Calculus I Final Exam Review
Calculus I Final Exam Review
ÁÊÁ ˜ˆ˜
n
È ˘
10. Determine all values of x in the interval ÍÍÎ 1,3˙˙˚ for
Ê ˆ
5 ÁÁ x 2 1 ˜˜
Ë ¯
which the function f (x ) 2
equals its
x
20
average value .
3
a. V x(20 2x) 2 b. V x(20 2x) 12. Evaluate the definite integral of the trig function.
c. V x 2 (20 2x) d. V x 2 (20 2x) 7
e. V x (20 x) 2 0 (5sins 2cos s)ds
1
Name: ________________________ ID: A
6
y (x )
x9
dy
18. Find by implicit differentiation given that
dx
2xy 5.
dy dy dy
a. 5xy b. 5xy c. xy
dx dx dx
dy 5y dy y
d. e.
dx x dx x
2
Name: ________________________ ID: A
23. A rectangle is bounded by the x- and y-axes and the 29. Find the constant a such that the function
(5 x )
graph of y (see figure). What length and ÏÔ
2 ÔÔ 5, x 3
width should the rectangle have so that its area is a ÔÔ
f (x ) ÌÔ ax b, 3 x 7
maximum? ÔÔ
ÔÔ 5, x7
Ó
3
Name: ________________________ ID: A
36. Find the indefinite integral and check the result by 41. Evaluate the following definite integral.
differentiation.
Ê ˆ
0
6
t sinÁÁÁ 6t 2 ˜˜˜ dt
7x 6x 6
2
x4
dx Ë ¯
38. Sketch the graph of the function 43. Evaluate the following definite integral.
ÏÔÔ
Ô 40x 100 0 x 5
f(x) ÌÔ Ê ˆ
0
6
ÔÔ 2 t cos ÁÁÁ 4t 2 ˜˜˜ dt
Ó 4x 5x8 Ë ¯
and locate the absolute extrema of the function on
È ˘
the interval ÍÎÍ 0, 8 ˙˚˙ . Use a graphing utility to check your answer.
39. Assume that x and y are both differentiable 44. Write the following limit as a definite integral on
È ˘
dx dy the interval ÍÍÎ 3, 9 ˙˙˚ where ci is any point in the i th
functions of t. Find when x = 6 and = 4 for
dt dt subinterval.
the equation xy 42.
n
40. Find the points of inflection and discuss the lim 3c 2i 5c i x i
concavity of the function f (x ) sin x cos x on x 0 i 1
x 1
45. Find the x-values (if any) at which f (x ) is not continuous.
x1
4
Name: ________________________ ID: A
46. A man 6 feet tall walks at a rate of 5 feet per second 49. Evaluate the integral.
away from a light that is 15 feet above the ground
(see figure). When he is 8 feet from the base of the 6
Ê ˆ
light, at what rate is the tip of his shadow moving?
ÁÁÁË 12z 2 5˜˜˜¯ d z
5
given,
x 3 dx
671
,
4
5
x 2 dx
91
,
3
5
x dx
11
,
2
5
dx 1 .
47. Determine whether Rolle's Theorem can be applied 5
È ˘
to f (x ) x 2 30x on the closed interval ÍÍÎ 0,30 ˙˙˚ .
If Rolle's Theorem can be applied, find all values of 50. Find the derivative of the function.
c in the open interval ÊÁË 0, 30ˆ˜¯ such that f (c) 0.
Ê ˆ
y cos ÁÁÁ 3x 6 7 ˜˜˜
Ë ¯
48. Identify the open intervals where the function
f (x ) 5x 2 2x 1 is increasing or decreasing. 51. Use the quotient rule to differentiate the following
3x
function f (x ) and evaluate f (1) .
3
x 7
5
Name: ________________________ ID: A
9x
lim
x9
x 2 81
2
0 2 z 1dz
sin 3 x
lim
x0 x3
6
ID: A
PTS: 1 DIF: Easy REF: 3.5.88 OBJ: Evaluate limits at infinity in applications
MSC: Application NOT: Section 3.5
2. ANS:
v (t ) 85t 4
1 6 j
j1
PTS: 1 DIF: Easy REF: 4.2.8 OBJ: Write a sum in sigma notation
MSC: Skill NOT: Section 4.2
1
ID: A
8. ANS:
10
x 2 dx
4
2
ID: A
16. ANS:
f (x ) 4x 2 3x 77
x 2 dx
9
3
ID: A
23. ANS:
x 2.5; y 1.25
4
ID: A
30. ANS:
ÊÁ ˆ
ÁÁ 10 10x x 2 ˜˜˜
Ë ¯
f (x )
ÊÁ 2 ˆ 2
ÁÁ x 10 ˜˜˜
Ë ¯
5
ID: A
37. ANS:
16 %
6
ID: A
44. ANS:
9
3x 2 5x dx
3
7
ID: A
51. ANS:
15
f (1)
64
8
ID: A
58. ANS:
–56 ft/sec
PTS: 1 DIF: Medium REF: 2.2.97c OBJ: Interpret a derivative as a rate of change
MSC: Application NOT: Section 2.2
59. ANS:
1
PTS: 1 DIF: Medium REF: 2.2.97c OBJ: Interpret a derivative as a rate of change
MSC: Application NOT: Section 2.2