Kero Ack 2018
Kero Ack 2018
Invited Review
PII:                    S0020-7519(18)30248-0
DOI:                    https://doi.org/10.1016/j.ijpara.2018.09.005
Reference:              PARA 4114
Please cite this article as: Keroack, C.D., Elsworth, B., Duraisingh, M.T., To kill a piroplasm: genetic technologies
to advance drug discovery and target identification in Babesia, International Journal for Parasitology (2018), doi:
https://doi.org/10.1016/j.ijpara.2018.09.005
This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers
we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and
review of the resulting proof before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
1    Invited Review
2 To kill a piroplasm: genetic technologies to advance drug discovery and target identification in
3 Babesia
7 aHarvard T. H. Chan School of Public Health, 651 Huntington Ave, Boston, MA, 02115, USA.
8 bUniversity of Melbourne, School of Biosciences, Royal Parade, Parkville VIC 3052, Australia.
10 *Corresponding author.
12
13
14   Abstract
15 Babesia parasites infect a diverse range of vertebrate hosts, from penguins to pigs. Recently, the
16 emergence of zoonotic Babesia infection has been increasing, and the list of species reported to
17 infect humans continues to grow. Babesiosis represents a burgeoning veterinary and medical
18 threat, and the need for novel therapeutic drugs to effectively target this diverse group of
19 parasites is pressing. Here, we review the current culture systems that exist to study and
20 manipulate Babesia parasites, and identify the scope and methods for target discovery and
21 validation to identify novel, potent anti-babesial inhibitors. Challenges exist including difficulties in
22 the culture systems of important zoonotic parasites, and there is a lack of integrated
23 morphological and molecular data. While molecular approaches in several Babesia spp. has
24 become a reality, the ability to rapidly identify and validate drug targets is hindered by a lack of
25 sophisticated genetic tools to probe parasite biology. The minimal genome size and haploid nature
27 systems and characterize the druggable genomic space in a high-throughput way. The
28 considerable diversity of parasites within the genus suggests the existence of highly divergent
29 biology and polymorphism that could present a formidable barrier to the development of a pan-
31
32 Keywords: Babesia; Apicomplexan; Drug discovery; Drug target identification; Target validation;
33 Genetics
34
35
36
37   1. Introduction
38 The genus Babesia contains an incredibly diverse group of piroplasmid organisms (Fig. 1).
39 Babesia is one of the most common blood-borne parasites in vertebrate animals, second only to
40 the trypanosomes (Vannier et al., 2008). To date, over 100 species of Babesia have been
41 described, as well as many more related piroplasmid organisms such as Theileria spp. (Vannier et
42 al., 2008). Babesiosis is a significant cause of veterinary disease from canines to cattle (Bock et al.,
43 2004; Solano-Gallego et al., 2016; Eichenberger et al., 2017). More recently, zoonotic infection has
45 parasites including Babesia microti, Babesia duncani, Babesia divergens, Babesia venatorum,
46 Babesia crassa-like and many related, undescribed parasites (Conrad et al., 2006; Bloch et al.,
47 2012; Yabsley and Shock, 2013; Ord and Lobo, 2015; Rajkumari, 2015; Vannier et al., 2015; Jia et
48 al., 2018) (Fig. 1). Indeed, infections in humans have been described from Babesia odocoilei-like, B.
