosurveillance
      to tumor escape. Nat. Immunol. 2002, 3, 991–998. [CrossRef] [PubMed]
11.   Pasche, B. Role of transforming growth factor β in cancer. J. Cell. Physiol. 2001, 186, 153–168. [CrossRef]
12.   Lind, M.H.; Rozell, B.; Wallin, R.P.A.; van Hogerlinden, M.; Ljunggren, H.-G.; Toftgård, R.; Sur, I. Tumor necrosis
      factor receptor 1-mediated signaling is required for skin cancer development induced by NF-κB inhibition.
      Proc. Natl. Acad. Sci. USA 2004, 101, 4972–4977. [CrossRef] [PubMed]
13.   Lin, E.Y.; Gouon-Evans, V.; Nguyen, A.V.; Pollard, J.W. The macrophage growth factor CSF-1 in mammary
      gland development and tumor progression. J. Mammary Gland Biol. Neoplasia 2002, 7, 147–162. [CrossRef]
      [PubMed]
14.   Fisher, D.T.; Appenheimer, M.M.; Evans, S.S. The two faces of IL-6 in the tumor microenvironment.
      Semin. Immunol. 2014, 26, 38–47. [CrossRef] [PubMed]
15.   Matsuda, M.; Salazar, F.; Petersson, M.; Masucci, G.; Hansson, J.; Pisa, P.; Zhang, Q.-J.; Masucci, M.G.;
      Kiessling, R. Interleukin 10 pretreatment protects target cells from tumor- and allo-specific cytotoxic T cells
      and downregulates HLA class I expression. J. Exp. Med. 1994, 180, 2371–2376. [CrossRef] [PubMed]
16.   Sotomayor, E.M.; Fu, Y.X.; Lopez-Cepero, M.; Herbert, L.; Jimenez, J.J.; Albarracin, C.; Lopez, D.M.
      Role of tumor-derived cytokines on the immune system of mice bearing a mammary adenocarcinoma.
      II. Down-regulation of macrophage-mediated cytotoxicity by tumor-derived granulocyte-macrophage
      colony-stimulating factor. J. Immunol. 1991, 147, 2816–2823. [PubMed]
17.   Gabrilovich, D. Mechanisms and functional significance of tumour-induced dendritic-cell defects.
      Nat. Rev. Immunol. 2004, 4, 941–952. [CrossRef] [PubMed]
Cancers 2018, 10, 6                                                                                               10 of 16
18.   Gabrilovich, D.I.; Chen, H.L.; Girgis, K.R.; Cunningham, H.T.; Meny, G.M.; Nadaf, S.; Kavanaugh, D.;
      Carbone, D.P. Production of vascular endothelial growth factor by human tumors inhibits the functional
      maturation of dendritic cells. Nat. Med. 1996, 2, 1096–1103. [CrossRef] [PubMed]
19.   Driessens, G.; Kline, J.; Gajewski, T.F. Costimulatory and coinhibitory receptors in anti-tumor immunity.
      Immunol. Rev. 2009, 229, 126–144. [CrossRef] [PubMed]
20.   Topalian, S.L.; Drake, C.G.; Pardoll, D.M. Targeting the PD-1/B7-H1(PD-L1) pathway to activate anti-tumor
      immunity. Curr. Opin. Immunol. 2012, 24, 207–212. [CrossRef] [PubMed]
21.   French, L.E.; Tschopp, J. Defective death receptor signaling as a cause of tumor immune escape.
      Semin. Cancer Biol. 2002, 12, 51–55. [CrossRef] [PubMed]
22.   Berraondo, P.; Minute, L.; Ajona, D.; Corrales, L.; Melero, I.; Pio, R. Innate immune mediators in cancer:
      Between defense and resistance. Immunol. Rev. 2016, 274, 290–306. [CrossRef] [PubMed]
23.   Jones, S.; Zhang, X.; Parsons, D.W.; Lin, J.C.; Leary, R.J.; Angenendt, P.; Mankoo, P.; Carter, H.; Kamiyama, H.;
      Jimeno, A.; et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses.
      Science 2008, 321, 1801–1806. [CrossRef] [PubMed]
24.   Biankin, A.V.; Waddell, N.; Kassahn, K.S.; Gingras, M.-C.; Muthuswamy, L.B.; Johns, A.L.; Miller, D.K.;
      Wilson, P.J.; Patch, A.-M.; Wu, J.; et al. Pancreatic cancer genomes reveal aberrations in axon guidance
      pathway genes. Nature 2012, 491, 399–405. [CrossRef] [PubMed]
25.   Waddell, N.; Pajic, M.; Patch, A.-M.; Chang, D.K.; Kassahn, K.S.; Bailey, P.; Johns, A.L.; Miller, D.; Nones, K.;
      Quek, K.; et al. Whole genomes redefine the mutational landscape of pancreatic cancer. Nature 2015, 518,
      495–501. [CrossRef] [PubMed]
26.   Witkiewicz, A.K.; McMillan, E.A.; Balaji, U.; Baek, G.; Lin, W.-C.; Mansour, J.; Mollaee, M.; Wagner, K.-U.;
      Koduru, P.; Yopp, A.; et al. Whole-exome sequencing of pancreatic cancer defines genetic diversity and
      therapeutic targets. Nat. Commun. 2015, 6, 6744. [CrossRef] [PubMed]
27.   Bailey, P.; Chang, D.K.; Nones, K.; Johns, A.L.; Patch, A.-M.; Gingras, M.-C.; Miller, D.K.; Christ, A.N.;
      Bruxner, T.J.C.; Quinn, M.C.; et al. Genomic analyses identify molecular subtypes of pancreatic cancer.
      Nature 2016, 531, 47–52. [CrossRef] [PubMed]
28.   Raphael, B.J.; Hruban, R.H.; Aguirre, A.J.; Moffitt, R.A.; Yeh, J.J.; Stewart, C.; Robertson, A.G.; Cherniack, A.D.;
      Gupta, M.; Getz, G.; et al. Integrated Genomic Characterization of Pancreatic Ductal Adenocarcinoma.
