0% found this document useful (0 votes)
103 views3 pages

Table of Constants

The document contains a table listing various physical constants along with their symbols and values. It then provides two lists of equations from physics and astronomy. The first list contains equations relating to classical mechanics, orbital mechanics, planetary motion, electromagnetism, radiation laws, and thermodynamics. The second list contains additional equations involving radiation transfer, scattering, radiometry, satellite observations, atmospheric properties, and climate modeling.

Uploaded by

Buffboy
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
103 views3 pages

Table of Constants

The document contains a table listing various physical constants along with their symbols and values. It then provides two lists of equations from physics and astronomy. The first list contains equations relating to classical mechanics, orbital mechanics, planetary motion, electromagnetism, radiation laws, and thermodynamics. The second list contains additional equations involving radiation transfer, scattering, radiometry, satellite observations, atmospheric properties, and climate modeling.

Uploaded by

Buffboy
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 3

TABLE OF CONSTANTS

CONSTANT SYMBOL VALUE


speed of light in a vacuum c 3.00 × 108 m s-1
gravitational constant G 6.673 × 10-11 N m2 kg-2
orbital constant G ME 3.986 × 1014 m3 s-2
standard gravitational acceleration g 9.81 m s-1
Planck's constant h 6.626 × 10-34 J s
Boltzmann's constant k 1.381 × 10-23 J K-1
first radiation constant c1 1.191 × 10-16 W m2 sr-1
second radiation constant c2 1.439 × 10-2 m K
Stefan-Boltzmann constant σ 5.670 × 10-8 W m-2 K-4
Wien's displacement law constant none 2.8979 × 10-3 m K
Avogadro's number NA 6.022 × 1023 molecules mole-1
Dobson unit DU 1 DU = 2.687 × 1016 molecules/cm2
molar gas constant R 8.3143 J mole-1 K-1
angular velocity of Earth dΩE / dt 7.292 × 10-5 rad s-1
solar day Tsolar 86,400 s
sidereal day Tsidereal 86,164.1 s
mean radius of Earth RE 6.371 × 106 m
mass of Earth ME 5.9737 × 1024 kg
standard pressure po 1013.25 mbar = 1.01325 × 105 N m-2
standard temperature To 273.15 K
scale height of Earth's atmosphere H = RT/Mg ~ 7 km
radius of Sun (visible disk) Rsun 6.96 × 108 m
mean Earth-Sun distance dsun 1.50 × 1011 m
solar constant Ssun 1368 W m-2
molecular mass of CO2 M 44 g/mole = 7.3065×10-26 kg/molecule
molecular mass of H2O M 18 g/mole = 2.9890×10-26 kg/molecule
molecular mass of O2 M 32 g/mole = 5.3138×10-26 kg/molecule
LIST OF EQUATIONS – 1 of 2

Gm 1 m 2 r3 2 1 a (1 − ε 2 )
F= T = 2π v=Gm E  −  r=
r2 Gm E r a 1 + ε cos θ
cos e − ε cos θ + ε ~ 2π
M = e − ε sin e = n ( t − t p ) cos θ = cos e = T=
1 − ε cos e 1 + ε cos θ dω
n+
dt
ψ ψN ∆ψ   
LT = UT + ECT = UT +
= 12 + S = c 2
ε E ×H
15  15  15 
0

∞ ∞ ∞
2hc 2 λ−5 c1 λ−5
I = ∫ I λ dλ = ∫ I ν dν = ∫ I ν dν Bλ = =
 hc  c 
0 0 0
exp  − 1 exp 2  − 1
 λkT   λT 
2897.9 cT
λ max (µm) = M BB = σT 4 Bλ ≅ 1 4 α λ + R λ + τλ = 1 αλ = ελ
T(K ) c 2λ
dI λ = −σ a (λ )I λ ds = −ρk a (λ )I λ ds = − k a (λ )I λ du
 z 2 k (λ )ρ   u2 
τ λ (z 1 , z 2 ) = exp  − ∫ a dz  = exp − ∫ k a (λ )du 
 z1 µ   u1 
2π 1
µ dI λ ~ B (T ) + ω ~ < I '> 1
I λ (µ ′, φ′)p(ψ S )dµ ′dφ′
4π ∫0 −∫1
= − I λ (θ, φ) + α λ λ λ λ < I λ ' >=
ρk e (λ ) dz

