0% found this document useful (0 votes)
306 views1 page

Problem 6.18: Solution

This document calculates the ratio of conduction current density to displacement current density for an electromagnetic wave propagating through seawater at different frequencies. It finds that at 1 kHz and 1 MHz, the displacement current is negligible, at 1 GHz neither current is negligible, and at 100 GHz the conduction current is negligible.

Uploaded by

glynfinck
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
306 views1 page

Problem 6.18: Solution

This document calculates the ratio of conduction current density to displacement current density for an electromagnetic wave propagating through seawater at different frequencies. It finds that at 1 kHz and 1 MHz, the displacement current is negligible, at 1 GHz neither current is negligible, and at 100 GHz the conduction current is negligible.

Uploaded by

glynfinck
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 1

Problem 6.

18 An electromagnetic wave propagating in seawater has an electric


field with a time variation given by E = ẑE0 cos ω t. If the permittivity of water is
81ε0 and its conductivity is 4 (S/m), find the ratio of the magnitudes of the conduction
current density to displacement current density at each of the following frequencies:
(a) 1 kHz
(b) 1 MHz
(c) 1 GHz
(d) 100 GHz
Solution: From Eq. (6.44), the displacement current density is given by
∂ ∂
Jd = D=ε E
∂t ∂t
and, from Eq. (4.67), the conduction current is J = σ E. Converting to phasors and
taking the ratio of the magnitudes,
¯ ¯ ¯ ¯
¯e ¯ ¯ e ¯¯
¯ J ¯ ¯ σE σ
¯ ¯=¯ ¯= .
e ¯ ωεr ε0
Jd ¯ ¯ jωεr ε0 E
¯e

(a) At f = 1 kHz, ω = 2π × 103 rad/s, and


¯ ¯
¯e ¯
¯J¯ 4
¯ ¯= = 888 × 103 .
¯ Jd ¯ 2π × 10 × 81 × 8.854 × 10−12
e 3

The displacement current is negligible.


(b) At f = 1 MHz, ω = 2π × 106 rad/s, and
¯ ¯
¯e ¯
¯J¯ 4
¯ ¯= = 888.
¯e
Jd ¯ 2 π × 10 6 × 81 × 8.854 × 10−12

The displacement current is practically negligible.


(c) At f = 1 GHz, ω = 2π × 109 rad/s, and
¯ ¯
¯e ¯
¯J¯ 4
¯ ¯= = 0.888.
¯e
Jd ¯ 2π × 10 9 × 81 × 8.854 × 10−12

Neither the displacement current nor the conduction current are negligible.
(d) At f = 100 GHz, ω = 2π × 1011 rad/s, and
¯ ¯
¯e ¯
¯J¯ 4
¯ ¯= = 8.88 × 10−3 .
¯e
Jd ¯ 2π × 10 11 × 81 × 8.854 × 10 −12

The conduction current is practically negligible.

You might also like