      Cancer Cell 2017, 32, 185–203.e13. [CrossRef] [PubMed]
29.   Liyanage, U.K.; Moore, T.T.; Joo, H.-G.; Tanaka, Y.; Herrmann, V.; Doherty, G.; Drebin, J.A.; Strasberg, S.M.;
      Eberlein, T.J.; Goedegebuure, P.S.; et al. Prevalence of regulatory T cells is increased in peripheral blood
      and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J. Immunol. 2002, 169,
      2756–2761. [CrossRef] [PubMed]
30.   Zhao, F.; Obermann, S.; von Wasielewski, R.; Haile, L.; Manns, M.P.; Korangy, F.; Greten, T.F. Increase in
      frequency of myeloid-derived suppressor cells in mice with spontaneous pancreatic carcinoma. Immunology
      2009, 128, 141–149. [CrossRef] [PubMed]
31.   Amedei, A.; Niccolai, E.; Benagiano, M.; Della, B.C.; Cianchi, F.; Bechi, P.; Taddei, A.; Bencini, L.; Farsi, M.;
      Cappello, P.; et al. Ex vivo analysis of pancreatic cancer-infiltrating T lymphocytes reveals that ENO-specific
      Tregs accumulate in tumor tissue and inhibit Th1/Th17 effector cell functions. Cancer Immunol. Immunother.
      2013, 62, 1249–1260. [CrossRef] [PubMed]
32.   Ino, Y.; Yamazaki-Itoh, R.; Shimada, K.; Iwasaki, M.; Kosuge, T.; Kanai, Y.; Hiraoka, N. Immune cell
      infiltration as an indicator of the immune microenvironment of pancreatic cancer. Br. J. Cancer 2013, 108,
      914–923. [CrossRef] [PubMed]
33.   Clark, C.E.; Hingorani, S.R.; Mick, R.; Combs, C.; Tuveson, D.A.; Vonderheide, R.H. Dynamics of the immune
      reaction to pancreatic cancer from inception to invasion. Cancer Res. 2007. [CrossRef] [PubMed]
34.   Tan, M.C.B.; Goedegebuure, P.S.; Belt, B.A.; Flaherty, B.; Sankpal, N.; Gillanders, W.E.; Eberlein, T.J.H.;
      Chyi-Song, L.; David, C. Disruption of CCR5-dependent homing of regulatory T cells inhibits tumor growth
      in a murine model of pancreatic cancer. J. Immunol. 2009, 182, 1746–1755. [CrossRef] [PubMed]
35.   Mitchem, J.B.; Brennan, D.J.; Knolhoff, B.L.; Belt, B.A.; Zhu, Y.; Sanford, D.E.; Belaygorod, L.; Carpenter, D.;
      Collins, L.; Piwnica-Worms, D.; et al. Targeting tumor-infiltrating macrophages decreases tumor-initiating
      cells, relieves immunosuppression, and improves chemotherapeutic responses. Cancer Res. 2013, 73,
      1128–1141. [CrossRef] [PubMed]
Cancers 2018, 10, 6                                                                                             11 of 16
36.   Chen, L.; Flies, D.B. Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat. Rev. Immunol.
      2013, 13, 227–242. [CrossRef] [PubMed]
37.   Saqib, R.; Noman, A.; Julio, C.C.; Mokenge, P.M.; Domenico, C.; Gregory, M.S.; Helm, J.; Kim, R.D. Expression
      of programmed death ligand 1 (PD-L1) in malignant and nonmalignant pancreatic tissue. J. Clin. Oncol.
      2013, 31, 215.
38.   Nomi, T.; Sho, M.; Akahori, T.; Hamada, K.; Kubo, A.; Kanehiro, H.; Nakamura, S.; Enomoto, K.;
      Yagita, H.; Azuma, M.; et al. Clinical significance and therapeutic potential of the programmed death-1
      ligand/programmed death-1 pathway in human pancreatic cancer. Clin. Cancer Res. 2007, 13, 2151–2157.
      [CrossRef] [PubMed]
39.   Geng, L.; Huang, D.; Liu, J.; Qian, Y.; Deng, J.; Li, D.; Hu, Z.; Zhang, J.; Jiang, G.; Zheng, S.; et al. B7-H1
      up-regulated expression in human pancreatic carcinoma tissue associates with tumor progression. J. Cancer
      Res. Clin. Oncol. 2008, 134, 1021–1027. [CrossRef] [PubMed]
40.   Song, X.; Liu, J.; Lu, Y.; Jin, H.; Huang, D. Overexpression of B7-H1 correlates with malignant cell proliferation
      in pancreatic cancer. Oncol. Rep. 2014, 31, 1191–1198. [CrossRef] [PubMed]
41.   Li, D.; Zhao, H.; Fei, M.; Wu, Y.; Wang, L.; Zhu, X.; Li, D. Expression of the co-signaling molecules
      CD40-CD40L and their growth inhibitory effect on pancreatic cancer in vitro. Oncol. Rep. 2012, 28, 262–268.
      [CrossRef] [PubMed]
42.   Lawrence, M.S.; Stojanov, P.; Polak, P.; Kryukov, G.V.; Cibulskis, K.; Sivachenko, A.; Carter, S.L.;
      Stewart, C.; Mermel, C.H.; Roberts, S.A.; et al. Mutational heterogeneity in cancer and the search for
      new cancer-associated genes. Nature 2013, 499, 214–218. [CrossRef] [PubMed]
43.   Alexandrov, L.B.; Nik-Zainal, S.; Wedge, D.C.; Aparicio, S.A.J.R.; Behjati, S.; Biankin, A.V.; Bignell, G.R.;
      Bolli, N.; Borg, A.; Børresen-Dale, A.-L.; et al. Signatures of mutational processes in human cancer. Nature
      2013, 500, 415–421. [CrossRef] [PubMed]