~ = σ a (λ )
α ~ = σ s (λ )
ω
µ dI λ
= − I λ (µ, φ) + B λ (T )
λ λ
σ e (λ ) σ e (λ ) ρk e (λ) dz
S αL p To
k aL = α L (T, p) = α L (To , p o )
π (ν − ν o ) 2 + α L 2 po T
S  (ν − ν o ) 2  2kT ν o
k aD = exp  −  α D ( T, ν o ) =
αD π αD
2
  M c

2πr ks ∞
[
8π 3 n o ( λ ) 2 − 1 ]
2

χ= Qs = σs = ∫ πr Q s N(r )dr σ s (λ ) ≅ f (δ )
2

λ πr 2 0 3λ4 Ns
2

2π π / 2
m = n − i n' I r (θ r , ϕ r ) = ∫ ∫ I (θ , ϕ ) γ
0 0
i i i r (θ r , ϕ r ; θ i , ϕ i ) cos θ i sin θ i dθ i dϕ i

I r (θ r , φ r ) I
γ r (θ r , φ r ; θ sun , φ sun ) = = r
I sun Ω sun cos θ sun E sun

M
A=
E
= ∫γ
0
r (θ r , ϕ r ; θ sun , ϕ sun ) cos θ r dΩ r

τ =1 satellite
I λ (z sat ) = I λ (0)τ(0, z sat ) + ∫ B λ (T)dτ λ = I λ (0)τ(0, z sat ) +
τ ( 0, , z sa )
∫B
surface
λ (T )K λ ( y)dy
LIST OF EQUATIONS – 2 of 2

Mp ( z )  (z − z o ) 
dp = − g ρ air dz ρ(z) = p ( z ) = p ( z o ) exp  − 
RT  H 

d τ λ ( x , z tangent ) ~
∫ B [T ( x ) ]
k +1 I
I λ ( z tangent ) = λ dx B i (T i ) = B i ( Ti ) k i k
k

−∞
dx I i ( Ti )
B i (T k +1
ij
~
[
) = B i ( T jk ) + I i − I ik ( T jk ) ] y = F(x, b ) + ε
dT dI dF
xˆ = x o + S o K T ( K S o K T + S y ) − 1 ( y − K x o ) A = = = DK
dx dy dx
I λ = E sun ( λ ) [τ ozone ( λ ) ] R ( θ sun , θ satellite ; R surface , R air )
x

 I(λ ) 
N ( λ ) = − 100 log 10   = − 100 log 10 [R ( λ ) exp {− k a ( λ ) Ux }]
 sun
E ( λ ) 

I λ (h i )  
τ λ (h i ) =

o
= exp  −

∫σ
−∞
e,λ ( s ) ds 

I ( λ , z tan ) = E o ( λ ) ∫τ
l−o−s
in ( λ , ∞ : z )S ( λ , z , θ ) τ out ( λ , z : ∞ ) dz

I ( λ ) = (1 − N ) I clear ( λ ) + N ε I cloud ( λ ) + N (1 − ε ) I clear ( λ )

µ  To − TB 
k LU L + k VU V = − ln  
2  {1 − ε ( µ )}T o 
~
ω 1
satellite
I aerosol ≅ o E sun p ( ψ sun )
4π µ ∫σ
surface
aerosol dz

∆ R β(λ )  R

Pr ( λ , R ) = P t ( λ ) C ( λ ) 2 exp  − 2 ∫ σ ext ( λ , r ) dr 
R 4π  0 

[ ] 1 dβ  P1 ( R )  R

 ≅ − 2 ∫ ρ [k 1 − k 2 ]dr
dS
S ( R ) = ln R P r ( R ) 2
= − 2 σ ext ln 
dR β dR  P2 ( R )  0

 P (R + ∆R )   P1 ( R ) 
ln  1  − ln  
 P2 ( R + ∆ R )   P2 ( R )  G λ2 G 2 λ2
ρ (R ) = − Ae = PR = P t σ
2(k 1 − k 2 )∆R 4π (4 π )3 R 4
π2G 2 K
2
π5 m2 − 1
σ = 4 K D6 K = 2 PR = Pt ∑D
2 6

λ m +2 64λ R
2 4
pulse volume

∞ 2
K
Z= ∑D
unit volume
6
= ∫ N(D) D dD
6
PR = C
R2
Z
0

dl dθ Hλ
a (sin i + sin θ) = mλ h ' = ha ' (H − h ) =f Ra =
dλ dλ L cos θ

You might also like