0% found this document useful (0 votes)
499 views8 pages

Isolated Footing For Columns

This document summarizes the design of a footing (F1) including: - Input parameters such as concrete grade, steel grade, soil properties, footing and column dimensions - Calculation of dead loads from soil and concrete - Load inputs from structural analysis software - Checks for base pressure, shear stress, punching shear, and reinforcement design meet code requirements - Footing reinforcement is designed and spacing is provided to resist bending and shear stresses All check calculations show the footing design is safe and code compliant.

Uploaded by

kushaljp8989
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as XLSX, PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
499 views8 pages

Isolated Footing For Columns

This document summarizes the design of a footing (F1) including: - Input parameters such as concrete grade, steel grade, soil properties, footing and column dimensions - Calculation of dead loads from soil and concrete - Load inputs from structural analysis software - Checks for base pressure, shear stress, punching shear, and reinforcement design meet code requirements - Footing reinforcement is designed and spacing is provided to resist bending and shear stresses All check calculations show the footing design is safe and code compliant.

Uploaded by

kushaljp8989
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as XLSX, PDF, TXT or read online on Scribd
You are on page 1/ 8

SL.

No DESCRIPTION REFERENCE
1 FOOTING DESIGN- F1
1.1 INPUT
Grade of concrete fck 25 N/mm2
Grade of steel fy 500 N/mm2
Density of soil ρs 1.8 T/m3
Density of concrete ρc 2.5 T/m3
Depth from FGL D 3.0 m
Ht of Column above FGL h 0.0 m
SBC of soil 30 T/m2
Clear Cover to reinforcement(Earth face) 0.075 m
Clear Cover to reinforcement 0.05 m
L B d
Size of Raf 1.8 0.75 0.5 m
Size of Column 0.8 0.5 2.5 m
1.2 DEAD WEIGHT OF SOIL AND CONCRETE
Area of Footing
= (LxB) 1.35 m2
Weight of Concrete
= Vol of Raf x density of Concrete 1.69 T
Weight of Soil
= (Area of footing - Area of Column) x (depth of
foundation - depth of raf) x density of Concrete 4.28 T
1.3 SECTION MODULUS
Zxx = L x B2/6 0.17 m3
Zzz = B x L2/6 0.41 m3
1.4 LOAD INPUT FROM STAAD
All loads are in "Tons"
Critical Load C
Sl no. Combinations
Fx Fy Fz Mx My Mz
1 13 0.06 5.01 0.02 0.00 0.00 -0.10
2 29 -0.37 11.91 -0.03 0.00 0.00 0.57
3 44 -0.23 13.92 -0.55 0.00 0.00 0.36
4 20 -0.06 3.74 -0.55 0.00 0.00 0.04
5 36 -0.24 11.27 0.61 0.00 0.00 0.41
6 34 -0.24 13.18 -0.60 0.00 0.00 0.40
7 33 -0.24 11.88 -0.03 0.00 0.00 0.39
8 33 -0.24 9.94 0.03 0.00 0.00 0.38
9 29 -0.37 11.91 -0.03 0.00 0.00 0.57
10 13 0.06 5.01 0.02 0.00 0.00 -0.10
1.5 BASE PRESSURE CHECK Base Pressure
P1 P2 P3 P4 P=(Fy/A) ± (M'x/Zxx) ±
(M'z/Zzz)
7.9 7.9 8.4 7.9
14.6 11.8 14.6 11.8
15.6 13.8 15.6 13.8
7.3 7.1 7.3 7.1
13.8 11.7 13.8 11.7
15.2 13.2 15.2 13.2
14.2 12.3 14.2 12.3
12.7 10.8 12.7 10.8
14.6 11.8 14.6 11.8
7.9 7.9 8.4 7.9
Pmax 15.63 T/m2
Pmin 7.09 T/m2
1.6 CONVERTING NEGETIVE PRESSURE TO POSITIVE PRESSURE
To calculate Qmax 7.09 Interpolation method
To find out X X
i.e (+VE Pr) + (-VE Pr)/span= +VE Pr/x
X = 1.238
P = 1/2 x (+ve pr) x span
P = 14.07 T 15.63
P = 1/2 x Qmax x X 1.80
Qmax = 22.7 T/m2
SBC shall be increased by 33% for wind load As per IS 875 Part-3
Allowable SBC = 39.9 T/m2
IF Qmax < Allowable SBC SAFE
Hence Base pressure W 15.63 T/m2
1.7 DESIGN OF RAFT
Bottom Reinforcement - Xdirection
Cantilever bending moment
Cantilever distance lx 0.5 m
At support Mx= W X lx /2 2
Mx 2.0 T-m
Partial factor of safety 1.5
Ultimate moment in x dir Mux 2.9 T-m
Mux / bd2 0.16 N/mm2
Required Min
ANNEX G-1.1 IS456:2000
Percentage of steel Ptx = 0.038 0.12 %
Hence Ptx 0.12 % Cl.26.5.2.1 IS456:2000
Required Area of steel Astx 510 mm2 Astx = (Ptxbxd)/100

