Manufacturing
 Processes	
  
                                (INME	
  4055)	
  
      Pablo	
  G.	
  Caceres-‐Valencia	
  (B.Sc.,	
  Ph.D.,	
  U.K.)	
  
                            GENERAL	
  INFORMATION	
  
	
  Course	
  Number	
   	
  INME	
  4055	
  
	
  Course	
  Title 	
   	
  Manufacturing	
  Processes	
  
	
  Credit	
  Hours 	
   	
  3	
  
	
  Instructor 	
   	
   	
  Dr.	
  Pablo	
  G.	
  Caceres-‐Valencia	
  
	
  Office 	
   	
   	
   	
  LuccheG	
  L-‐212,	
  Extension	
  2358	
  
	
  Office	
  Hours 	
   	
  Mo-‐W-‐Fr	
  from	
  7-‐10am	
  
	
  e-‐mail 	
   	
   	
   	
  pablo.caceres@upr.edu	
  
	
  Web-‐site 	
   	
   	
  hOp://academic.uprm.edu/pcaceres	
  
                                                    Assessment	
  
The	
  course	
  will	
  be	
  assessed	
  in	
  the	
  following	
  manner:	
  
q 	
  1st	
  Exam	
          	
     	
      	
       	
     	
  30%	
  
q 	
  2nd	
  Exam	
   	
            	
      	
       	
     	
  30%           	
         	
  	
  
q 	
  Quizzes*               	
     	
      	
       	
     	
  30%           	
  	
  
q 	
  Others** 	
                   	
      	
       	
     	
  10%	
  	
  
	
  
(*)	
  Date	
  due	
  Moodle	
  Quizzes	
  and	
  Pop-‐Quizzes	
  (max-‐8).	
  Missed	
  quizzes	
  will	
  be	
  
graded	
  with	
  zero.	
  Lack	
  of	
  access	
  to	
  Moodle	
  is	
  not	
  an	
  excuse	
  for	
  not	
  submiGng	
  
your	
  answers.	
  	
  
(**)	
  Class	
  par\cipa\on	
  and	
  A^endance.	
  A'er	
  the	
  third	
  missed	
  class,	
  one	
  point	
  
will	
  be	
  deducted	
  in	
  the	
  final	
  grade	
  for	
  each	
  missed	
  class	
  (up	
  to	
  10	
  points).	
  	
  
      Grades	
                       Final	
  Grade	
  Range	
            Final	
  Le^er	
  Grade	
  
                                          100	
  –	
  90	
                           A	
  
                                              89	
  –	
  80	
                        B	
  
                                              79	
  –	
  70	
                        C	
  
                                              69	
  –	
  60	
                        D	
  
                                               59	
  -‐	
  0	
                       F	
  
                                         AOendance	
  
A^endance	
  and	
  par\cipa\on	
  in	
  the	
  lecture	
  are	
  compulsory	
  and	
  will	
  
be	
  considered	
  in	
  the	
  grading.	
  Students	
  should	
  bring	
  calculators,	
  
rulers,	
  pen	
  and	
  pencils	
  to	
  be	
  used	
  during	
  the	
  lectures.	
  Students	
  are	
  
expected	
  to	
  solve	
  problems	
  during	
  lecture.	
  Please	
  refer	
  to	
  the	
  
Bulle\n	
  of	
  Informa\on	
  for	
  Undergraduate	
  Studies	
  for	
  the	
  
Department	
  and	
  Campus	
  Policies.	
  
                                       TENTATIVES	
  DATES	
  
Week	
                                                         Week	
  
08/12	
         IntroducYon	
  to	
  Manufacturing.	
          08/19	
                   Mechanical	
  ProperYes.	
  	
  
                                                                                                 Q1	
  
08/26	
         Mechanical	
  ProperYes/CasYng	
               09/02	
                    CasYng	
  and	
  Molding.	
  
