Handout 11 Matrix-vector systems
We consider a system of n equations in n unknowns, which can be written in matrix-vector form as
Ax = b
where A is an n × n matrix.
How many solutions?
There are three possibilities:
• Unique solution
• Infinite number of solutions
• No solutions
Geometrically we can see these in 3D, where an equation represents a plane, and a solution means a
point lying on three planes:
¡@ @¡
¡ ¡ ¡
¡ ¡ ¡ ¡@@
@ ¡ @
¡ @@ @ ¡ @¡ ¡¡
¡ ¡
@ @ ¡¡ @
q
¡ ¡ ¡
¡ ¡ ¡ ¡ @ ¡¡¡¡@ ¡¡ ¡
¡@ ¡
¡¡ ¡ @¡
Unique solution Infinite solutions No solutions
Conditions for a unique solution
Whether or not there is a unique solution depends on the determinant of A:
• det (A) 6= 0 means there is a unique solution to A x = b.
• If det (A) = 0 there may be no solutions to the equation, or there may be an infinite number of
them.
Homogeneous and inhomogeneous systems
An inhomogeneous system is one where b 6= 0. Typically we will be looking for a unique solution so
we will need det (A) 6= 0.
A homogeneous system is one where b = 0. We know one solution: x = 0, the trivial solution.
Typically we will be looking for a non-trivial solution: so we need more than one solution. That means
we need an infinite number of solutions and we will need det (A) = 0 to get them.