The Fourier Transform                                             • Product:                               h(x)δ(x) = h(0)δ(x)
and its Applications                                             • δ 2 (x) - no meaning
The Fourier Transform:                                                      •                                            δ(x) ∗ δ(x) = δ(x)
                      Z       ∞
              F (s) =              f (x)e−i2πsx dx                          • Fourier Transform of δ(x):                          F{δ(x)} = 1
                          −∞
                                                                            • Derivatives:
The Inverse Fourier Transform:                                                                   R∞
                       Z ∞                                                       –                 −∞
                                                                                                         δ (n) (x)f (x)dx = (−1)n f (n) (0)
               f (x) =     F (s)ei2πsx ds                                        –                                    δ 0 (x) ∗ f (x) = f 0 (x)
                              −∞
                                                                                 –                                                   xδ(x) = 0
Symmetry Properties:                                                             –                                               0
                                                                                                                               xδ (x) = −δ(x)
If g(x) is real valued, then G(s) is Hermitian:
                                                                            • Meaning of δ[h(x)]:
                       G(−s) = G∗ (s)
                                                                                                           X δ(x − xi )
If g(x) is imaginary valued, then G(s) is Anti-Hermitian:                                     δ[h(x)] =
                                                                                                              i
                                                                                                                  |h0 (xi )|
                      G(−s) = −G∗ (s)
                                                                                       The Shah Function: III(x)
In general:                                                                                                  P∞
                                                                            • Sampling:       III(x)g(x) = n=−∞ g(n)δ(x − n)
g(x) = e(x) + o(x) = eR (x) + ieI (x) + oR (x) + ioI (x)                                                        P∞
                                                                            • Replication:       III(x) ∗ g(x) = n=−∞ g(x − n)
G(s) = E(s) + O(s) = ER (s) + iEI (s) + iOI (s) + OR (s)
                                                                            • Fourier Transform:                       F{III(x)} = III(s)
Convolution:
                                                                                                                          1
                                                                                                                               δ(x − na )
                                                                                                         P                   P
                              Z   ∞                                         • Scaling:       III(ax) =       δ(ax − n) = |a|
                         4
               (g ∗ h)(x) =           g(ξ)h(x − ξ)dξ
                              −∞                                                       Even and Odd Impulse Pairs
Autocorrelation:       Let g(x) be a function satisfying Even: II(x) = 1 δ(x + 1 ) + 1 δ(x − 1 )
R∞        2                                                            2       2     2       2
 −∞
    |g(x)| dx < ∞ (finite energy) then
                                                                       1       1     1       1
                                                         Odd: II (x) = 2 δ(x + 2 ) − 2 δ(x − 2 )
                               Z ∞
            4               4
     Γg (x) = (g ∗ ? g)(x) =        g(ξ)g ∗ (ξ − x)dξ    Fourier Transforms:                                             F{II(x)} = cos πs
                                        −∞
                                  = g(x) ∗ g ∗ (−x)                                                                    F{II (x)} = i sin πs
Cross correlation: Let g(x) and h(x) be functions with                                 Fourier Transform Theorems
finite energy. Then
                        Z ∞                                                 • Linearity:       F{αf (x) + βg(x)} = αF (s) + βG(s)
            ∗        4
          (g ? h)(x) =       g ∗ (ξ)h(ξ + x)dξ                              • Similarity:                            F{g(ax)} =          1     s
                         −∞                                                                                                             |a| G( a )
                        Z ∞
                     =       g ∗ (ξ − x)h(ξ)dξ                              • Shift:                         F{g(x − a)} = e−i2πas G(s)
                                   −∞
                                                                                                                                        b
                         =        (h∗ ? g)∗ (−x)                                                     F{g(ax − b)} =             1 −i2πs a
                                                                                                                               |a| e      G( as )
                The Delta Function: δ(x)                                    • Rayleigh’s:
                                                                                                      R∞               R∞
                                                                                                          |g(x)|2 dx = −∞ |G(s)|2 ds
                                                                                                         −∞
                                                              1
  • Scaling:                                       δ(ax) =   |a| δ(x)       • Power:
                                                                                              R∞                    R∞
                                                                                                  f (x)g ∗ (x)dx = −∞ F (s)G∗ (s)ds
                                                                                               −∞
                                      R∞
  • Sifting:                          −∞
                                           δ(x − a)f (x)dx = f (a)          • Modulation:
                                      R∞
                                      −∞
                                           δ(x)f (x + a)dx = f (a)                   F{g(x)cos(2πs0 x)} = 21 [G(s − s0 ) + G(s + s0 )]
  • Convolution:                               δ(x) ∗ f (x) = f (x)         • Convolution:                          F{f ∗ g} = F (s)G(s)
                                                                        1
• Autocorrelation:                             F{g ∗ ? g} = |G(s)|2           • Standard Deviation of Instantaneous Power: ∆x
                                                                                           R∞ 2                "R ∞               #2