44.   Beatty, G.L.; Gladney, W.L. Immune escape mechanisms as a guide for cancer immunotherapy.
      Clin. Cancer Res. 2015. [CrossRef] [PubMed]
45.   Balachandran, V.P.; Łuksza, M.; Zhao, J.N.; Makarov, V.; Moral, J.A.; Remark, R.; Herbst, B.; Askan, G.;
      Bhanot, U.; Senbabaoglu, Y.; et al. Identification of unique neoantigen qualities in long-term survivors of
      pancreatic cancer. Nature 2017. [CrossRef] [PubMed]
46.   Pardoll, D.M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 2012, 12,
      252–264. [CrossRef] [PubMed]
47.   Melero, I.; Berman, D.M.; Aznar, M.A.; Korman, A.J.; Gracia, J.L.P.; Haanen, J. Evolving synergistic
      combinations of targeted immunotherapies to combat cancer. Nat. Rev. Cancer. 2015, 15, 457–472. [CrossRef]
      [PubMed]
48.   Odorizzi, P.M.; Wherry, E.J. Inhibitory receptors on lymphocytes: Insights from infections. J. Immunol. 2012,
      188, 2957–2965. [CrossRef] [PubMed]
49.   Peggs, K.S.; Quezada, S.A.; Chambers, C.A.; Korman, A.J.; Allison, J.P. Blockade of CTLA-4 on both
      effector and regulatory T cell compartments contributes to the antitumor activity of anti-CTLA-4 antibodies.
      J. Exp. Med. 2009, 206, 1717–1725. [CrossRef] [PubMed]
50.   Simpson, T.R.; Li, F.; Montalvo-Ortiz, W.; Sepulveda, M.A.; Bergerhoff, K.; Arce, F.; Roddie, C.; Henry, J.Y.;
      Yagita, H.; Wolchok, J.D.; et al. Fc-dependent depletion of tumor-infiltrating regulatory T cells co-defines the
      efficacy of anti-CTLA-4 therapy against melanoma. J. Exp. Med. 2013, 210, 1695–1710. [CrossRef] [PubMed]
51.   Selby, M.J.; Engelhardt, J.J.; Quigley, M.; Henning, K.A.; Chen, T.; Srinivasan, M.; Korman, A.J. Anti-CTLA-4
      Antibodies of IgG2a Isotype Enhance Antitumor Activity through Reduction of Intratumoral Regulatory T
      Cells. Cancer Immunol. Res. 2013, 1, 32–42. [CrossRef] [PubMed]
52.   Bengsch, F.; Knoblock, D.M.; Liu, A.; McAllister, F.; Beatty, G.L. CTLA-4/CD80 pathway regulates T cell
      infiltration into pancreatic cancer. Cancer Immunol. Immunother. 2017, 66, 1609–1617. [CrossRef] [PubMed]
53.   Brahmer, J.R.; Tykodi, S.S.; Chow, L.Q.M.; Hwu, W.-J.; Topalian, S.L.; Hwu, P.; Drake, C.G.; Camacho, L.H.;
      Kauh, J.; Odunsi, K.; et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer.
      N. Engl. J. Med. 2012, 366, 2455–2465. [CrossRef] [PubMed]
54.   Royal, R.E.; Levy, C.; Turner, K.; Mathur, A.; Hughes, M.; Kammula, U.S.; Sherry, R.M.; Topalian, S.L.;
      Yang, J.C.; Lowy, I.; et al. Phase 2 trial of single agent Ipilimumab (anti-CTLA-4) for locally advanced or
      metastatic pancreatic adenocarcinoma. J. Immunother. 2010, 33, 828–833. [CrossRef] [PubMed]
Cancers 2018, 10, 6                                                                                               12 of 16
55.   Le, D.T.; Lutz, E.; Uram, J.N.; Sugar, E.A.; Onners, B.; Solt, S.; Zheng, L.; Diaz, L.A., Jr.; Donehower, R.C.;
      Jaffee, E.M.; et al. Evaluation of ipilimumab in combination with allogeneic pancreatic tumor cells transfected
      with a GM-CSF gene in previously treated pancreatic cancer. J. Immunother. 2013, 36, 382–389. [CrossRef]
      [PubMed]
56.   Winograd, R.; Byrne, K.T.; Evans, R.A.; Odorizzi, P.M.; Meyer, A.R.L.; Bajor, D.L.; Clendenin, C.; Stanger, B.Z.;
      Furth, E.E.; Wherry, E.J.; et al. Induction of T-cell Immunity Overcomes Complete Resistance to PD-1 and
      CTLA-4 Blockade and Improves Survival in Pancreatic Carcinoma. Cancer Immunol. Res. 2015. [CrossRef]
      [PubMed]
57.   Sandin, L.C.; Eriksson, F.; Ellmark, P.; Loskog, A.S.; Tötterman, T.H.; Mangsbo, S.M. Local CTLA4
      blockade effectively restrains experimental pancreatic adenocarcinoma growth in vivo. Oncoimmunology
      2014, 3, e27614. [CrossRef] [PubMed]
58.   Corbett, T.H.; Roberts, B.J.; Leopold, W.R.; Peckham, J.C.; Wilkoff, L.J.; Griswold, D.P.; Schabel, F.M. Induction
      and chemotherapeutic response of two transplantable ductal adenocarcinomas of the pancreas in C57BL/6
      mice. Cancer Res. 1984, 44, 717–726. [PubMed]
59.   Lu, C.; Paschall, A.V.; Shi, H.; Savage, N.; Waller, J.L.; Sabbatini, M.E.; Oberlies, N.H.; Pearce, C.; Liu, K.
      The MLL1-H3K4me3 Axis-Mediated PD-L1 Expression and Pancreatic Cancer Immune Evasion. J. Natl.
      Cancer Inst. 2017, 109, djw283. [CrossRef] [PubMed]
60.   Okudaira, K.; Hokari, R.; Tsuzuki, Y.; Okada, Y.; Komoto, S.; Watanabe, C.; Kurihara, C.; Kawaguchi, A.;
      Nagao, S.; Azuma, M.; et al. Blockade of B7-H1 or B7-DC induces an anti-tumor effect in a mouse pancreatic
      cancer model. Int. J. Oncol. 2009, 35, 741–749. [PubMed]
61.   Beatty, G.L.; Torigian, D.A.; Chiorean, E.G.; Saboury, B.; Brothers, A.; Alavi, A.; Troxel, A.B.; Sun, W.;
      Teitelbaum, U.R.; Vonderheide, R.H.; et al. A Phase I Study of an Agonist CD40 Monoclonal Antibody
      (CP-870,893) in Combination with Gemcitabine in Patients with Advanced Pancreatic Ductal
      Adenocarcinoma. Clin. Cancer Res. 2013, 19, 6286–6295. [CrossRef] [PubMed]
62.   Barondes, S.H.; Castronovo, V.; Cooper, D.N.; Cummings, R.D.; Drickamer, K.; Feizi, T.; Gitt, M.A.;
      Hirabayashi, J.; Hughes, C.; Kasai, K.; et al. Galectins: A family of animal beta-galactoside-binding lectins.
