0% found this document useful (0 votes)
33 views4 pages

Métodos Numéricos Fase 2

The document contains two numerical exercises: 1) It defines a 5x5 matrix A where the element aij is defined by (i+j-1/k)-1, with k=1. It then calculates each element of the matrix. 2) It defines a polynomial interpolation problem to find a function P(x) that passes through 5 given x-y points. It calculates the Lagrange basis polynomials L0-L4 and defines P(x) as a linear combination of the basis polynomials weighted by the y-values.

Uploaded by

Julieth Daniela
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
33 views4 pages

Métodos Numéricos Fase 2

The document contains two numerical exercises: 1) It defines a 5x5 matrix A where the element aij is defined by (i+j-1/k)-1, with k=1. It then calculates each element of the matrix. 2) It defines a polynomial interpolation problem to find a function P(x) that passes through 5 given x-y points. It calculates the Lagrange basis polynomials L0-L4 and defines P(x) as a linear combination of the basis polynomials weighted by the y-values.

Uploaded by

Julieth Daniela
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
You are on page 1/ 4

Métodos numéricos

Fase 2

Julieth Daniela bolívar

Tutor
Francisco Javier castellano

Universidad nacional abierta y a distancia


Cead
Ingeniería de alimentos
ibague 2019
INTRODUCCION

Ejercicio 1.
A=(a,i,j)5x5
aij(i+j-c)-1, con c= 1/k; k=0 1
aij =(i+j- 1/k)-1

1 2 3 4 5
1 1 0 0 0 0
2
i= 0 1 0 0 0
3 0 0 1 0 0
4 0 0 0 1 0
5 0 0 0 0 1

1
2
𝑏𝑖 = ||3||
4
5

1 1 1 1 1
3 5 7 9
1 1 1 1 1
A= 2 3 4 5 6
1 1 1 1 1
3 4 5 6 7
1 1 1 1 1
4 5 6 7 8
1 1 1 1 1
5 6 7 8 9
1
a11=( 1+1-1)-1=(1)-1, c = =1
1
1
a22=( 2+2-1)-1=(3)-1, c = =1
3
1
a33=( 3+3-1)-1=(5)-1, c = =1
5
1
a44=( 4+4-1)-1=(7)-1=7
1
a55=( 5+5-1)-1=(9)-1=9
1
a21=( 2+1-1)-1=(2)-1=2
1
a22=( 2+2-1)-1=(3)-1=3
1
a23=( 2+3-1)-1=(4)-1=4
1
a24=( 2+4-1)-1=(5)-1=5
1
a25=( 2+5-1)-1=(6)-1=6
1
a31=( 3+1-1)-1=(3)-1=3
1
a32=( 3+2-1)-1=(4)-1=4
1
a33=( 3+3-1)-1=(5)-1=5
1
a34=( 3+4-1)-1=(6)-1=6
1
a35=( 3+5-1)-1=(7)-1=7
1
a41=( 4+1-1)-1=(4)-1=4
1
a42=( 4+2-1)-1=(5)-1=5
1
a43=( 4+3-1)-1=(6)-1=6
1
a44=( 4+4-1)-1=(7)-1=7
1
a45=( 4+5-1)-1=(8)-1=8

Ejercicio 2.
x -6.5 -4 -1.5 1 1.5
y 10 2.3 -1.2 -8.5 -2.7

P(x)=Y0L0+ Y1L1+… YnLn


(𝑥−3.5)(𝑥−1)(𝑥−1.5)(𝑥+4) (𝑥−3.5)(𝑥−1)(𝑥+1.5)(𝑥+4)
L0(x)=(−6.5−3.5)(−6.5−1)(−6.5+1.5)(−6.5+4) =
937.5

(𝑥−6.5)(𝑥+1.5)(𝑥−1)(𝑥−3.5) (𝑥+6.5)(𝑥+1.5)(𝑥−1)(𝑥−3.5)
L1(x)=(−4+3.5)(−4+1.5)(−4−1)(−4−3.5) =
234.375

(𝑥+6.5)(𝑥+4)(𝑥−1)(𝑥−3.5) (𝑥+6.5)(𝑥+4)(𝑥−1)(𝑥−3.5)
L2(x)=(−1.5+6.5)(−1.5+4)(−1.5−1)(−1.5−3.5) =
156.25

(𝑥+6.5)(𝑥+4)(𝑥+1.5)(𝑥−3.5) (𝑥+6.5)(𝑥+4)(𝑥+1.5)(𝑥−3.5)
L3(x)= (1+6.5)(1+4)(1+1.5)(1−3.5) =
234.375

(𝑥+6.5)(𝑥+4)(𝑥+1.5)(𝑥−1) (𝑥+6.5)(𝑥+4)(𝑥+1.5)(𝑥−3.5)
L4(x)=(3.5+6.5)(3.5+4)(3.5+1.5)(1−3.5) =
937.5

(𝑥−3.5)(𝑥−1)(𝑥+1.5)(𝑥+4) (𝑥+6.5)(𝑥+1.5)(𝑥−1)(𝑥−3.5)
P(x)=10 ( ) + 2.3 ( )+
937.5 234.375
(𝑥+6.5)(𝑥+4)(𝑥−1)(𝑥−3.5) (𝑥+6.5)(𝑥+4)(𝑥+1.5)(𝑥−3.5)
(−1.2) ( ) + (−8.5) ( )+
156.25 234.375
(𝑥+6.5)(𝑥+4)(𝑥+1.5)(𝑥−3.5)
(−27) ( )
937.5

P(x)=0.000639x4-0.078293x3-0.66896x2-3.11642666x-4.63696.

You might also like