• Cross Correlation:                      F{g ∗ ? f } = G∗ (s)F (s)                 2  4    −∞
                                                                                                x |f (x)|2 dx    −∞
                                                                                                                     x|f (x)|2 dx
                                                                                (∆x) =      R∞                − R∞
                                                                                             −∞
                                                                                                 |f (x)|2 dx      −∞
                                                                                                                     |f (x)|2 dx
• Derivative:
                                                                                                  R∞                                "R ∞                   #2
    –                                                0
                                              F{g (x)} = i2πsG(s)                           4             s2 |F (s)|2 ds                    s|F (s)|2 ds
                                                                                  (∆s)2
                                                                                            =      R−∞
                                                                                                     ∞                          −    R−∞
                                                                                                                                       ∞
                                             (n)                 n                                   −∞
                                                                                                           |F (s)|2 ds                −∞
                                                                                                                                            |F (s)|2 ds
    –                                 F{g          (x)} = (i2πs) G(s)
                                                     i n (n)
    –                                F{xn g(x)} = ( 2π ) G (s)                                                                                              1
                                                                                   – Uncertainty Relation:                              (∆x)(∆s) ≥         4π
• Fourier Integral: If g(x) is of bounded variation and
                                                                                                 Central Limit Theorem
  is absolutely integrable, then
                                        1                                   Given a function f (x), if F (s) has a single absolute
             F −1 {F{g(x)}} =             [g(x+ ) + g(x− )]                 maximum at s = 0; and, for sufficiently small |s|,
                                        2
                                                                            F (s) ≈ a − cs2 where 0 < a < ∞ and 0 < c < ∞,
                                                                            then:          √     √
• Moments:                                                                                [ nf ( nx)]∗n
                                                                                                             r
                                                                                                               πa − πa x2
                       Z    ∞
                                                                                      lim                 =       e c
                                f (x)dx = F (0)                                      n→∞        an              2
                        −∞
                                                                            and
                       ∞                                                                                                1
                                                                                                                  an+ 2
                   Z
                                              i 0
                                                                                                                            r
                                                                                                      ∗n                        π − πa x2
                            xf (x)dx =          F (0)                                        [f (x)]       ≈                      e cn
                      −∞                     2π                                                                     1           c
                                                                                                                   n2
              Z   ∞
                                              i n (n)                                                 Linear Systems
                       xn f (x)dx = (           ) F (0)
                −∞                           2π
                                                                            For a linear system w(t) = S[v(t)] with response h(t, τ )
• Miscellaneous:                                                            to a unit impulse at time τ :
  If F{g(x)} = G(s) then                        F{G(x)} = g(−s)
  and                                          F{g ∗ (x)} = G∗ (−s)                 S[αv1 (t) + βv2 (t)] = αS[v1 (t)] + βS[v2 (t)]
                                                                                                     Z ∞
             Z   x              
                                                          G(s)                               w(t) =       v(τ )h(t, τ )dτ
         F             g(ξ)dξ        = 21 G(0)δ(s) +                                                          −∞
                  −∞                                      i2πs
                                                                            If such a system is time-invariant, then:
                      Function Widths                                                             w(t − τ ) = S[v(t − τ )]
• Equivalent Width                                                          and
                                R∞                                                                            Z   ∞
                        4        −∞
                                    f (x)dx          F (0)                                  w(t)      =               v(τ )h(t − τ )dτ
                Wf      =                          =                                                           −∞
                                     f (0)           f (0)
                                                                                                      =       (v ∗ h)(t)
                                   F (0)       1
                        =       R∞          =                               The eigenfunctions of any linear time-invariant system
                                 −∞
                                    F (s)ds   W F                           are ei2πf0 t , since for a system with transfer function H(s),
                                                                            the response to an input of v(t) = ei2πf0 t is given by:
• Autocorrelation Width                                                     w(t) = H(f0 )ei2πf0 t .