      Cell 1994, 76, 597–598. [CrossRef]
63.   Leffler, H.; Carlsson, S.; Hedlund, M.; Qian, Y.; Poirier, F. Introduction to galectins. Glycoconj. J. 2002, 19,
      433–440. [CrossRef] [PubMed]
64.   Cerliani, J.P.; Blidner, A.G.; Toscano, M.A.; Croci, D.O.; Rabinovich, G.A. Translating the “Sugar Code” into
      Immune and Vascular Signaling Programs. Trends Biochem. Sci. 2017, 42, 255–273. [CrossRef] [PubMed]
65.   Cooper, D.N.W. Galectinomics: Finding themes in complexity. Biochim. Biophys. Acta 2002, 1572, 209–231.
      [CrossRef]
66.   Liu, F.T.; Rabinovich, G.A. Galectins as modulators of tumour progression. Nat. Rev. Cancer 2005, 5, 29–41.
      [CrossRef] [PubMed]
67.   Hughes, R.C. Secretion of the galectin family of mammalian carbohydrate-binding proteins. Biochim. Biophys. Acta
      1999, 1473, 172–185. [CrossRef]
68.   Demydenko, D.; Berest, I. Expression of galectin-1 in malignant tumors. Exp. Oncol. 2009, 31, 74–79. [PubMed]
69.   Croci, D.O.; Salatino, M.; Rubinstein, N.; Cerliani, J.P.; Cavallin, L.E.; Leung, H.J.; Ouyang, J.; Ilarregui, J.M.;
      Toscano, M.A.; Domaica, C.I.; et al. Disrupting galectin-1 interactions with n-glycans suppresses
      hypoxia-driven angiogenesis and tumorigenesis in kaposi’s sarcoma. J. Exp. Med. 2012, 209, 1985–2000.
      [CrossRef] [PubMed]
70.   Croci, D.O.; Cerliani, J.P.; Dalotto-Moreno, T.; Méndez-Huergo, S.P.; Mascanfroni, I.D.; Dergan-Dylon, S.;
      Toscano, M.A.; Caramelo, J.J.; García-Vallejo, J.J.; Ouyang, J.; et al. Glycosylation-dependent lectin-receptor
      interactions preserve angiogenesis in anti-VEGF refractory tumors. Cell 2014, 156, 744–758. [CrossRef]
      [PubMed]
71.   Espelt, M.V.; Croci, D.O.; Bacigalupo, M.L.; Carabias, P.; Manzi, M.; Elola, M.T.; Munoz, M.C.; Dominici, F.P.;
      Wolfenstein-Todel, C.; Rabinovich, G.A.; et al. Novel roles of galectin-1 in hepatocellular carcinoma cell
      adhesion, polarization, and in vivo tumor growth. Hepatology 2011, 53, 2097–2106. [CrossRef] [PubMed]
72.   Thijssen, V.L.; Barkan, B.; Shoji, H.; Aries, I.M.; Mathieu, V.; Deltour, L.; Hackeng, T.M.; Kiss, R.; Kloog, Y.;
      Poirier, F.; et al. Tumor cells secrete galectin-1 to enhance endothelial cell activity. Cancer Res. 2010, 70,
      6216–6224. [CrossRef] [PubMed]
Cancers 2018, 10, 6                                                                                             13 of 16
73.   Bacigalupo, M.L.; Manzi, M.; Espelt, M.V.; Gentilini, L.D.; Compagno, D.; Laderach, D.J.; Wolfenstein-Todel, C.;
      Rabinovich, G.A.; Troncoso, M.F. Galectin-1 Triggers Epithelial-Mesenchymal Transition in Human
      Hepatocellular Carcinoma Cells. J. Cell. Physiol. 2015, 230, 1298–1309. [CrossRef] [PubMed]
74.   Rabinovich, G.; Ramhorst, R.; Rubinstein, N.; Corigliano, A.; Daroqui, M.; Kier-Joffe, E.; Fainboim, L.
      Induction of allogenic t-cell hyporesponsiveness by galectin-1-mediated apoptotic and non-apoptotic
      mechanisms. Cell Death Differ. 2002, 9, 661–670. [CrossRef] [PubMed]
75.   He, J.; Baum, L.G. Presentation of galectin-1 by extracellular matrix triggers T cell death. J. Biol. Chem. 2004,
      279, 4705–4712. [CrossRef] [PubMed]
76.   Méndez-Huergo, S.P.; Blidner, A.G.; Rabinovich, G.A. Galectins: Emerging regulatory checkpoints linking
      tumor immunity and angiogenesis. Curr. Opin. Immunol. 2017, 45, 8–15. [CrossRef] [PubMed]
77.   Rabinovich, G.A.; Conejo-García, J.R. Shaping the Immune Landscape in Cancer by Galectin-Driven
      Regulatory Pathways. J. Mol. Biol. 2016, 428, 3266–3281. [CrossRef] [PubMed]
