0% found this document useful (0 votes)
57 views11 pages

Design of Beam Reinforcement

The document provides design details for a beam with a span of 4 meters that is subjected to dead and live loads. It calculates the bending moment and shear force diagrams. It then designs the flexural reinforcement for the end sections. It determines that a single layer of reinforcement is sufficient and calculates the area of steel required. It checks that the compression steel does not yield.

Uploaded by

jads docallos
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as XLS, PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
57 views11 pages

Design of Beam Reinforcement

The document provides design details for a beam with a span of 4 meters that is subjected to dead and live loads. It calculates the bending moment and shear force diagrams. It then designs the flexural reinforcement for the end sections. It determines that a single layer of reinforcement is sufficient and calculates the area of steel required. It checks that the compression steel does not yield.

Uploaded by

jads docallos
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as XLS, PDF, TXT or read online on Scribd
You are on page 1/ 11

DESIGN OF BEAM

Note : Fill-up yellow cells only.

END 1 MIDSPAN END 2


LOAD
V M M V M
from MDM 1.2 DL + 1.6 LL 0 -0.526 26 0 -25.51
from Seismic Analysis EL --- 0 --- 0.000 NOT INCLUDED
1.2DL + 1.6LL 0 -0.526 25.502 0 -25.510

DESIGN OF BEAM REINFORCEMENT

Given:
Wu = 0 kN d' =0 mm
fc' = 28 MPa
fy = 420 MPa
f = 0.9
b1 = 0.85 d= 200 mm
Es = 200000 MPa

d= 200 mm
b= 200 mm
d' = 0 mm
L= 4 m b = 200 mm

cover : 40 mm
using 10 mm f stirrups

Wu = 0 kN

L=4 m

0 Vu at d distance

Shear Diagram in KN
d= 0.2 m

0
25.502 kN-m

Moment Diagram

0.53 kN-m 25.51 kN-m

AT END 1 :

Mu 0.526
Mn = = = 0.58444444 kN-m
f 0.9

Assuming single reinforcement


( 0.85 ) f1 fc' 3
rmax = x
fy 7
(0.85)( 0.85) ( 28) 3
= x
420 7
= 0.02064

As = rmax b d
= ( 0.02064 ) ( 200 ) ( 200 )
= 825.7142857 mm2

1 r fy
Mu = r fy f b d2 1- x
1.7 fc'
1 ( 0.02064 ) ( 420 )
= ( 0.0206 ) ( 420 ) ( 0.9 ) ( 200 ) ( 200 )2 1 - x
1.7 28
= 51053914.29 MN-mm
Mu = 51.05391429 kN-m

Mu 51.053914286
Mn = = = 56.7265714 kN-m
f 0.9
56.72657143 > 0.5844444444 Therefore, it's a single reinforcement only!
AT END 1
Mn1 = 56.72657143 kN-m IF DOUBLY-REINFORCED BEAM
As1 = 825.7142857 mm2 IF SINGLY REINFORCED BEAM
Mn2 = 0.5844444444 - 56.7265714
= -56.1421269841 kN-m Mu = f Rn b d²
0.526 = 0.9 Rn ( 200 ) (
From Mn2 = As2 fy ( d - d' ) 0.0730556 Mpa
Mn2 -56.1421 x10e6
As2 = = ρ= 0.85 1 - 1- 2 Rn
fy ( d -d' ) 420 ( 200 - 0 ) fy 0.85 fc
= -668.358654573 mm2
ρ= 0.85 28 1-
Check if compression steel yields, when Ey < Es' : 420
where:
fy 420
Ey = = = 0.00210 ρ= 0.0001742
Es 200000

and 0.003 Es' 0.003 ( c - d' )


= ; Es' =
c c - d' c
1.4 fc' 1.4
solving for c: a rmin = or =
c= fy 4 fy 420
f1 2Mn1 = 0.0033333333 or 0.003149704
from Mn1 = As1 fy ( d - a/2) ; a = 2d -
As1 fy (0.85) f1 fc' 3
a= 72.857 mm rmax = x
72.8571429 fy 7
therefore c = = 85.714 mm (0.85)( 0.85) (28)
0.85 = x
Therefore, 420
0.003 ( 85.714 - 0 )
Es' = = 0.00300
85.714 when rmin > r <
Therefore, use 0.00333 for As
Ey < Es' Therefore, compression steel yields!
As = f b d1
= ( 0.00333 ) ( 200) ( 200
IF COMPRESSION STEEL YIELDS: IF COMPRESSION STEEL DOESN'T YIELD: = 133.3333333333 mm2
Es' 0.00300
fs' = fy = 420 MPa fs' = ( fy ) = ( 420 )
Ey 0.00210 minimum edge distance = cover - stirrup
As' = As2 = 600 MPa = ( 40 ) + ( 10 ) + ( 2 x 10 )
= -668.358655 mm2 = 70
Mn2 -56.14x10e6
As' = =
fs' ( d - d' ) 600.00 ( 200 - 0 ) For tension reinforcement:
= -467.85106 mm2 using 16 mm f bars
As
N= =
Therefore, COMPRESSION STEEL YIELDS Ad
As' = -668.35865457 mm2
checking the spacing:
As = As1 + As2 200 - 2( 40 ) - 2( 10 ) - 5( 16 )
= 825.71428571 + -668.35865 S=
= 157.35563114 mm2 4