                     R∞
                       4         −∞
                                      f ∗ ? f dx                                                   Sampling Theory
          Wf ∗ ?f      =
                                 f∗ ?   f |x=0
                                                                                                      x
                                                                                         ĝ(x)    =    III(
                                                                                                        )g(x)
                                   |F (0)|2       1                                                   X
                       =        R∞
                                            2
                                               =                                                       ∞
                                 −∞
                                    |F (s)| ds   W|F |2                                               X
                                                                                                  = X      g(nX)δ(x − nX)
                                                                                                           n=−∞
                                                                        2
                     Ĝ(s)    = XIII(Xs) ∗ G(s)                                                              DFT Theorems
                                  ∞
                                 X           n
                              =       G(s − )                                        • Linearity:                    DFT {αfn + βgn } = αFm + βGm
                                n=−∞
                                            X
                                                                                                                                        2π
                                                                                     • Shift:      DFT {fn−k } = Fm e−i N km (f periodic)
Whittaker-Shannon-Kotelnikov Theorem: For a bandlim-
                                                                                                          PN −1     ∗
                                                                                                                            PN −1      ∗
ited function g(x) with cutoff frequencies ±sc , and with                            • Parseval’s:          n=0 fn gn = N
                                                                                                                          1
                                                                                                                              m=0 Fm Gm
no discrete sinusoidal components at frequency sc ,                                                                        PN −1
                        ∞                                                            • Convolution:      Fm Gm = DFT { k=0 fk gn−k }
                        X              n                  n
          g(x) =               g(         )sinc[2sc (x −     )]
                       n=−∞
                                      2sc                2sc                                        The Hilbert Transform
    Fourier Tranforms for Periodic Functions                                       The Hilbert Transform of f(x):
                                                                        x
For a function p(x) with period L, let f (x) =                 p(x) u ( L ).                         4 1
                                                                                                         Z ∞
                                                                                                               f (ξ)
Then                                                                                         FHi (x) =               dξ (CPV)
                                                                                                       π −∞ ξ − x
                              X∞
            p(x) = f (x) ∗         δ(x − nL)                                       The Inverse Hilbert Transform:
                                            n=−∞
                                                                                                    1 ∞ FHi (ξ)
                                                                                                     Z
                                   ∞
                               1 X      n      n                                          f (x) = −               dξ + fDC (CPV)
               P (s)    =            F ( )δ(s − )                                                   π −∞ ξ − x
                               L n=−∞ L        L
                                                                                                                                                             1
The complex fourier series representation:                                           • Impulse response:                                                  − πx
                                      ∞
                                      X              n
                                                                                     • Transfer function:                                          i sgn(s)
                       p(x) =                cn ei2π L x
                                  n=−∞                                               • Causal functions: A causal function g(x) has Fourier
                                                                                       Transform G(s) = R(s) + iI(s), where I(s) =
where
                                                                                       H{R(s)}.
                              1   n
                cn     =        F( )                                                 • Analytic signals: The analytic signal representation
                              L L
                                                                                       of a real-valued function v(t) is given by:
                                  Z   L/2
                              1                            n
                       =                    p(x)e−i2π L x dx                                                         4
                              L   −L/2
                                                                                                         z(t) = F −1 {2H(s)V (s)}
           The Discrete Fourier Transform                                                                     = v(t) − ivHi (t)
Let g(x) be a physical process, and let f (x) = g(x) for 0 ≤                         • Narrow Band Signals: g(t) = A(t) cos[2πf0 t + φ(t)]
x ≤ L, f (x) = 0 otherwise. Suppose f(x) is approximately
bandlimited to ±B Hz, so we sample f (x) every 1/2B                                        – Analytic approx:                    z(t) ≈ A(t)ei[2πf0 t+φ(t)]
seconds, obtaining N = b2BLc samples.                                                      – Envelope:                                       A(t) =| z(t) |
The Discrete Fourier Transform:
                                                                                           – Phase:                              arg[g(t)] = 2πf0 t + φ(t)
                N −1
                             −i 2πmn                                                                                                                1 d
                                                                                           – Instantaneous freq:                       fi = f0 +   2π dt φ(t)
                X
        Fm =           fn e       N         for m = 0, . . . , N − 1
                n=0
                                                                                        The Two-Dimensional Fourier Transform
The Inverse Discrete Fourier Transform:
                 N −1                                                                                        ∞       ∞
               1 X
                                                                                                         Z       Z
                           2πmn
        fn =          Fm ei N                for n = 0, . . . , N − 1                   F (sx , sy ) =                    f (x, y)e−i2π(sx x+sy y) dxdy
               N m=0                                                                                     −∞      −∞
Convolution:                                                                       The Inverse Two-Dimensional Fourier Transform:
         PN −1                                                                                    Z ∞Z ∞
   hn = k=0 fk gn−k                         for n = 0, . . . , N − 1
                                                                                       f (x, y) =        F (sx , sy )ei2π(sx x+sy y) dsx dsy
                                            where f , g are periodic                                 −∞      −∞
Serial Product:                                                                    The Hankel Transform (zero order):
        PN −1
  hn = k=0 fk gn−k                      for n = 0, . . . , 2N − 2                                        Z ∞
                                        where f , g are not periodic                          F (q) = 2π     f (r)J0 (2πrq)rdr
                                                                                                                      0
                                                                               3
The Inverse Hankel Transform (zero order):
                       Z ∞
            f (r) = 2π     F (q)J0 (2πrq)qdq
                           0
Projection-Slice Theorem: The 1-D Fourier transform
Pθ (s) of any projection pθ (x0 ) through g(x, y) is identi-
cal with the 2-D transform G(sx , sy ) of g(x, y), evaluated
along a slice through the origin in the 2-D frequency do-
main, the slice being at angle θ to the x-axis. i.e.:
                  Pθ (s) = G(s cos θ, s sin θ)
Reconstruction by Convolution and Backprojection:
                   Z π
      g(x, y) =         F −1 {| s | Pθ (s)}dθ
                   Z0 π
               =        fθ (x cos θ + y sin θ)dθ
                       0
 where fθ (x0 )   =   (2s2c sinc2sc x0 − s2c sinc2 sc x0 ) ∗ pθ (x0 )
                  compiled by John Jackson