78.   Tang, D.; Yuan, Z.; Xue, X.; Lu, Z.; Zhang, Y.; Wang, H.; Chen, M.; An, Y.; Wei, J.; Zhu, Y.; et al.
      High expression of Galectin-1 in pancreatic stellate cells plays a role in the development and maintenance of
      an immunosuppressive microenvironment in pancreatic cancer. Int. J. Cancer 2012, 130, 2337–2348. [CrossRef]
      [PubMed]
79.   Martínez-Bosch, N.; Fernández-Barrena, M.G.; Moreno, M.; Ortiz-Zapater, E.; Munné-Collado, J.; Iglesias, M.;
      André, S.; Gabius, H.-J.; Hwang, R.F.; Poirier, F.; et al. Galectin-1 Drives Pancreatic Carcinogenesis through
      Stroma Remodeling and Hedgehog Signaling Activation. Cancer Res. 2014, 74, 3512–3524. [CrossRef]
      [PubMed]
80.   Martínez-Bosch, N.; Navarro, P. Targeting Galectin-1 in pancreatic cancer: Immune surveillance on guard.
      Oncoimmunology 2014, 3, e952201. [CrossRef] [PubMed]
81.   Martínez-Bosch, N.; Navarro, P. Galectin-1 as a therapeutic target in pancreatic cancer: The tumor stroma in
      the spotlight. Cancer Cell Microenviron. 2014, 1, 1–6. [CrossRef]
82.   Sano, H.; Hsu, D.K.; Yu, L.; Apgar, J.R.; Kuwabara, I.; Yamanaka, T.; Hirashima, M.; Liu, F.-T.; et al. Human
      galectin-3 is a novel chemoattractant for monocytes and macrophages. J. Immunol. 2000, 165, 2156–2164.
      [CrossRef] [PubMed]
83.   Demetriou, M.; Granovsky, M.; Quaggin, S.; Dennis, J.W. Negative regulation of T-cell activation and
      autoimmunity by Mgat5 N-glycosylation. Nature 2001, 409, 733–739. [CrossRef] [PubMed]
84.   Acosta-Rodríguez, E.V.; Montes, C.L.; Motrán, C.C.; Zuniga, E.I.; Liu, F.-T.; Rabinovich, G.A.; Gruppi, A.; et al.
      Galectin-3 mediates IL-4-induced survival and differentiation of B cells: Functional cross-talk and
      implications during Trypanosoma cruzi infection. J. Immunol. 2004, 172, 493–502. [CrossRef] [PubMed]
85.   Demotte, N.; Wieërs, G.; Van Der Smissen, P.; Moser, M.; Schmidt, C.; Thielemans, K.; Squifflet, J.-L.;
      Weynand, B.; Carrasco, J.; Lurquin, C.; et al. A Galectin-3 Ligand Corrects the Impaired Function of Human
      CD4 and CD8 Tumor-Infiltrating Lymphocytes and Favors Tumor Rejection in Mice. Cancer Res. 2010, 70,
      7476–7488. [CrossRef] [PubMed]
86.   Kouo, T.; Huang, L.; Pucsek, A.B.; Cao, M.; Solt, S.; Armstrong, T.; Jaffee, E. Galectin-3 Shapes Antitumor
      Immune Responses by Suppressing CD8+ T Cells via LAG-3 and Inhibiting Expansion of Plasmacytoid
      Dendritic Cells. Cancer Immunol. Res. 2015, 3, 412–423. [CrossRef] [PubMed]
87.   Zhu, C.; Anderson, A.C.; Schubart, A.; Xiong, H.; Imitola, J.; Khoury, S.J.; Zheng, X.X.; Strom, T.B.;
      Kuchroo, V.K. The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity. Nat. Immunol.
      2005, 6, 1245–1252. [CrossRef] [PubMed]
88.   Topalian, S.L.; Drake, C.G.; Pardoll, D.M. Immune checkpoint blockade: A common denominator approach
      to cancer therapy. Cancer Cell 2015, 27, 450–461. [CrossRef] [PubMed]
89.   Daley, D.; Mani, V.R.; Mohan, N.; Akkad, N.; Ochi, A.; Heindel, D.W.; Lee, K.B.; Zambirinis, C.P.;
      Pandian, G.S.B.; Savadkar, S.; et al. Dectin 1 activation on macrophages by galectin 9 promotes pancreatic
      carcinoma and peritumoral immune tolerance. Nat. Med. 2017. [CrossRef] [PubMed]
90.   Feig, C.; Gopinathan, A.; Neesse, A.; Chan, D.S.; Cook, N.; Tuveson, D.A. The pancreas cancer
      microenvironment. Clin. Cancer Res. 2013, 18, 4266–4276. [CrossRef] [PubMed]
91.   Luheshi, N.M.; Coates-Ulrichsen, J.; Harper, J.; Mullins, S.; Sulikowski, M.G.; Martin, P.; Brown, L.; Lewis, A.;
      Davies, G.; Morrow, M.; et al. Transformation of the tumour microenvironment by a CD40 agonist antibody
      correlates with improved responses to PD-L1 blockade in a mouse orthotopic pancreatic tumour model.
      Oncotarget 2016, 7, 18508–18520. [CrossRef] [PubMed]
Cancers 2018, 10, 6                                                                                                  14 of 16
92.    Steele, C.W.; Karim, S.A.; Leach, J.D.; Bailey, P.; Upstill-Goddard, R.; Rishi, L.; Foth, M.; Bryson, S.; McDaid, K.;
       Wilson, Z.; et al. CXCR2 Inhibition Profoundly Suppresses Metastases and Augments Immunotherapy in
       Pancreatic Ductal Adenocarcinoma. Cancer Cell 2016, 29, 832–845. [CrossRef] [PubMed]
93.    Mace, T.A.; Shakya, R.; Pitarresi, J.R.; Swanson, B.; McQuinn, C.W.; Loftus, S.; Nordquist, E.; Cruz-Monserrate, Z.;
       Yu, L.; Young, G.; et al. IL-6 and PD-L1 antibody blockade combination therapy reduces tumour progression
       in murine models of pancreatic cancer. Gut 2016. [CrossRef] [PubMed]
94.    Lu, C.; Talukder, A.; Savage, N.M.; Singh, N.; Liu, K. JAK-STAT-mediated chronic inflammation impairs
       cytotoxic T lymphocyte activation to decrease anti-PD-1 immunotherapy efficacy in pancreatic cancer.