                                                                                                     Q2	
  	
  
09/09	
                  Forming	
  Processes	
                09/16	
                    Sheet	
  Metal	
  Forming	
  	
  
                                                                                                     Q3	
  
09/23	
                 Powder	
  Metallurgy	
                 09/30	
  	
     Material	
  Removal	
  Processes	
  -‐	
  Cuang	
  
                            Exam	
  1	
  
10/07	
                        Grinding	
                      10/14	
         Processing	
  of	
  Polymers	
  and	
  Composite	
  
                                 	
  	
  Q4	
                                                       Materials	
  
                                                                                                       	
  
10/21	
  	
     Joining	
  and	
  Fastening	
  Processes	
     10/28	
  	
         Joining	
  and	
  Fastening	
  Processes	
  
                                    Q5	
                                                                	
  
11/04	
         Processing	
  of	
  Ceramic	
  Materials	
     11/11	
                      Quality	
  Assurance	
  
11/18	
                  Quality	
  Assurance	
                11/25	
                    Microelectronics	
  and	
  
                                  Q6	
                                                    Nanomanufacturing	
  
12/02	
                Microelectronics	
  and	
               12/09	
                           Classes	
  End	
  
                       Nanomanufacturing	
  
                           Q7	
  -‐	
  Exam	
  2	
  
                                                                Outcomes	
  
Upon	
  the	
  comple\on	
  of	
  the	
  course	
  the	
  student	
  should	
  be	
  able	
  to:	
  
•  Describe	
  basic	
  mechanical	
  proper\es	
  of	
  metals,	
  ceramics	
  and	
  polymers.	
  
•  Evaluate	
  forces	
  and	
  stresses	
  associated	
  with	
  metal	
  forming	
  opera\ons.	
  
•  Evaluate	
  forces	
  and	
  stresses	
  associated	
  with	
  standard	
  machining	
  and	
  grinding	
  opera\ons.	
  
•  Iden\fy	
  candidate	
  processes	
  to	
  manufacture	
  a	
  given	
  component.	
  	
  
•  Interpret	
  the	
  advantages	
  and	
  limita\ons	
  of	
  powder	
  metallurgy	
  processes.	
  	
  
•  Dis\nguish	
  between	
  the	
  different	
  types	
  of	
  cas\ngs	
  and	
  describe	
  their	
  output	
  product	
  
   characteris\cs.	
  
•  Iden\fy	
  specific	
  polymer	
  processing	
  methods	
  based	
  on	
  material	
  and	
  component	
  geometric	
  
   proper\es.	
  
•  Predict	
  the	
  elas\c	
  proper\es	
  of	
  fiber	
  reinforced	
  composite	
  materials	
  
                                                                    Exams	
  
There	
  will	
  be	
  no	
  final	
  exam.	
  Neatness	
  and	
  order	
  will	
  be	
  taking	
  into	
  considera\on	
  in	
  the	
  grading	
  
of	
  the	
  exams.	
  Up	
  to	
  ten	
  points	
  can	
  be	
  deducted	
  for	
  the	
  lack	
  of	
  neatness	
  and	
  order.	
  You	
  must	
  
bring	
  calculators,	
  class	
  notes	
  and	
  blank	
  pages	
  to	
  the	
  exams.	
  
                                                                 Texbooks	
  
	
  Mikell	
  Groover,	
  Fundamentals	
  of	
  Modern	
  Manufacturing,	
  John	
  Wiley	
  &	
  Sons	
  4th	
  Edi\on,	
  2010	
  
Serope	
  Kalpakjian	
  and	
  Steven	
  R.	
  Schmid,	
  Manufacturing	
  Processes	
  for	
  Engineering	
  Materials,	
  
Pren\ce	
  Hall,	
  5th	
  ed	
  2007.	
  	
  
My	
  lecture	
  notes	
  are	
  available	
  in	
  the	
  web	
  at	
  hOp://academic.uprm.edu/pcaceres	
  
See	
  syllabus	
  of	
  the	
  course	
  for	
  recommended	
  books.	
  
Manufacturing	
  –	
  DefiniYon	
  
Process	
  of	
  conver\ng	
  or	
  processing	
  raw	
  materials	
  into	
  usable	
  products.	
  
From	
  the	
  La\n:	
  	
  manufactus	
  	
  	
  manus	
  =	
  hands	
  	
  	
  	
  	
  factus	
  =	
  made	
  
	
  
“A	
  series	
  of	
  interrelated	
  ac@vi@es	
  and	
  opera@ons	
  involving	
  design,	
  materials	
  
selec@on,	
  planning,	
  produc@on,	
  quality	
  assurance,	
  management,	
  and	
  marke@ng	
  of	
  
discrete	
  consumer	
  and	
  durable	
  goods”	
  (CAM-‐I)	
  	
  
	
  
Manufacturing	
  is	
  one	
  way	
  by	
  which	
  na\ons	
  create	
  material	
  wealth.	
  	
