Design of Beam Reinforcement
Design of Beam Reinforcement
Given:
Wu = 0 kN d' =0 mm
fc' = 28 MPa
fy = 420 MPa
f = 0.9
b1 = 0.85 d= 200 mm
Es = 200000 MPa
d= 200 mm
b= 200 mm
d' = 0 mm
L= 4 m b = 200 mm
cover : 40 mm
using 10 mm f stirrups
Wu = 0 kN
L=4 m
0 Vu at d distance
Shear Diagram in KN
d= 0.2 m
0
25.502 kN-m
Moment Diagram
AT END 1 :
Mu 0.526
Mn = = = 0.58444444 kN-m
f 0.9
As = rmax b d
= ( 0.02064 ) ( 200 ) ( 200 )
= 825.7142857 mm2
1 r fy
Mu = r fy f b d2 1- x
1.7 fc'
1 ( 0.02064 ) ( 420 )
= ( 0.0206 ) ( 420 ) ( 0.9 ) ( 200 ) ( 200 )2 1 - x
1.7 28
= 51053914.29 MN-mm
Mu = 51.05391429 kN-m
Mu 51.053914286
Mn = = = 56.7265714 kN-m
f 0.9
56.72657143 > 0.5844444444 Therefore, it's a single reinforcement only!
AT END 1
Mn1 = 56.72657143 kN-m IF DOUBLY-REINFORCED BEAM
As1 = 825.7142857 mm2 IF SINGLY REINFORCED BEAM
Mn2 = 0.5844444444 - 56.7265714
= -56.1421269841 kN-m Mu = f Rn b d²
0.526 = 0.9 Rn ( 200 ) (
From Mn2 = As2 fy ( d - d' ) 0.0730556 Mpa
Mn2 -56.1421 x10e6
As2 = = ρ= 0.85 1 - 1- 2 Rn
fy ( d -d' ) 420 ( 200 - 0 ) fy 0.85 fc
= -668.358654573 mm2
ρ= 0.85 28 1-
Check if compression steel yields, when Ey < Es' : 420
where:
fy 420
Ey = = = 0.00210 ρ= 0.0001742
Es 200000
AT MIDSPAN :
Mu 25.502
Mn = = = 28.3355556 kN-m
f 0.9
As = rmax b d
= ( 0.02064 ) ( 200 ) ( 200 )
= 825.7142857 mm2
1 r fy
Mu = f fy f b d2 1- x
1.7 fc'
1 ( 0.02064 ) ( 420 )
= ( 0.0206 ) ( 420 ) ( 0.9 ) ( 200 ) ( 200 )2 1 - x
1.7 28
= 51053914.29 MN-mm
Mu = 51.05391429 kN-m
Mu 51.053914286
Mn = = = 56.7265714 kN-m
f 0.9
56.72657143 > 28.335555556 Therefore, it's a single reinforcement only!
As = f b d1
IF COMPRESSION STEEL YIELDS: IF COMPRESSION STEEL DOESN'T YIELDS: = ( 0.00918 ) ( 200)
Es' 0.00300 = 367.0463574 mm2
fs' = fy = 420 MPa fs' = ( fy ) = ( 420 )
Ey 0.00210
As' = As2 = 600 MPa minimum edge distance =
= -337.988284 mm2 =
Mn2 -28.39x10e6 =
As' = =
fs' ( d - d' ) 600.00 ( 200 - 0 )
= -236.5918 mm2 For tension reinforcement:
using 16 mm f bars
As
Therefore, COMPRESSION STEEL YIELDS N=
As' = -337.9882842 mm2 Ad
AT END 2 :
Mu 25.510
Mn = = = 28.3444444 kN-m
f 0.9
As = rmax b d
= ( 0.02064 ) ( 200 ) ( 200 )
= 825.7142857 mm2
1 r fy
Mu = f fy f b d2 1- x
1.7 fc'
1 ( 0.02064 ) ( 420 )
= ( 0.0206 ) ( 420 ) ( 0.9 ) ( 200 ) ( 200 )2 1 - x
1.7 28
= 51053914.29 MN-mm
Mu = 51.05391429 kN-m
Mu 51.053914286
Mn = = = 56.7265714 kN-m
f 0.9
56.72657143 > 28.344444444 Therefore, it's a single reinforcement only!