       OncoImmunology 2017, e1291106. [CrossRef] [PubMed]
95.    Zheng, W.; Skowron, K.B.; Namm, J.P.; Burnette, B.; Fernandez, C.; Arina, A.; Liang, H.; Spiotto, M.T.;
       Posner, M.C.; Fu, Y.-X.; et al. Combination of radiotherapy and vaccination overcomes checkpoint blockade
       resistance. Oncotarget 2016, 7, 43039–43051. [CrossRef] [PubMed]
96.    Azad, A.; Lim, S.Y.; D’Costa, Z.; Jones, K.; Diana, A.; Sansom, O.J.; Kruger, P.; Liu, S.; McKenna, W.G.;
       Dushek, O.; et al. PD-L1 blockade enhances response of pancreatic ductal adenocarcinoma to radiotherapy.
       EMBO Mol. Med. 2017, 9, 167–180. [CrossRef] [PubMed]
97.    Mahoney, K.M.; Rennert, P.D.; Freeman, G.J. Combination cancer immunotherapy and new immunomodulatory
       targets. Nat. Rev. Drug. Discov. 2015, 14, 561–584. [CrossRef] [PubMed]
98.    Soares, K.C.; Rucki, A.A.; Wu, A.A.; Olino, K.; Xiao, Q.; Chai, Y.; Wamwea, A.; Bigelow, E.; Lutz, E.; Liu, L.; et al.
       PD-1/PD-L1 blockade together with vaccine therapy facilitates effector T-cell infiltration into pancreatic
       tumors. J. Immunother. 2015, 38, 1–11. [CrossRef] [PubMed]
99.    Allen, E.; Jabouille, A.; Rivera, L.B.; Lodewijckx, I.; Missiaen, R.; Steri, V.; Feyen, K.; Tawney, J.; Hanahan, D.;
       Michael, I.P.; et al. Combined antiangiogenic and anti–PD-L1 therapy stimulates tumor immunity through
       HEV formation. Sci. Transl. Med. 2017, 9, eaak9679. [CrossRef] [PubMed]
100.   Aglietta, M.; Barone, C.; Sawyer, M.; Moore, M.; Miller, W., Jr.; Bagalà, C.; Colombi, F.; Cagnazzo, C.;
       Gioeni, L.; Wang, E.; et al. A phase I dose escalation trial of tremelimumab (CP-675,206) in combination
       with gemcitabine in chemotherapy-naive patients with metastatic pancreatic cancer. Ann. Oncol. 2014, 25,
       1750–1755. [CrossRef] [PubMed]
101.   Weiss, G.J.; Waypa, J.; Blaydorn, L.; Coats, J.; McGahey, K.; Sangal, A.; Niu, J.; Lynch, C.A.; Farley, J.H.;
       Khemka, V.; et al. A phase Ib study of pembrolizumab plus chemotherapy in patients with advanced cancer
       (PembroPlus). Br. J. Cancer 2017, 117, 33–40. [CrossRef] [PubMed]
102.   Weiss, G.J.; Blaydorn, L.; Beck, J.; Bornemann-Kolatzki, K.; Urnovitz, H.; Schütz, E.; Khemka, V. Phase
       Ib/II study of gemcitabine, nab-paclitaxel, and pembrolizumab in metastatic pancreatic adenocarcinoma.
       Investig. New Drugs 2017. [CrossRef] [PubMed]
103.   Li, X.; Hu, W.; Zheng, X.; Zhang, C.; Du, P.; Zheng, Z.; Yang, Y.; Wu, J.; Ji, M.; Jiang, J.; et al. Emerging
       immune checkpoints for cancer therapy. Acta Oncol. 2015, 54, 1706–1713. [CrossRef] [PubMed]
104.   Jaffee, E.M.; Hruban, R.H.; Biedrzycki, B.; Laheru, D.; Schepers, K.; Sauter, P.R.; Goemann, M.; Coleman, J.;
       Grochow, L.; Donehower, R.C.; et al. Novel allogeneic granulocyte-macrophage colony-stimulating
       factor-secreting tumor vaccine for pancreatic cancer: A phase I trial of safety and immune activation.
       J. Clin. Oncol. 2001, 19, 145–156. [CrossRef] [PubMed]
105.   Laheru, D.; Lutz, E.; Burke, J.; Biedrzycki, B.; Solt, S.; Onners, B.; Tartakovsky, I.; Nemunaitis, J.;
       Le, D.; Sugar, E.; et al. Allogeneic granulocyte macrophage colony-stimulating factor-secreting tumor
       immunotherapy alone or in sequence with cyclophosphamide for metastatic pancreatic cancer: A pilot study
       of safety, feasibility, and immune activation. Clin. Cancer Res. 2008, 14, 1455–1463. [CrossRef] [PubMed]
106.   Lutz, E.; Yeo, C.J.; Lillemoe, K.D.; Biedrzycki, B.; Kobrin, B.; Herman, J.; Sugar, E.; Piantadosi, S.;
       Cameron, J.L.; Solt, S.; et al. A lethally irradiated allogeneic granulocyte-macrophage colony stimulating
       factor-secreting tumor vaccine for pancreatic adenocarcinoma: A Phase II trial of safety, efficacy, and immune
       activation. Ann. Surg. 2011, 253, 328–335. [CrossRef] [PubMed]
107.   Le, D.T.; Wang-Gillam, A.; Picozzi, V.; Greten, T.F.; Crocenzi, T.; Springett, G.; Morse, M.; Zeh, H.; Cohen, D.;
       Fine, R.L.; et al. Safety and survival with GVAX pancreas prime and Listeria Monocytogenes-expressing
       mesothelin (CRS-207) boost vaccines for metastatic pancreatic cancer. J. Clin. Oncol. 2015, 33, 1325–1333.