  
                                                         In	
  2012,	
  manufacturers	
  contributed	
  to	
  11.9	
  percent	
  of	
  
U.S.	
  Economy	
                                        GDP.	
  For	
  every	
  $1.00	
  spent	
  in	
  manufacturing,	
  another	
  
                                                         $1.48	
  is	
  added	
  to	
  the	
  economy,	
  the	
  highest	
  mul\plier	
  
Sector	
                            %	
  of	
  GNP	
     effect	
  of	
  any	
  economic	
  sector.	
  
Manufacturing	
                           12	
           Manufacturing	
  supports	
  an	
  es\mated	
  17.2	
  million	
  jobs	
  
                                                         in	
  the	
  U.S.—about	
  one	
  in	
  six	
  private-‐sector	
  jobs.	
  	
  	
  
Agriculture	
  &	
  Minerals	
             5	
           Manufacturers	
  in	
  the	
  U.S.	
  perform	
  two-‐thirds	
  of	
  all	
  
Construc\on	
  and	
  U\li\es	
            4	
           private-‐sector	
  R&D	
  in	
  the	
  na\on,	
  driving	
  more	
  
                                                         innova\on	
  than	
  any	
  other	
  sector.	
  
Service	
  Sector	
                       80	
           Taken	
  from	
  the	
  Na\onal	
  Associa\on	
  of	
  Manufacturers	
  
Manufacturing	
  Importance	
  
                                  	
  Importance	
  of	
  
                                  manufacturing	
  to	
  na\onal	
  
                                  economies.	
  The	
  trends	
  
                                  shown	
  are	
  from	
  1982	
  un\l	
  
                                  2006.	
  
Development	
  Process	
  
 (a)	
  Chart	
  showing	
  various	
  
 steps	
  involved	
  in	
  designing	
  
 and	
  manufacturing	
  a	
  product.	
  	
  
 (b)	
  Chart	
  showing	
  general	
  
 product	
  flow,	
  from	
  market	
  
 analysis	
  to	
  selling	
  the	
  
 product,	
  and	
  depic\ng	
  
 concurrent	
  engineering.	
  	
  
Proper	
  Design	
  Facilitates	
  Automated	
  Assembly	
  
                             Design	
  –	
  Materials	
  –Process	
  RelaYonship	
  
Product	
  design,	
  materials	
  selec\on,	
  and	
  materials	
  processing	
  are	
  highly	
  interrelated.	
  
For	
  example:	
  
(a)  weight	
  reduc\on	
  -‐-‐>	
  thin	
  cross-‐sec\ons	
  -‐-‐>	
  manufacturing	
  problems	
  -‐>	
  \ght	
  
       tolerance	
  specs.	
  -‐-‐>	
  specialized/high	
  precision	
  processes	
  required	
  -‐-‐>	
  increased	
  
       cost	
  
(b)  aluminum	
  vs.	
  steel	
  beverage	
  cans	
  -‐-‐>	
  different	
  metal	
  forming	
  needs.	
  
Various	
   methods	
   of	
   making	
   a	
   simple	
   part:	
   (a)	
   cas\ng	
   or	
   powder	
   metallurgy,	
   (b)	
   forging	
   or	
  
upseGng,	
  (c)	
  extrusion,	
  (d)	
  machining,	
  (e)	
  joining	
  two	
  pieces.	
  
Shaping	
  Process	
  ClassificaYon	
  
 (a)  Mass	
  Conserving	
  (cas\ng,	
  forming,	
  
      powder	
  processing)	
  
 (b)  Mass	
  Reducing	
  (machining,	
  grinding)	
  
 	
   (c)	
  Mass	
  adding	
  (joining	
  processes)	
  
ProducYon	
  QuanYty	
  (Q)	
                                     Annual	
  ProducYon	
  QuanYYes	
  
The	
  quan\ty	
  of	
  products	
  Q	
  made	
  by	
  a	
        Low	
                                                1-‐100	
  units	
  
factory	
  has	
  an	
  important	
  influence	
  on	
  
the	
  way	
  its	
  people,	
  facili\es,	
  and	
               Medium	
                                             100-‐10,000	
  
procedures	
  are	
  organized.	
                                 High	
                                               10,000-‐millions	
  
Product	
  Variety	
  (P)	
                          It	
  refers	
  to	
  the	
  produc\on	
  of	
  different	
  models	
  or	
  product	
  type	
  
P	
  is	
  less	
  exact	
  than	
  Q	
  because	
  it	
  depends	
  on	
  how	
  much	
  
the	
  design	
  changes.	
  Small	
  changes	
  in	
  design	
  (Sou	
  
Product	
  Variety)	
  or	
  large	
  differences	
  in	
  design	
  (	
  Hard	
  
Product	
  Variety).	
  