Providing 12 dia 200 Spacing


Provided Area of steel Astx 565 mm2 Astx=π xdia2/4xspacing
Provided percentage of steel Ptx 0.13 %
Bottom Reinforcement - Y direction
Cantilever bending moment
Cantilever distance ly 0.125 m
At support My= W X ly /2 2
My 0.12 T-m
Partial factor of safety 1.5
Ultimate moment in y dir Muy 0.2 T-m
Muy / bd 2
0.01 N/mm2
Required Min
ANNEX G-1.1 IS456:2000
Percentage of steel Pty 0.00 0.12 %
Hence Pty 0.12 % Cl.26.5.2.1 IS456:2000
Required Area of steel Asty 510 mm2 Asty = (Ptxbxd)/100

Providing 12 dia 200 Spacing


Provided Area of steel Asty 565 mm2 Asty=π xdia2/4xspacing
Provided percentage of steel Pty 0.13 %
Top Reinforcement - X&Ydirection Min
Providing 0.06% of Raf area(Both X and Y dir) Pt 0.06 %
Required Area of steel Ast 270 mm2
Providing 10 dia 200 Spacing
Provided Area of steel Ast 393 mm2
Provided percentage of steel Pt 0.09 %
1.8 CHECK FOR SINGLE SHEAR
SHEAR CHECK IN X DIR
Shear distance in cantilever portion dx 0.075 m
Shear force in X- dir Vx 2.1 T Vx = W X L X dx

Shear stress along X-dir τvx=Vx/Bd 0.04 N/mm2 Cl 40.1 (IS 456 :2000)
Maximum Shear Stress of Concrete τc (max) 3.10 N/mm2 Table-20 (IS 456 :2000)
Pt provided Ptprovd 0.13 %
Beeta = 0.8Xfck/6.89XPt β 21.8 1.00 Cl 4.1 (SP-16:1980)

Design shear strength of concrete τc 0.28 N/mm2 Cl 4.1 (SP-16:1980)

τc = (0.85 X sqrt(0.8fck)X sqrt(1+(5β-1)))/6β


Hence τv < τc SAFE
SHEAR CHECK IN Y DIR
Shear distance in cantilever portion dy -0.3 m
Shear force in Y- dir (Vy) Vy -3.5 T Vy = W X B X dy

Shear stress along Y-dir(Tvy) τvy=Vy/Bd -0.17 N/mm2 Cl 40.1 (IS 456 :2000)
Maximum Shear Stress of Concrete τc (max) 3.10 N/mm2 Table-20 (IS 456 :2000)
Pt provided Ptprovd 0.09 %
Beeta = 0.8Xfck/6.89XPt β 31.4 1.00 Cl 4.1 (SP-16:1980)

Design shear strength of concrete τc 0.23 N/mm2 Cl 4.1 (SP-16:1980)