       [CrossRef] [PubMed]
Cancers 2018, 10, 6                                                                                                 15 of 16
108. Hardacre, J.M.; Mulcahy, M.; Small, W.; Talamonti, M.; Obel, J.; Krishnamurthi, S.; Rocha-Lima, C.S.;
     Safran, H.; Lenz, H.-J.; Chiorean, E.G.; et al. Addition of Algenpantucel-L Immunotherapy to Standard
     Adjuvant Therapy for Pancreatic Cancer: A Phase 2 Study. J. Gastrointest. Surg. 2013, 17, 94–101. [CrossRef]
     [PubMed]
109. Gjertsen, M.K.; Buanes, T.; Rosseland, A.R.; Bakka, A.; Gladhaug, I.; Søreide, O.; Eriksen, J.A.; Møller, M.;
     Baksaas, I.; Lothe, R.A.; et al. Intradermal ras peptide vaccination with granulocyte-macrophage
     colony-stimulating factor as adjuvant: Clinical and immunological responses in patients with pancreatic
     adenocarcinoma. Int. J. cancer 2001, 92, 441–450. [CrossRef] [PubMed]
110. Toubaji, A.; Achtar, M.; Provenzano, M.; Herrin, V.E.; Behrens, R.; Hamilton, M.; Bernstein, S.; Venzon, D.;
     Gause, B.; Marincola, F.; et al. Pilot study of mutant ras peptide-based vaccine as an adjuvant treatment in
     pancreatic and colorectal cancers. Cancer Immunol. Immunother. 2008, 57, 1413–1420. [CrossRef] [PubMed]
111. Abou-Alfa, G.K.; Chapman, P.B.; Feilchenfeldt, J.; Brennan, M.F.; Capanu, M.; Gansukh, B.; Jacobs, G.;
     Levin, A.; Neville, D.; Kelsen, D.P.; et al. Targeting mutated K-ras in pancreatic adenocarcinoma using an
     adjuvant vaccine. Am. J. Clin. Oncol. 2011, 34, 321–325. [CrossRef] [PubMed]
112. Wedén, S.; Klemp, M.; Gladhaug, I.P.; Møller, M.; Eriksen, J.A.; Gaudernack, G.; Buanes, T. Long-term
     follow-up of patients with resected pancreatic cancer following vaccination against mutant K-ras.
     Int. J. Cancer 2011, 128, 1120–1128. [CrossRef] [PubMed]
113. Hartley, M.L.; Bade, N.A.; Prins, P.A.; Ampie, L.; Marshall, J.L. Pancreatic cancer, treatment options, and
     GI-4000. Hum. Vaccin. Immunother. 2015, 11, 931–937. [CrossRef] [PubMed]
114. Bernhardt, S.; Gjertsen, M.; Trachsel, S.; Møller, M.; Eriksen, J.; Meo, M.; Buanes, T.; Gaudernack, G.
     Telomerase peptide vaccination of patients with non-resectable pancreatic cancer: A dose escalating phase
     I/II study. Br. J. Cancer 2006, 95, 1474–1482. [CrossRef] [PubMed]
115. Middleton, G.; Silcocks, P.; Cox, T.; Valle, J.; Wadsley, J.; Propper, D.; Coxon, F.; Ross, P.; Madhusudan, S.;
     Roques, T.; et al. Gemcitabine and capecitabine with or without telomerase peptide vaccine GV1001 in
     patients with locally advanced or metastatic pancreatic cancer (TeloVac): An open-label, randomised,
     phase 3 trial. Lancet Oncol. 2014, 15, 829–840. [CrossRef]
116. Lepisto, A.J.; Moser, A.J.; Zeh, H.; Lee, K.; Bartlett, D.; McKolanis, J.R.; Geller, B.A.; Schmotzer, A.; Potter, D.P.;
     Whiteside, T.; et al. A phase I/II study of a MUC1 peptide pulsed autologous dendritic cell vaccine as
     adjuvant therapy in patients with resected pancreatic and biliary tumors. Cancer Ther. 2008, 6, 955–964.
     [PubMed]
117. Miyazawa, M.; Ohsawa, R.; Tsunoda, T.; Hirono, S.; Kawai, M.; Tani, M.; Nakamura, Y.; Yamaue, H. Phase I
     clinical trial using peptide vaccine for human vascular endothelial growth factor receptor 2 in combination
     with gemcitabine for patients with advanced pancreatic cancer. Cancer Sci. 2010, 101, 433–439. [CrossRef]
     [PubMed]
118. Suzuki, N.; Hazama, S.; Iguchi, H.; Uesugi, K.; Tanaka, H.; Hirakawa, K.; Aruga, A.; Hatori, T.; Ishizaki, H.;
     Umeda, Y.; et al. Phase II clinical trial of peptide cocktail therapy for patients with advanced pancreatic
     cancer: VENUS-PC study. Cancer Sci. 2017, 108, 73–80. [CrossRef] [PubMed]
119. Mehrotra, S.; Britten, C.D.; Chin, S.; Garrett-Mayer, E.; Cloud, C.A.; Li, M.; Scurti, G.; Salem, M.L.;
     Nelson, M.H.; Thomas, M.B.; et al. Vaccination with poly(IC:LC) and peptide-pulsed autologous dendritic
     cells in patients with pancreatic cancer. J. Hematol. Oncol. 2017, 10, 82. [CrossRef] [PubMed]
120. Gilliam, A.D.; Broome, P.; Topuzov, E.G.; Garin, A.M.; Pulay, I.; Humphreys, J.; Whitehead, A.; Takhar, A.;
     Rowlands, B.J.; Beckingham, I.J.; et al. An international multicenter randomized controlled trial of G17DT in
     patients with pancreatic cancer. Pancreas 2012, 41, 374–379. [CrossRef] [PubMed]
121. Maki, R.G.; Livingston, P.O.; Lewis, J.J.; Janetzki, S.; Klimstra, D.; DeSantis, D.; Srivastava, P.K.; Brennan, M.F.