Manufacturing	
  Work	
  Flow	
  
-‐	
  Custom:	
  Limited	
  number	
  of	
  products	
  
built	
  to	
  customer	
  specifica\ons.	
  
-‐	
  Intermi^ent/Batch:	
  from	
  10	
  to	
  1000	
  
units,	
  uses	
  general	
  purpose	
  machinery.	
  
-‐	
  Con\nuous:	
  Same	
  product	
  made	
  
repeatedly	
  by	
  dedicated	
  machinery	
  
(custom	
  built	
  machine	
  –	
  NOT	
  CUSTOM	
  
built	
  product).	
  Automa\on	
  becomes	
  
more	
  cost-‐effec\ve	
  
Primary	
  and	
  Secondary	
  Manufacturing	
  
Primary	
  processes	
  convert	
  minerals	
  or	
  raw	
  materials	
  into	
  standard	
  stock	
  
           •  bauxite	
  ore	
  à	
  aluminum	
  
           •  petroleum	
  à	
  polyester	
  resin	
  
           •  wood	
  à	
  lumber	
  
Secondary	
  processes	
  convert	
  standard	
  stock	
  into	
  usable	
  parts	
  
           •  aluminum	
  rod	
  à	
  fuel	
  valve	
  
           •  polyester	
  resin	
  à	
  medical	
  tubing	
  
           •  lumber	
  à	
  furniture	
  
Secondary	
  Manufacturing	
  Processes	
  
•  Cas\ng	
  and	
  Molding:	
  processes	
  hold	
  liquid	
  or	
  semi-‐liquid	
  materials	
  in	
  a	
  mold	
  
   cavity	
  un\l	
  the	
  material	
  hardens	
  
•  Forming:	
  use	
  a	
  shaping	
  device	
  and	
  pressure	
  to	
  cause	
  a	
  material	
  to	
  take	
  on	
  a	
  new	
  
   shape	
  and	
  size	
  
•  Separa\ng	
  /	
  Material	
  Removal:	
  processes	
  remove	
  material	
  to	
  produce	
  a	
  desired	
  
   shape	
  and	
  surface	
  finish	
  	
  
•  Condi\oning:	
  it	
  uses	
  heat,	
  chemical	
  reac\ons,	
  or	
  mechanical	
  means	
  to	
  change	
  
   the	
  proper\es	
  of	
  a	
  material	
  
•  Assembling	
  /	
  Joining:	
  join	
  two	
  or	
  more	
  parts	
  or	
  assemblies	
  through	
  mechanical,	
  
   thermal,	
  or	
  chemical	
  means	
  
•  Finishing:	
  modify	
  the	
  surface	
  of	
  a	
  material	
  to	
  improve	
  appearance	
  or	
  
   performance	
  
                                       Micromanufacture	
  Example	
  	
  
Gear	
  assembly	
  driven	
  by	
  resonant	
  combdrives.	
  (a)	
  A	
  view	
  of	
  the	
  en\re	
  assembly.	
  (b)	
  
Details	
  of	
  the	
  gear	
  assembly.	
  Source:	
  R.	
  Muller,	
  University	
  of	
  California	
  at	
  Berkeley.	
  	
  	
  
 Example	
  of	
  Primary	
  Manufacturing:	
  Steel	
  
To	
  make	
  steel,	
  you	
  start	
  with	
  iron	
  ore,	
  a	
  rock	
  that	
  contains	
  a	
  high	
  concentra\on	
  
of	
  iron.	
  Common	
  iron	
  ores	
  include:	
  	
  
       	
   	
  HemaYte	
  -‐	
  Fe2O3	
  -‐	
  70	
  %	
  iron	
  	
  
       	
   	
  MagneYte	
  -‐	
  Fe3O4	
  -‐	
  72	
  %	
  iron	
  	
  
       	
   	
  Limonite	
  -‐	
  Fe2O3	
  +	
  H2O	
  -‐	
  50	
  to	
  66	
  %	
  iron	
  	
  
       	
   	
  Siderite	
  -‐	
  FeCO3	
  -‐	
  48	
  %	
  iron	
  
Iron	
  is	
  plen\ful	
  -‐-‐	
  5	
  percent	
  of	
  the	
  Earth's	
  crust	
  is	
  iron,	
  and	
  in	
  some	
  areas	
  it	
  
           concentrates	
  in	
  ores	
  that	
  contain	
  as	
  much	
  as	
  70	
  %	
  iron.	
  	