τc = (0.85 X sqrt(0.8fck)X sqrt(1+(5β-1)))/6β


Hence τv < τc SAFE
1.9 CHECK FOR PUNCHING SHEAR
Perimeter of critical section bo 4.3 m
Area of critical section A 1.133 m2
Shear Vu 5 T/m2
= W X (LXB) of Raf-area
τv = Vu/bod 0.03 N/mm2 IS456:2000 cl.31.6.2.1

τc = 0.25 xsqrt fck 1.25 N/mm2 IS456:2000 cl.31.6.3.1


IF τc>τv τc > τv SAFE
SL.No DESCRIPTION REFERENCE
1 FOOTING DESIGN- F1
1.1 INPUT
Grade of concrete fck 25 N/mm2
Grade of steel fy 500 N/mm2
Density of soil ρs 1.8 T/m3
Density of concrete ρc 2.5 T/m3
Depth from FGL D 3.0 m
Ht of Column above FGL h 0.0 m
SBC of soil 30 T/m2
Clear Cover to reinforcement(Earth face) 0.075 m
Clear Cover to reinforcement 0.05 m
L B d
Size of Raf 1.8 0.75 0.5 m
Size of Column 0.8 0.5 2.5 m
1.2 DEAD WEIGHT OF SOIL AND CONCRETE
Area of Footing
= (LxB) 1.35 m2
Weight of Concrete
= Vol of Raf x density of Concrete 1.69 T
Weight of Soil
= (Area of footing - Area of Column) x (depth of
foundation - depth of raf) x density of Concrete 4.28 T
1.3 SECTION MODULUS
Zxx = L x B2/6 0.17 m3
Zzz = B x L2/6 0.41 m3
1.4 LOAD INPUT FROM STAAD
All loads are in "Tons"
Critical Load C
Sl no. Combinations
Fx Fy Fz Mx My Mz M'x = (Fz X D) + Mx
1 13 0.06 5.01 0.02 0.00 0.00 -0.10 M'z = (Fx X D) + Mz
2 29 -0.37 11.91 -0.03 0.00 0.00 0.57
3 44 -0.23 13.92 -0.55 0.00 0.00 0.36
4 20 -0.06 3.74 -0.55 0.00 0.00 0.04
5 36 -0.24 11.27 0.61 0.00 0.00 0.41
6 34 -0.24 13.18 -0.60 0.00 0.00 0.40
7 33 -0.24 11.88 -0.03 0.00 0.00 0.39
8 33 -0.24 9.94 0.03 0.00 0.00 0.38
9 29 -0.37 11.91 -0.03 0.00 0.00 0.57
10 13 0.06 5.01 0.02 0.00 0.00 -0.10
1.5 BASE PRESSURE CHECK Base Pressure
P1 P2 P3 P4 P=(Fy/A) ± (M'x/Zxx) ±
(M'z/Zzz)
7.9 7.9 8.4 7.9
14.6 11.8 14.6 11.8
15.6 13.8 15.6 13.8
7.3 7.1 7.3 7.1
13.8 11.7 13.8 11.7
15.2 13.2 15.2 13.2
14.2 12.3 14.2 12.3
12.7 10.8 12.7 10.8
14.6 11.8 14.6 11.8
7.9 7.9 8.4 7.9
SL.No DESCRIPTION REFRENCE
Pmax 15.63 T/m 2

Pmin 7.09 T/m2


1.6 CONVERTING NEGETIVE PRESSURE TO POSITIVE PRESSURE
To calculate Qmax 7.09 Interpolation method
To find out X X
i.e (+VE Pr) + (-VE Pr)/span= +VE Pr/x
X = 1.238
P = 1/2 x (+ve pr) x span
P = 14.07 T 15.63
P = 1/2 x Qmax x X 1.80
Qmax = 22.7 T/m2
SBC shall be increased by 33% for wind load As per IS 875 Part-3
Allowable SBC = 39.9 T/m2
IF Qmax < Allowable SBC SAFE
Hence Base pressure W 15.63 T/m2
1.7 DESIGN OF RAFT
Bottom Reinforcement - Xdirection
Cantilever bending moment
Cantilever distance lx 0.5 m
At support Mx= W X lx /2 2
Mx 2.0 T-m
Partial factor of safety 1.5
Ultimate moment in x dir Mux 2.9 T-m
Mux / bd2 0.16 N/mm2
Required Min
ANNEX G-1.1 IS456:2000
Percentage of steel Ptx = 0.038 0.12 %
Hence Ptx 0.12 % Cl.26.5.2.1 IS456:2000
Required Area of steel Astx 510 mm2 Astx = (Ptxbxd)/100