minimum edge distance = cover - stirrupf - 2 x stirrupf


= ( 40 ) + ( 10 ) + ( 2 x 10 )
= 70 mm

For compression reinforcement:


using 20 mm f bars Ad = 314.15926
As' -668.35865
N= = = -2.127 say -2 pcs.
Ad 314.15926 arrangement: 2 bars horizontally

checking the spacing:


200 - 2( 40 ) - 1( 20 )
S= = 80 mm > 25 mm OK!
1

For tension reinforcement:


using 20 mm f bars Ad = 314.15926
As 157.355631
N= = = 0.501 say 1 pcs.
Ad 314.15926 arrangement: 3 bars horizontally

checking the spacing:


200 - 2( 40 ) - 2( 10 ) - 3( 20 )
S= = 20 mm = 25 mm OK!
2

AT MIDSPAN :

Mu 25.502
Mn = = = 28.3355556 kN-m
f 0.9

Assuming single reinforcement


( 0.85 ) f1 fc' 3
rmax = x
fy 7
(0.85)( 0.85) ( 28) 3
= x
0 7
= 0.02064

As = rmax b d
= ( 0.02064 ) ( 200 ) ( 200 )
= 825.7142857 mm2

1 r fy
Mu = f fy f b d2 1- x
1.7 fc'
1 ( 0.02064 ) ( 420 )
= ( 0.0206 ) ( 420 ) ( 0.9 ) ( 200 ) ( 200 )2 1 - x
1.7 28
= 51053914.29 MN-mm
Mu = 51.05391429 kN-m

Mu 51.053914286
Mn = = = 56.7265714 kN-m
f 0.9
56.72657143 > 28.335555556 Therefore, it's a single reinforcement only!

Mn1 = 56.72657143 kN-m IF DOUBLY-REINFORCED BEAM IF SINGLY REINFORCED BEAM


As1 = 825.7142857 mm2
Mn2 = 28.3355555556 - 56.7265714
= -28.391015873 kN-m
Mu = f Rn b d²
From Mn2 = As2 fy ( d - d' ) 25.502 = 0.9 Rn ( 200
Mn2 -28.3910 x10e6 Rn = 3.54194 Mpa
As2 = =
fy ( d -d' ) 420 ( 200 - 0 ) ρ= 0.85 fc' 1 - 1- 2 Rn
= -337.988284203 mm2 fy 0.85 fc

Check if compression steel yields, when Ey < Es' : ρ= 0.85 28 1-


where: 420
fy 420
Ey = = = 0.00210
Es 200000 ρ= 0.00918 Mpa

and 0.003 Es' 0.003 ( c - d' )


= ; Es' =
c c - d' c
solving for c: a 1.4 fc'
c= rmin = or =
f1 2Mn1 fy 4 fy
from Mn1 = As1 fy ( d - a/2) ; a = 2d - = 0.0033333333 or 0.0031497039
As1 fy
a= 72.857 mm (0.85) f1 fc'
72.8571429 rmax = x
therefore c = = 85.714 mm fy
0.85 (0.85)( 0.85) (28)
Therefore, =
0.003 ( 85.714 - 0 ) 420
Es' = = 0.00300
85.714
when rmin < r
Ey < Es' Therefore, compression steel yields! Therefore, use 0.00918

As = f b d1
IF COMPRESSION STEEL YIELDS: IF COMPRESSION STEEL DOESN'T YIELDS: = ( 0.00918 ) ( 200)
Es' 0.00300 = 367.0463574 mm2
fs' = fy = 420 MPa fs' = ( fy ) = ( 420 )
Ey 0.00210
As' = As2 = 600 MPa minimum edge distance =
= -337.988284 mm2 =
Mn2 -28.39x10e6 =
As' = =
fs' ( d - d' ) 600.00 ( 200 - 0 )
= -236.5918 mm2 For tension reinforcement:
using 16 mm f bars
As
Therefore, COMPRESSION STEEL YIELDS N=
As' = -337.9882842 mm2 Ad