  
A	
  blast	
  furnace	
  is	
  charged	
  	
  	
  (from	
  the	
  top)	
  with	
  iron	
  ore,	
  
coke	
  (charcoal	
  	
  made	
  from	
  coal)	
  and	
  limestone	
  (CaCO3).	
  
Huge	
  quan\\es	
  of	
  air	
  blast	
  	
  in	
  at	
  the	
  bo^om	
  of	
  the	
  	
  furnace.	
  	
  
The	
  calcium	
  in	
  the	
  limestone	
  combines	
  with	
  the	
  silicates	
  to	
  	
  
form	
  slag.	
  	
  
At	
  the	
  bo^om	
  of	
  the	
  blast	
  furnace,	
  liquid	
  iron	
  (pig	
  iron)	
  
collects	
  along	
  with	
  a	
  layer	
  of	
  slag	
  on	
  top.	
  	
  
To	
  create	
  1	
  ton	
  of	
  pig	
  iron,	
  you	
  start	
  with	
  2	
  tons	
  of	
  ore,	
  1	
  ton	
  
of	
  coke	
  and	
  half-‐ton	
  of	
  limestone.	
  The	
  fire	
  consumes	
  5	
  tons	
  
of	
  air.	
  The	
  temperature	
  reaches	
  almost	
  3000	
  degrees	
  F	
  
(about	
  1600	
  degrees	
  C)	
  at	
  the	
  core	
  of	
  the	
  blast	
  furnace!	
  	
  
                             COKE:	
  Metallurgical	
  grade	
  coal	
  is	
  converted	
  to	
  coke	
  by	
  a	
  coking	
  process	
  that	
  drives	
  off	
  
                             impuri\es	
  to	
  leave	
  almost	
  pure	
  carbon.	
  The	
  coking	
  process	
  consists	
  of	
  hea\ng	
  coking	
  coal	
  
                             (1000-‐1100ºC)	
  in	
  the	
  absence	
  of	
  oxygen	
  to	
  drive	
  off	
  the	
  vola\le	
  compounds	
  (pyrolysis).	
  
                             This	
  process	
  results	
  in	
  a	
  hard	
  porous	
  material	
  -‐	
  coke.	
  The	
  coking	
  process	
  is	
  \me	
  
                             consuming,	
  between	
  12-‐36	
  hours	
  in	
  the	
  coke	
  ovens.	
  
The	
  most	
  commonly	
  applied	
  process	
  for	
  conver\ng	
  pig	
  iron	
  into	
  steel	
  is	
  the	
  Basic	
  Oxygen	
  Furnace.	
  In	
  the	
  
BOF,	
  the	
  liquid	
  pig	
  iron	
  +	
  steel	
  scrap	
  (less	
  than	
  30%)	
  and	
  flux	
  are	
  combined	
  and	
  a	
  lance	
  is	
  introduced	
  in	
  the	
  
vessel	
  that	
  blows	
  99%	
  pure	
  oxygen,	
  that	
  causes	
  the	
  temperature	
  to	
  rise	
  to	
  1700°C.	
  The	
  scrap	
  melts,	
  
impuri\es	
  are	
  oxidized,	
  and	
  the	
  carbon	
  content	
  is	
  reduced	
  by	
  90%,	
  resul\ng	
  in	
  liquid	
  steel.	
  Other	
  processes	
  
can	
  follow	
  –	
  secondary	
  steel-‐making	
  processes	
  –	
  where	
  the	
  proper\es	
  of	
  steel	
  are	
  determined	
  by	
  the	
  
addi\on	
  of	
  other	
  elements,	
  such	
  as	
  boron,	
  chromium	
  and	
  molybdenum,	
  amongst	
  others,	
  ensuring	
  the	
  
exact	
  specifica\on	
  can	
  be	
  met.	
  BOFs	
  produce	
  about	
  70%	
  of	
  the	
  world’s	
  steel.	
  A	
  further	
  29%	
  of	
  steel	
  is	
  
produced	
  in	
  Electric	
  Arc	
  Furnaces.	
  