     A phase I pilot study of autologous heat shock protein vaccine HSPPC-96 in patients with resected pancreatic
     adenocarcinoma. Dig. Dis. Sci. 2007, 52, 1964–1972. [CrossRef] [PubMed]
122. Koido, S.; Okamoto, M.; Shimodaira, S.; Sugiyama, H. Wilms’ tumor 1 (WT1)-targeted cancer vaccines to
     extend survival for patients with pancreatic cancer. Immunotherapy 2016, 8, 1309–1320. [CrossRef] [PubMed]
123. Morse, M.A.; Nair, S.K.; Boczkowski, D.; Tyler, D.; Hurwitz, H.I.; Proia, A.; Clay, T.M.; Schlom, J.; Gilboa, E.;
     Lyerly, H.K.; et al. The feasibility and safety of immunotherapy with dendritic cells loaded with CEA mRNA
     following neoadjuvant chemoradiotherapy and resection of pancreatic cancer. Int. J. Gastrointest. Cancer
     2002, 32, 1–6. [CrossRef]
Cancers 2018, 10, 6                                                                                         16 of 16
124. Carbone, D.P.; Ciernik, I.F.; Kelley, M.J.; Smith, M.C.; Nadaf, S.; Kavanaugh, D.; Maher, V.E.; Stipanov, M.;
     Contois, D.; Johnson, B.E.; et al. Immunization with mutant p53- and K-ras-derived peptides in cancer
     patients: Immune response and clinical outcome. J. Clin. Oncol. 2005, 23, 5099–5107. [CrossRef] [PubMed]
125. Kondo, H.; Hazama, S.; Kawaoka, T.; Yoshino, S.; Yoshida, S.; Tokuno, K.; Takashima, M.; Ueno, T.; Hinoda, Y.;
     Oka, M.; et al. Adoptive immunotherapy for pancreatic cancer using MUC1 peptide-pulsed dendritic cells
     and activated T lymphocytes. Anticancer Res. 2008, 28, 379–387. [PubMed]
126. Koido, S.; Homma, S.; Okamoto, M.; Takakura, K.; Mori, M.; Yoshizaki, S.; Tsukinaga, S.; Odahara, S.;
     Koyama, S.; Imazu, H.; et al. Treatment with chemotherapy and dendritic cells pulsed with multiple Wilms’
     tumor 1 (WT1)-specific MHC class I/II-restricted epitopes for pancreatic cancer. Clin. Cancer Res. 2014, 20,
     4228–4239. [CrossRef] [PubMed]
127. Jiang, N.; Qiao, G.; Wang, X.-L.; Morse, M.A.; Gwin, W.R.; Zhou, L.; Song, Y.; Zhao, Y.; Chen, F.; Zhou, X.-N.;
     et al. Dendritic Cell/Cytokine-Induced Killer Cell Immunotherapy Combined with S-1 in Patients with
     Advanced Pancreatic Cancer: A Prospective Study. Clin. Cancer Res. 2017, 23, 5066–5073. [CrossRef]
     [PubMed]
128. Chmielewski, M.; Hahn, O.; Rappl, G.; Nowak, M.; Schmidt–Wolf, I.H.; Hombach, A.A.; Abken, H. T Cells
     That Target Carcinoembryonic Antigen Eradicate Orthotopic Pancreatic Carcinomas Without Inducing
     Autoimmune Colitis in Mice. Gastroenterology 2012, 143, 1095.e2–1107.e2. [CrossRef] [PubMed]
129. Maliar, A.; Servais, C.; Waks, T.; Chmielewski, M.; Lavy, R.; Altevogt, P.; Abken, H.; Eshhar, Z.
     Redirected T cells that target pancreatic adenocarcinoma antigens eliminate tumors and metastases in
     mice. Gastroenterology 2012, 143, 1375–1384. [CrossRef] [PubMed]
130. Posey, A.D.; Schwab, R.D.; Boesteanu, A.C.; Steentoft, C.; Mandel, U.; Engels, B.; Stone, J.D.; Madsen, T.D.;
     Schreiber, K.; Haines, K.M.; et al. Engineered CAR T Cells Targeting the Cancer-Associated Tn-Glycoform of
     the Membrane Mucin MUC1 Control Adenocarcinoma. Immunity 2016, 44, 1444–1454. [CrossRef] [PubMed]
131. Zhao, Y.; Moon, E.; Carpenito, C.; Paulos, C.M.; Liu, X.; Brennan, A.L.; Chew, A.; Carroll, R.G.; Scholler, J.;
     Levine, B.L.; et al. Multiple injections of electroporated autologous T cells expressing a chimeric antigen
     receptor mediate regression of human disseminated tumor. Cancer Res. 2010, 70, 9053–9061. [CrossRef]
     [PubMed]
132. Abate-Daga, D.; Lagisetty, K.H.; Tran, E.; Zheng, Z.; Gattinoni, L.; Yu, Z.; Burns, W.R.; Miermont, A.M.;
     Teper, Y.; Rudloff, U.; et al. A novel chimeric antigen receptor against prostate stem cell antigen mediates
     tumor destruction in a humanized mouse model of pancreatic cancer. Hum. Gene Ther. 2014, 25, 1003–1012.
     [CrossRef] [PubMed]
133. Tal, Y.; Yaakobi, S.; Horovitz-Fried, M.; Safyon, E.; Rosental, B.; Porgador, A.; Cohen, C.J. An NCR1-based
     chimeric receptor endows T-cells with multiple anti-tumor specificities. Oncotarget 2014, 5, 10949–10958.
     [CrossRef] [PubMed]
134. DeSelm, C.J.; Tano, Z.E.; Varghese, A.M.; Adusumilli, P.S. CAR T-cell therapy for pancreatic cancer.
     J. Surg. Oncol. 2017. [CrossRef] [PubMed]
135. Nywening, T.M.; Wang-Gillam, A.; Sanford, D.E.; Belt, B.A.; Panni, R.Z.; Cusworth, B.M.; Toriola, A.T.;
     Nieman, R.K.; Worley, L.A.; Yano, M.; et al. Targeting tumour-associated macrophages with CCR2 inhibition
     in combination with FOLFIRINOX in patients with borderline resectable and locally advanced pancreatic
     cancer: A single-centre, open-label, dose-finding, non-randomised, phase 1b trial. Lancet Oncol. 2016, 17,
     651–662. [CrossRef]
136. Chen, J.; Xiao-Zhong, G.; Qi, X.-S. Clinical Outcomes of Specific Immunotherapy in Advanced Pancreatic
     Cancer: A Systematic Review and Meta-Analysis. J. Immunol. Res. 2017. [CrossRef] [PubMed]
                       © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
                       article distributed under the terms and conditions of the Creative Commons Attribution
                       (CC BY) license (http://creativecommons.org/licenses/by/4.0/).