49 divergens-like, and B. microti-like parasites. The recent detection of these new pathogens
50 highlights the potential for emerging infections and the wide-spread nature of the parasite
51 (Herwaldt et al., 1996, 2003; Holman et al., 2005). The emergence of a diverse set of zoonotic
53 opportunity to identify conserved biology which can be exploited to identify novel pan-
54 piroplasmid compounds. However, the five recognized clades of Babesia parasites display unique
55 biology between them (Schreeg et al., 2016). This poses a challenge in identification of conserved
56 biological mechanisms which can be targeted with small molecules, due to divergence within and
57 between species. This is exemplified by the variation in efficacy of different compounds identified
58 in screening multiple species with the Medicines for Malaria Ventures Malaria Box (Rizk et al.,
59 2015; Hostettler et al., 2016; Paul et al., 2016; Van Voorhis et al., 2016). This poses a challenge in
60   identification of conserved biological mechanisms which can be targeted with small molecules due
61   to the likely existence of high polymorphism within and between species. Conversely, the smaller
62 genome sizes of Babesia spp., together with high-throughput genomics, facilitates the
63 identification of core apicomplexan biology which can be exploited for therapeutic development
65
68 which can facilitate translational discoveries. Despite recent efforts to describe Babesia spp. using
69 microscopy, much remains to be understood about the life cycle, including the molecular
70 progression of development and differentiation between sexual and asexual stages (Park et al.,
71 2015; Cursino-Santos et al., 2016). Such discoveries, using the various culture systems discussed,
72 will facilitate future therapeutic development. In vitro culture systems enable drug discovery by
73 increasing the throughput of screening and ease of experimental systems for understanding the
74 biology of these organisms (Astashkina et al., 2012). Many species from the various piroplasmid
75 clades can be propagated in vitro. Indeed, many of the most relevant veterinary parasites
76 including Babesia bovis, Babesia bigemina, B. divergens, Babesia major, Babesia ovata, Babesia
77 ovis, Babesia gibsoni, Babesia canis, Babesia caballi, Theileria equi (Babesia equi) and Theileria
78 annulata can be cultured in vitro (Thomson and Fantham, 1914; Irvin et al., 1979; Levy and Ristic,
79 1980; Molinar et al., 1982; Vayrynen and Tuomi, 1982; Vega et al., 1985a, 1985b; Goff and Yunker,
80 1986, 1988; Ben Musa and Phillips, 1991; Holman et al., 1994a; Igarashi et al., 1994; Zweygarth et
81 al., 1995, 1999; Van Niekerk and Zweygarth, 1996; Grande et al., 1997; Viseras et al., 1997;
82 Posnett et al., 1998; Yamasaki et al., 2000; Zweygarth and Lopez-Rebollar, 2000; Musa and Abdel
83 Gawad, 2004; Adaszek and Winiarczyk, 2011; Gharbi et al., 2012; de Rezende et al., 2015) (Fig. 1).
84   Additionally, other animal and wildlife Babesia parasite in vitro culture systems have been
85    developed for a few undescribed species, as well as B. odocoilei, Babesia occultans and Babesia
86 orientalis (Holman et al., 1988, 1994b, 1994c, 2005; Thomford et al., 1993; Van Niekerk and
87 Zweygarth, 1996; Zhao et al., 2002) (Fig. 1). While many of these culture systems remain to be
88 fully optimized and may be limited by the appropriate blood source etc., the methods of culture
89 for many species of Babesia parasites are relatively simple, and conducive to high-throughput
90 experimentation (reviewed in Schuster, 2002). The existence of such a broad and diverse set of
91 cultivable Babesia parasites offers a unique opportunity to explore conserved, essential biology
94 continuously cultured in vitro. However, the WA-1 strain of B. duncani has been reported to be
95 maintained continuously in culture (Thomford et al., 1994). Additionally, in vitro and in vivo (i.e.
96 hamsters) models exist to cultivate the rare zoonotic parasite B. divergens and related species
97 (Irvin et al., 1979; Vayrynen and Tuomi, 1982; Ben Musa and Phillips, 1991; Grande et al., 1997;