As = f b d1
IF COMPRESSION STEEL YIELDS: IF COMPRESSION STEEL DOESN'T YIELDS: = ( 0.00918 ) ( 200)
Es' 0.00300 = 367.1726284 mm2
fs' = fy = 420 MPa fs' = ( fy ) = ( 420 )
Ey 0.00210
As' = As2 = 600 MPa minimum edge distance =
= -337.882464 mm2 =
Mn2 -28.38x10e6 =
As' = =
fs' ( d - d' ) 600.00 ( 200 - 0 )
= -236.51772 mm2 For tension reinforcement:
using 16 mm f bars
As
Therefore, COMPRESSION STEEL YIELDS N=
As' = -337.8824641 mm2 Ad
Vu = 0 kN
Vud = Vu - Wu d
= 0 - ( 0 ) ( 0.2 )
= 0 kN
= 0 N
1
Vc = fc' bw d
6
1
= 28 ( 200 ) ( 200 )
6
= 35,276.684 N
f Vc 0.85 ( 35,276.684 )
= = 13228.7565 N
2 2
f Vc
Vud < Therefore, the beam doesn't need web reinforcement!
2
f
Av = 2 4 ( 10 )2 = 157.079633 mm2
d = 200mm
Vud = 0 N
f Vs
Vu = 0 N
f Vs = 29,985 N
1/2 fVc = 13,229 N
x= ### m
stirrups needed here
0N - 0x= 13,229
x= ### m
to provide the needed spacing based from other values of V u to minimize stirrups,
At x = 1 m
Vu = 0 - 0(1)
= 0 N
Vu
Vs = - Vc
f
0
= - 35,276.684
0.85
= -35276.684 N
A v fy d
s=
Vs
( 157.08 ) ( 420 ) ( 200 )
= = -374.03428 mm say -380 mm
-35276.684
At x = 1.5 m
Vu = 0 - 0 ( 1.5 )
= 0 N
Vu
Vs = - Vc
f
0
= - 35,276.684
0.85
= -35276.684 N
Av fy d
s=
Vs
( 157.08 ) ( 420 ) ( 200 )
= = -374.03428 mm say -380 mm
-35276.684
OPTIONAL SECTION
At x = 2 m
Vu = 0 - 0(2)
= 0 N
Vu
Vs = - Vc
f
0
= - 35,276.684
0.85
= -35276.684 N
Av fy d
s=
Vs
( 157.08 ) ( 420 ) ( 200 )
= = -374.03428 mm say -380 mm
-35276.684
At x = 2.5 m
Vu = 0 - 0 ( 2.5 )
= 0 N
Vu
Vs = - Vc
f
0
= - 35,276.684
0.85
= -35276.684 N
Av fy d
s=
Vs
( 157.08 ) ( 420 ) ( 200 )
= = -374.03428 mm say -380 mm
-35276.684
At x = 3 m
Vu = 0 - 0(3)
= 0 N
Vu
Vs = - Vc
f
0
= - 35,276.684
0.85
= -35276.684 N
Av fy d
s=
Vs
( 157.08 ) ( 420 ) ( 200 )
= = -374.03428 mm say -380 mm
-35276.684
At x = 3.5 m
Vu = 0 - 0 ( 3.5 )
= 0 N
Vu
Vs = - Vc
f
0
= - 35,276.684
0.85
= -35276.684 N
Av fy d
s=
Vs
( 157.08 ) ( 420 ) ( 200 )
= = -374.03428 mm say -380 mm
-35276.684
@ -380 mm spacing
200 - 50 = 150 mm
150 mm
= -0.39 say 0 pcs
-380 mm
1- 2( 0.07306 )
0.85 (28)
28
or
4 x 420
Therefore, use 0.00333
7
3
= 0.02064
7
rmax
Ad = 201.0619264
133.33333333
= 0.663 say 1 pcs.
201.0619264 arrangement: 5 bars horizontally
200 - 2( 40 ) - 2( 10 ) - 5( 16 )
= 5 mm < 25 mm NOT OK!
)( 200 )²
0.85 fc
1- 2( 3.5419444444 )
0.85 (28)
1.4 28
or
420 4 x 420
0.0031497039 Therefore, use 0.00333
7
7
x = 0.02064
7
< rmax
for As
( 200 )
mm f bars Ad = 201.0619264
367.04635744
= = 1.826 say 2 pcs.
201.0619264 arrangement: 3 bars horizontally
200 - 2( 40 ) - 2( 10 ) - 3( 16 )
= 26 mm > 25 mm OK!
)( 200 )²
0.85 fc
1- 2( 3.5430555556 )
0.85 (28)
1.4 28
or
420 4 x 420
0.0031497039 Therefore, use 0.00333
7
3
x = 0.02064
7
< rmax
for As
( 200 )
mm f bars Ad = 201.0619264
367.1726284
= = 1.826 say 2 pcs.
201.0619264 arrangement: 6 bars horizontally
200 - 2( 40 ) - 2( 10 ) - 6( 16 )
= 0.8 mm < 25 mm NOT OK!