As = As1 + As2 checking the spacing:


= 825.71428571 + -337.98828 200 - 2( 40 ) - 2( 10 ) - 3( 16 )
= 487.72600151 mm2 S=
2
minimum edge distance = cover - stirrupf - 2 x stirrupf
= ( 40 ) + ( 10 ) + ( 2 x 10 )
= 70 mm

For compression reinforcement:


using 20 mm f bars Ad = 314.15926
As' -337.98828
N= = = -1.076 say -1 pcs.
Ad 314.15926 arrangement: 2 bars horizontally

checking the spacing:


200 - 2( 40 ) - 1( 20 )
S= = 100 mm > 25 mm OK!
1

For tension reinforcement:


using 20 mm f bars Ad = 314.15926
As 487.726002
N= = = 1.552 say 2 pcs.
Ad 314.15926 arrangement: 4 bars horizontally

checking the spacing:


200 - 2( 40 ) - 2( 10 ) - 3( 20 )
S= = 6.67 mm < 25 mm NOT OK!
3

AT END 2 :

Mu 25.510
Mn = = = 28.3444444 kN-m
f 0.9

Assuming single reinforcement


( 0.85 ) f1 fc' 3
rmax = x
fy 7
(0.85)( 0.85) ( 28) 3
= x
420 7
= 0.02064

As = rmax b d
= ( 0.02064 ) ( 200 ) ( 200 )
= 825.7142857 mm2

1 r fy
Mu = f fy f b d2 1- x
1.7 fc'
1 ( 0.02064 ) ( 420 )
= ( 0.0206 ) ( 420 ) ( 0.9 ) ( 200 ) ( 200 )2 1 - x
1.7 28
= 51053914.29 MN-mm
Mu = 51.05391429 kN-m

Mu 51.053914286
Mn = = = 56.7265714 kN-m
f 0.9
56.72657143 > 28.344444444 Therefore, it's a single reinforcement only!

Mn1 = 56.72657143 kN-m IF DOUBLY-REINFORCED BEAM IF SINGLY REINFORCED BEAM


As1 = 825.7142857 mm2
Mn2 = 28.3444444444 - 56.7265714
= -28.3821269841 kN-m
Mu = f Rn b d²
From Mn2 = As2 fy ( d - d' ) 25.510 = 0.9 Rn ( 200
Mn2 -28.3821 x10e6 Rn = 3.54306 Mpa
As2 = =
fy ( d -d' ) 420 ( 200 - 0 ) ρ= 0.85 fc' 1 - 1- 2 Rn
= -337.882464097 mm2 fy 0.85 fc

Check if compression steel yields, when Ey < Es' : ρ= 0.85 28 1-


where: 420
fy 420
Ey = = = 0.00210
Es 200000 ρ= 0.00918 Mpa

and 0.003 Es' 0.003 ( c - d' )


= ; Es' =
c c - d' c

solving for c: a 1.4 fc'


c= rmin = or =
f1 2Mn1 fy 4 fy
from Mn1 = As1 fy ( d - a/2) ; a = 2d - = 0.0033333333 or 0.0031497039
As1 fy
a= 72.857 mm (0.85) f1 fc'
72.86 rmax = x
therefore c = = 85.714 mm fy
0.85 (0.85)(0.85 ) (28)
Therefore, =
0.003 ( 85.714 - 0 ) 420
Es' = = 0.00300
85.714
when rmin < r
Ey < Es' Therefore, compression steel yields! Therefore, use 0.00918

As = f b d1
IF COMPRESSION STEEL YIELDS: IF COMPRESSION STEEL DOESN'T YIELDS: = ( 0.00918 ) ( 200)
Es' 0.00300 = 367.1726284 mm2
fs' = fy = 420 MPa fs' = ( fy ) = ( 420 )
Ey 0.00210
As' = As2 = 600 MPa minimum edge distance =
= -337.882464 mm2 =
Mn2 -28.38x10e6 =
As' = =
fs' ( d - d' ) 600.00 ( 200 - 0 )
= -236.51772 mm2 For tension reinforcement:
using 16 mm f bars
As
Therefore, COMPRESSION STEEL YIELDS N=
As' = -337.8824641 mm2 Ad

As = As1 + As2 checking the spacing:


= 825.71428571 + -337.88246 200 - 2( 40 ) - 2( 10 ) - 6( 16 )
= 487.83182162 mm2 S=
5
minimum edge distance = cover - stirrupf - 2 x stirrupf
= ( 40 ) + ( 10 ) + ( 2 x 10 )
= 70 mm