Example	
  of	
  Primary	
  Manufacturing:	
  Steel	
  
ConYnuous	
  CasYng	
  
The world of materials
Metals:	
  	
  
Materials	
  that	
  are	
  inorganic	
  substances	
  which	
  are	
  composed	
  normally	
  of	
  	
  combina\ons	
  of	
  
"metallic	
  elements“	
  and	
  may	
  also	
  contain	
  some	
  non	
  metallic	
  elements	
  (alloys).	
  Examples	
  of	
  
metallic	
  elements	
  are	
  iron,	
  copper,	
  aluminum,	
  nickel,	
  \tanium.	
  Non	
  metallic	
  elements	
  such	
  
as	
  carbon,	
  nitrogen	
  and	
  oxygen	
  may	
  also	
  be	
  contained	
  in	
  metallic	
  materials.	
  
These	
  elements,	
  when	
  combined,	
  usually	
  have	
  electrons	
  that	
  are	
  non	
  localized	
  and	
  as	
  a	
  
consequence	
  have	
  generic	
  types	
  of	
  proper\es.	
  Metals	
  usually	
  are	
  good	
  conductors	
  of	
  heat	
  
and	
  electricity.	
  Metals	
  have	
  a	
  crystalline	
  structure	
  in	
  which	
  the	
  atoms	
  are	
  arranged	
  in	
  an	
  
orderly	
  manner.	
  Also,	
  they	
  are	
  quite	
  strong	
  but	
  malleable	
  and	
  tend	
  to	
  have	
  a	
  lustrous	
  look	
  
when	
  polished.	
  	
  
Metals	
  and	
  alloys	
  are	
  commonly	
  divided	
  into	
  two	
  classes:	
  ferrous	
  metals	
  and	
  alloys	
  and	
  
non	
  ferrous	
  metals	
  and	
  alloys	
  that	
  do	
  not	
  contain	
  iron	
  or	
  only	
  a	
  rela\vely	
  small	
  amount	
  of	
  
iron.	
  
                 Metals	
  Historical	
  Timeline	
  
9000 - 3500BC        Use of native (pure) copper (Copper Age)
3500 - 1500BC        Tin added to copper forms bronze, a stronger alloy (Bronze Age)
1500BC - 100AD       Iron smelting in Egypt, begins the Iron Age.
500 - 1600AD         High quality iron and steel processing, (Feudal Era)
1750 – 1850          Commercial production of high quality steels.
1850 – 1900          Hall’s ore reducing process produces cheap aluminum in large quantities.
1900 - 1935          Aircraft moves from fabric to high strength aluminum alloy.
1935 - 1955          Specialty alloys produce turbines for more efficient power production.
1955 – 1970          Human body parts.
1970 – 1995          Superalloys developed for jet-engines
Ceramics:	
  	
  
Ceramics	
  are	
  generally	
  compounds	
  between	
  metallic	
  and	
  nonmetallic	
  elements	
  
chemically	
  bonded	
  together	
  and	
  include	
  such	
  compounds	
  as	
  oxides,	
  nitrides,	
  and	
  
carbides.	
  Ceramic	
  materials	
  can	
  be	
  crystalline,	
  non-‐crystalline,	
  or	
  mixtures	
  of	
  both.	
  
Typically	
  they	
  have	
  high	
  hardness	
  and	
  high-‐temperature	
  strength	
  but	
  they	
  tend	
  to	
  have	
  
mechanical	
  bri^leness.	
  They	
  are	
  usually	
  insula\ng	
  and	
  resistant	
  to	
  high	
  temperatures	
  and	
  
harsh	
  environments.	
  	
  
Ceramics	
  can	
  be	
  divided	
  into	
  two	
  classes:	
  tradi\onal	
  and	
  advanced.	
  Tradi\onal	
  ceramics	
  
include	
  clay	
  products,	
  silicate	
  glass	
  and	
  cement;	
  while	
  advanced	
  ceramics	
  consist	
  of	
  
carbides	
  (SiC),	
  pure	
  oxides	
  (Al2O3),	
  nitrides	
  (Si3N4),	
  non-‐silicate	
  glasses	
  and	
  many	
  others.	
  	