Providing 12 dia 200 Spacing


Provided Area of steel Astx 565 mm2 Astx=π xdia2/4xspacing
Provided percentage of steel Ptx 0.13 %
Bottom Reinforcement - Y direction
Cantilever bending moment
Cantilever distance ly 0.125 m
At support My= W X ly2/2 My 0.12 T-m
Partial factor of safety 1.5
Ultimate moment in y dir Muy 0.2 T-m
Muy / bd 2
0.01 N/mm2
Required Min
ANNEX G-1.1 IS456:2000
Percentage of steel Pty 0.00 0.12 %
Hence Pty 0.12 % Cl.26.5.2.1 IS456:2000
Required Area of steel Asty 510 mm2 Asty = (Ptxbxd)/100

Providing 12 dia 200 Spacing


Provided Area of steel Asty 565 mm2 Asty=π xdia2/4xspacing
Provided percentage of steel Pty 0.13 %
Top Reinforcement - X&Ydirection Min
Providing 0.06% of Raf area(Both X and Y dir) Pt 0.06 %
Required Area of steel Ast 270 mm2
Providing 10 dia 200 Spacing
Provided Area of steel Ast 393 mm2
Provided percentage of steel Pt 0.09 %
SL.No DESCRIPTION REFRENCE
1.8 CHECK FOR SINGLE SHEAR
SHEAR CHECK IN X DIR
Shear distance in cantilever portion dx 0.075 m
Shear force in X- dir Vx 2.1 T Vx = W X L X dx

Shear stress along X-dir τvx=Vx/Bd 0.04 N/mm2 Cl 40.1 (IS 456 :2000)
Maximum Shear Stress of Concrete τc (max) 3.10 N/mm2 Table-20 (IS 456 :2000)
Pt provided Ptprovd 0.13 %
Beeta = 0.8Xfck/6.89XPt β 21.8 1.00 Cl 4.1 (SP-16:1980)

Design shear strength of concrete τc 0.28 N/mm2 Cl 4.1 (SP-16:1980)

τc = (0.85 X sqrt(0.8fck)X sqrt(1+(5β-1)))/6β


Hence τv < τc SAFE
SHEAR CHECK IN Y DIR
Shear distance in cantilever portion dy -0.3 m
Shear force in Y- dir (Vy) Vy -3.5 T Vy = W X B X dy

Shear stress along Y-dir(Tvy) τvy=Vy/Bd -0.17 N/mm2 Cl 40.1 (IS 456 :2000)
Maximum Shear Stress of Concrete τc (max) 3.10 N/mm2 Table-20 (IS 456 :2000)
Pt provided Ptprovd 0.09 %
Beeta = 0.8Xfck/6.89XPt β 31.4 1.00 Cl 4.1 (SP-16:1980)

Design shear strength of concrete τc 0.23 N/mm2 Cl 4.1 (SP-16:1980)

τc = (0.85 X sqrt(0.8fck)X sqrt(1+(5β-1)))/6β


Hence τv < τc SAFE
1.9 CHECK FOR PUNCHING SHEAR
Perimeter of critical section bo 4.3 m
Area of critical section A 1.133 m2
Shear Vu 5 T/m2
= W X (LXB) of Raf-area
τv = Vu/bod 0.03 N/mm2 IS456:2000 cl.31.6.2.1

τc = 0.25 xsqrt fck 1.25 N/mm2 IS456:2000 cl.31.6.3.1


IF τc>τv τc > τv SAFE

You might also like