For compression reinforcement:


using 20 mm f bars Ad = 314.15926
As' -337.88246
N= = = -1.076 say -1 pcs.
Ad 314.15926 arrangement: 2 bars horizontally

checking the spacing:


200 - 2( 40 ) - 1( 20 )
S= = 100 mm > 25 mm OK!
1

For tension reinforcement:


using 20 mm f bars Ad = 314.15926
As 487.831822
N= = = 1.553 say 2 pcs.
Ad 314.15926 arrangement: 5 bars horizontally

checking the spacing:


200 - 2( 40 ) - 2( 10 ) 4( 20 )
S= = 0 mm < 25 mm NOT OK!
4

DESIGN OF VERTICAL STIRRUPS

Vu = 0 kN

Vud = Vu - Wu d
= 0 - ( 0 ) ( 0.2 )
= 0 kN
= 0 N

1
Vc = fc' bw d
6
1
= 28 ( 200 ) ( 200 )
6
= 35,276.684 N

f Vc 0.85 ( 35,276.684 )
= = 13228.7565 N
2 2

f Vc
Vud < Therefore, the beam doesn't need web reinforcement!
2

determine spacing s of the stirrups, using 10 mm stirrups


Av fy d
s=
Vs
where : Vud
Vs = - Vc
f
0
= - 35,276.684
0.85
= -35276.684 N

f
Av = 2 4 ( 10 )2 = 157.079633 mm2

( 157.08 ) ( 420 ) ( 200 )


s= = -374.03428 mm say -380 mm
-35276.684 ( spacing based from Vud )

determine the length or portion of the beam that needs stirrups,

d = 200mm

Vud = 0 N

f Vs
Vu = 0 N
f Vs = 29,985 N
1/2 fVc = 13,229 N
x= ### m
stirrups needed here
0N - 0x= 13,229
x= ### m

to provide the needed spacing based from other values of V u to minimize stirrups,

At x = 1 m
Vu = 0 - 0(1)
= 0 N
Vu
Vs = - Vc
f
0
= - 35,276.684
0.85
= -35276.684 N

A v fy d
s=
Vs
( 157.08 ) ( 420 ) ( 200 )
= = -374.03428 mm say -380 mm
-35276.684

check for maximum spacing :


1
compare Vs -35,277
= N to fc' bw d
3
1
? 28 ( 200 ) ( 200 )
3
-35,277 N < 70,553 N
d 200
therefore, max. s = = = 100 mm or 600 mm
2 2
Smax = 100 mm

S < Smax use S = -380 mm

At x = 1.5 m
Vu = 0 - 0 ( 1.5 )
= 0 N
Vu
Vs = - Vc
f
0
= - 35,276.684
0.85
= -35276.684 N

Av fy d
s=
Vs
( 157.08 ) ( 420 ) ( 200 )
= = -374.03428 mm say -380 mm
-35276.684

check for maximum spacing :


1
compare Vs = -35,277 N to fc' bw d
3
1
? 28 ( 200 ) ( 200 )
3
-35,277 N < 70,553 N
d 200
therefore, max. s = = = 100 mm or 600 mm
2 2
Smax = 100 mm

S < Smax use S = -380 mm

OPTIONAL SECTION

At x = 2 m
Vu = 0 - 0(2)
= 0 N
Vu
Vs = - Vc
f
0
= - 35,276.684
0.85
= -35276.684 N

Av fy d
s=
Vs
( 157.08 ) ( 420 ) ( 200 )
= = -374.03428 mm say -380 mm
-35276.684

check for maximum spacing :


1
compare Vs = -35,277 N to fc' bw d
3
1
? 28 ( 200 ) ( 200 )
3
-35,277 N < 70,553 N
d 200
therefore, max. s = = = 100 mm or 600 mm
2 2
Smax = 100 mm

S < Smax use S = -380 mm

At x = 2.5 m
Vu = 0 - 0 ( 2.5 )
= 0 N
Vu
Vs = - Vc
f
0
= - 35,276.684
0.85
= -35276.684 N

Av fy d
s=
Vs
( 157.08 ) ( 420 ) ( 200 )
= = -374.03428 mm say -380 mm
-35276.684

check for maximum spacing :


1
compare Vs -35,277
= N to fc' bw d
3
1
? 28 ( 200 ) ( 200 )
3
-35,277 N < 70,553 N
d 200
therefore, max. s = = = 100 mm or 600 mm
2 2
Smax = 100 mm

S < Smax use S = -380 mm

At x = 3 m
Vu = 0 - 0(3)
= 0 N
Vu
Vs = - Vc
f
0
= - 35,276.684
0.85
= -35276.684 N