  
                        Ceramics	
  Historical	
  Timeline	
  
          Early man discovers that clay can be molded and dried to form a brittle heat
26000BC
          resistant material
6000BC    Ceramic firing is first used in ancient Greece
4000BC    Glass is discovered in ancient Egypt
50BC –    Optical glass (lenses and mirrors), window glass and glass blowing production
50AD      begins in Rome.
600AD     Porcelain is created by the Chinese
          Refractory materials (able to withstand extremely high temperatures) are
1870
          introduced during the industrial revolution.
1960      Discovery of laser opens the field of fiber optics
1965      Development of a photovoltaic cell, which converts light into electricity
1987      Discovery of a superconducting ceramic oxide with a critical temperature of 92K
1992      Era of the Smart Materials
PlasYcs:	
  	
  
Plas\cs	
  or	
  polymers	
  are	
  substances	
  containing	
  a	
  large	
  number	
  of	
  structural	
  units	
  joined	
  by	
  
the	
  same	
  type	
  of	
  linkage.	
  These	
  substances	
  ouen	
  form	
  into	
  a	
  chain-‐like	
  structure	
  and	
  are	
  
made	
  of	
  organic	
  compounds	
  based	
  upon	
  carbon	
  and	
  hydrogen.	
  Usually	
  they	
  are	
  low	
  
density	
  and	
  are	
  not	
  stable	
  at	
  high	
  temperatures.	
  
Polymers	
  in	
  the	
  natural	
  world	
  have	
  been	
  around	
  since	
  the	
  beginning	
  of	
  \me.	
  Starch,	
  
cellulose,	
  and	
  rubber	
  all	
  possess	
  polymeric	
  proper\es.	
  	
  
Man-‐made	
  polymers	
  have	
  been	
  studied	
  since	
  1832.	
  Today,	
  the	
  polymer	
  industry	
  has	
  
grown	
  to	
  be	
  larger	
  than	
  the	
  aluminum,	
  copper	
  and	
  steel	
  industries	
  combined.	
  	
  
Polymers	
  already	
  have	
  a	
  range	
  of	
  applica\ons	
  that	
  far	
  exceeds	
  that	
  of	
  any	
  other	
  class	
  of	
  
material	
  available	
  to	
  man.	
  Current	
  applica\ons	
  extend	
  from	
  adhesives,	
  coa\ngs,	
  foams,	
  
and	
  packaging	
  materials	
  to	
  tex\le	
  and	
  industrial	
  fibers,	
  composites,	
  electronic	
  devices,	
  
biomedical	
  devices,	
  op\cal	
  devices,	
  and	
  precursors	
  for	
  many	
  newly	
  developed	
  high-‐tech	
  
ceramics.	
  	
  
                   Polymers	
  Historical	
  Timeline	
  
        The Mayans are assumed to be among the first to find an application for polymers, as balls were
1500s
        made from local rubber trees.
        Charles Goodyear discovers vulcanization by combining natural rubber with sulfur and heating it to
1839
        270 degrees Fahrenheit (automobile tires)
        The oldest recorded synthetic plastic is fabricated by Leo Bakeland (bakelite). It was used for
1907
        electrical insulation.
        Staundinger published his classic paper entitled “Uber Polimerization”. It begins the development of
1920
        modern polymer theory.
1927    Large scale production of vinyl-chloride resins begins. (PVC – pipes, bottles).
        Polystyrene is invented (videocassettes). Expanded polystyrene (Styrofoam) is used in cups,
1930
        packaging and thermally insulating materials,
1938    Wallace Carothers of the Dupont Company produces Nylon (ropes and clothes)
1941    Polyethylene (PE) is developed. It is used for everything from packaging film to piping to toys.
1970    James Economy develops Ekonol (Liquid Crystal Polymer used in electronic devices)
        S Kwolek develops Kevlar. High strength polymer used in bullet proof vests and fire proof garments
1971
        for firefighting and auto racing (300oC)
1976    Polymer/Plastic industry bigger (per volume) than steel industry.
Semiconductors	
  (Electronic	
  Materials):	
  	
  
Semiconductors	
  are	
  materials	
  which	
  have	
  a	
  conduc\vity	
  between	
  conductors	
  (generally	
  
metals)	
  and	
  nonconductors	
  or	
  insulators	
  (such	
  as	
  most	
  ceramics).	
  Semiconductors	
  can	
  be	
  pure	
  
elements,	
  such	
  as	
  silicon	
  or	
  germanium,	
  or	
  compounds	
  such	
  as	
  gallium	
  arsenide	
  or	
  cadmium	
  
selenide.	
  In	
  a	
  process	
  called	
  doping,	
  small	
  amounts	
  of	
  impuri\es	
  are	
  added	
  to	
  pure	
  
semiconductors	
  causing	
  large	
  changes	
  in	
  the	
  conduc\vity	
  of	
  the	
  material.	
  	