Av fy d
s=
Vs
( 157.08 ) ( 420 ) ( 200 )
= = -374.03428 mm say -380 mm
-35276.684

check for maximum spacing :


1
compare Vs = -35,277 N to fc' bw d
3
1
? 28 ( 200 ) ( 200 )
3
-35,277 N < 70,553 N
d 200
therefore, max. s = = = 100 mm or 600 mm
2 2
Smax = 100 mm

S < Smax use S = -380 mm

At x = 3.5 m
Vu = 0 - 0 ( 3.5 )
= 0 N
Vu
Vs = - Vc
f
0
= - 35,276.684
0.85
= -35276.684 N

Av fy d
s=
Vs
( 157.08 ) ( 420 ) ( 200 )
= = -374.03428 mm say -380 mm
-35276.684

check for maximum spacing :


1
compare Vs = -35,277 N to fc' bw d
3
1
? 28 ( 200 ) ( 200 )
3
-35,277 N < 70,553 N
d 200
therefore, max. s = = = 100 mm or 600 mm
2 2
Smax = 100 mm

S < Smax use S = -380 mm

Number of Stirrups and Spacing :

a. ) along the depth


@ 50 mm spacing = 1 pc

@ -380 mm spacing
200 - 50 = 150 mm
150 mm
= -0.39 say 0 pcs
-380 mm

length occupied by 0 pcs stirrups :


( 0 ) ( -380 ) = 0 mm

length already has stirrups :


0 + 50 = 50 mm

b. ) along the 1 m length


@ -380 mm spacing
1000 - 50 = 950 mm
950 mm
= -2.5 say -2 pcs
-380 mm

length occupied by -2 pcs stirrups :


( -2 ) ( -380 ) = 760 mm

length already has stirrups :


760 + 50 = 810 mm

c. ) along the 1.5 m length


@ -380 mm spacing
1,500 - 810 = 690 mm
690 mm
= -1.82 say -1 pcs
-380 mm

length occupied by -1 pcs stirrups :


( -1 ) ( -380 ) = 380 mm

length already has stirrups :


380 +810 = 1190 mm

d. ) along the 2 m length


@ -380 mm spacing
2000 - 1190 = 810 mm
810 mm
= -2.13 say -2 pcs
-380 mm

length occupied by -2 pcs stirrups :


( -2 ) ( -380 ) = 760 mm

length already has stirrups :


760 + 1190 = 1950 mm

e. ) along the 2.5 m length


@ -380 mm spacing
2500 - 1950 = 550 mm
550 mm
= -1.45 say -1 pcs
-380 mm

length occupied by -1 pcs stirrups :


( -1 ) ( -380 ) = 380 mm

length already has stirrups :


380 + 1950 = 2330 mm
200 )²

1- 2( 0.07306 )
0.85 (28)

28
or
4 x 420
Therefore, use 0.00333

7
3
= 0.02064
7

rmax

cover - stirrupf - 2 x stirrupf


( 40 ) + ( 10 ) + ( 2 x 10 )
mm

Ad = 201.0619264
133.33333333
= 0.663 say 1 pcs.
201.0619264 arrangement: 5 bars horizontally

200 - 2( 40 ) - 2( 10 ) - 5( 16 )
= 5 mm < 25 mm NOT OK!

)( 200 )²

0.85 fc

1- 2( 3.5419444444 )
0.85 (28)
1.4 28
or
420 4 x 420
0.0031497039 Therefore, use 0.00333

7
7
x = 0.02064
7

< rmax
for As

( 200 )

cover - stirrupf - 2 x stirrupf


( 40 ) + ( 10 ) + ( 2 x 10 )
70 mm

mm f bars Ad = 201.0619264
367.04635744
= = 1.826 say 2 pcs.
201.0619264 arrangement: 3 bars horizontally

200 - 2( 40 ) - 2( 10 ) - 3( 16 )
= 26 mm > 25 mm OK!

)( 200 )²

0.85 fc

1- 2( 3.5430555556 )
0.85 (28)

1.4 28
or
420 4 x 420
0.0031497039 Therefore, use 0.00333

7
3
x = 0.02064
7

< rmax
for As

( 200 )

cover - stirrupf - 2 x stirrupf


( 40 ) + ( 10 ) + ( 2 x 10 )
70 mm

mm f bars Ad = 201.0619264
367.1726284
= = 1.826 say 2 pcs.
201.0619264 arrangement: 6 bars horizontally

200 - 2( 40 ) - 2( 10 ) - 6( 16 )
= 0.8 mm < 25 mm NOT OK!

You might also like