  
Due	
  to	
  their	
  role	
  in	
  the	
  fabrica\on	
  of	
  electronic	
  devices,	
  semiconductors	
  are	
  an	
  important	
  part	
  
of	
  our	
  lives.	
  Imagine	
  life	
  without	
  electronic	
  devices.	
  The	
  developments	
  in	
  semiconductor	
  
technology	
  during	
  the	
  past	
  50	
  years	
  have	
  made	
  electronic	
  devices	
  smaller,	
  faster,	
  and	
  more	
  
reliable.	
  	
  
                  Semiconductors	
  Historical	
  Timeline	
  
1600   William Gilbert is the first person to use the term electricity
1824   John Berzelius isolates and identifies silicon.
1833   Faraday discovers that electrical resistivity decreases as temperature increases in silver sulfide.
1873   William Smith discovers the photoconductivity of selenium.
1927   Arnold Sommerfeld and Felix Bloch apply quantum mechanics to solids.
1943   Karl Lark-Horovitz uses high quality germanium to make diode detectors.
       Schockley, Brattain and Bardeed invent the transistor. The semiconductor electronic industry is
1947
       born.
       Robert Noyce, founder of Intel Corporation develops a planar process for making semiconductors
1958
       called Monolithic IC Technology
       W.P. Dumke shows that semiconductors such as GaAs can be used to make lasers
1962
       (optoelectronics).
1970   The first charge coupled devices (CCD’s) are made.
1980   Explosion in the use of personal computers.
       GaN light emitting diodes are made which can produce blue light. Possible application are flat
1993
       screen displays and high density memory storage.
Composites:	
  	
  
Composites	
  consist	
  of	
  a	
  mixture	
  of	
  two	
  or	
  more	
  materials.	
  Most	
  composite	
  materials	
  consist	
  
of	
  a	
  selected	
  filler	
  or	
  reinforcing	
  material	
  and	
  a	
  compa\ble	
  resin	
  binder	
  to	
  obtain	
  the	
  
specific	
  characteris\cs	
  and	
  proper\es	
  desired.	
  Usually,	
  the	
  components	
  do	
  not	
  dissolve	
  in	
  
each	
  other	
  and	
  can	
  be	
  physically	
  iden\fied	
  by	
  an	
  interface	
  between	
  the	
  components.	
  
Fiberglass,	
  a	
  combina\on	
  of	
  glass	
  and	
  a	
  polymer,	
  is	
  an	
  example.	
  Concrete	
  and	
  plywood	
  are	
  
other	
  familiar	
  composites.	
  Many	
  new	
  combina\ons	
  include	
  ceramic	
  fibers	
  in	
  metal	
  or	
  
polymer	
  matrix.	
  	
  
Biomaterials	
  
Biomaterials	
  are	
  used	
  in	
  components	
  implanted	
  into	
  the	
  human	
  body	
  for	
  replacement	
  
of	
  diseased	
  or	
  damaged	
  body	
  parts.	
  For	
  Example:	
  Hip	
  replacement	
  designs.	
  	
  
                                                             Intraocular	
  Lens	
  
                                                      3 basic materials - PMMA, acrylic, silicone
 ArYficial	
  Hip	
  Joints	
                                         The	
  biological	
  phenomenon	
  of	
  microorganisms	
  
                                 SubsYtute	
  Heart	
  Valves	
  
                                                                     tending	
  to	
  move	
  in	
  response	
  to	
  the	
  environment's	
  
                                                                     magne\c	
  characteris\cs	
  is	
  known	
  as	
  magnetotaxis	
  	
  
                                                                                 BF          Organic
                                                                               image         matter
                                                                                                                              HAADF image
                                                                                       Magnetite (Fe3O4)
                                                                                       crystals
                                                                                                       400 nm
                                                                                                                                        50 nm