98 Musa and Abdel Gawad, 2004; Holman et al., 2005). Of the more recently identified zoonoses, B.
99 venatorum and B. crassa, an in vitro culture system has only been described for the former
100 (Bonnet et al., 2009). Recently, an in vitro culture system for B. microti, the major etiological agent
101 of human babesiosis, was patented by Fuller Laboratories (USA), but exact details of this system
102 remain to be fully disclosed (Fuller, L., 2018. In vitro propagation of Babesia microti, US Patent
103 20180080004, U.S.A.P., U.S.A.). As such, the main avenue to study B. microti (and the related
104 parasite Babesia rodhaini) relies on short-term ex vivo culture or in vivo models, which limits the
105 scale of drug discovery efforts and functional validation (Shikano et al., 1995; Lawres et al., 2016;
106 Saito-Ito et al., 2016). However, in vivo models are valuable for understanding physiological
107   dynamics of infection and facilitate downstream drug and vaccine validation and discovery
108   (Gardner and Molyneux, 1987; Penzhorn et al., 2000; Lawres et al., 2016; Saito-Ito et al., 2016)
110
112 The existence of model systems allows for the development of high-throughput screening
113 (HTS) to identify novel anti-piroplasmid compounds. The need for novel drugs to treat veterinary
114 and human babesiosis is pressing. Current treatments in humans have been reported to result in
115 de novo resistance generation, and reports of resistance exist for veterinary parasites as well
116 (Yeruham et al., 1985; Sakuma et al., 2009; Wormser et al., 2010; Lemieux et al., 2016; Simon et
117 al., 2017). Additionally, the targets and mechanisms of action of some current treatments are not
118 fully understood. While the targets of atovaquone (cytB) and azithromycin (rpl4) are known
119 (Simon et al., 2017), those for imidocarb and others remain unknown (reviewed in Mosqueda et
120 al. (2012). Recently there has been effort to repurpose many compounds to combat piroplasmid
121 infection such as epoxomicin, artesunate, triclosan, and others (reviewed in Mosqueda et al.
122 (2012). Efforts to repurpose antibiotics such as Draxxin®, enoxacin, and clofazamine have shown
123 promise (Omar et al., 2016; Tuvshintulga et al., 2017; Silva et al., 2018b). Novel anti-babesial
124 compounds have also been identified, such as the endochin-like quinolones and a series of
125 analogues of the antimitotic herbicide trifluralin (Silva et al., 2013; Lawres et al., 2016). While
126 there are several novel anti-babesials of interest emerging, many of their targets are the same as
127 those for currents treatments (i.e. cytochrome bc1 complex for atovaquone and the new
128 endochin-like quinolones) (Kessl et al., 2003; Lawres et al., 2016). In contrast, trifluralin analogues
129 have been shown to target α-tubulin, a novel target, showcasing the strength of such comparative
130 approaches in identifying lead compounds (Silva et al., 2013). Cysteine proteases, lactate
131   dehydrogenase, dihydroorotate dehydrogenase, apicoplast pathways, and kinases have been
132   proposed as novel targets with some evidence that inhibition of these pathways can inhibit
133 parasite growth (Bork et al., 2004; Okubo et al., 2007; AbouLaila et al., 2012; Kamyingkird et al.,
134 2014; Pedroni et al., 2016). However, the need remains to advance research into these targets,
136 Thanks to the robustness of several in vitro and in vivo culture systems, screening for
137 novel, effective anti-piroplasmid compounds is possible. Small scale screens have been used to
138 test the efficacy of compounds against several species, often in parallel experiments, such as
139 Babesia felis, T. equi (B. equi), Babesia caballi, B. bovis, and B. bigemina (Penzhorn et al., 2000;
140 Nagai et al., 2003; Okubo et al., 2007; AbouLaila et al., 2012). Recently, fluorescence based tools
141 have been developed which have enabled larger scale screening for anti-piroplasmid compounds
142 both in vitro (T. equi, B. caballi, B. bovis, B. bigemina, B. divergens) and in vivo (B. microti)
143 (Guswanto et al., 2014; Rizk et al., 2015, 2016, 2017). These advances have allowed screening of
144 larger libraries such as the Medicines for Malaria Ventures ‘Malaria Box’ in several Babesia and
145 Theileria spp. in vitro, which have identified many novel compounds with higher potency than
146 previously identified lead compounds of interest (Hostettler et al., 2016; Paul et al., 2016). With
147 the ability to perform HTS in piroplasmids, the next major hurdle lies in the elucidation of the
148 mechanism of action. This relies on a combination of phenotypic characterization and genetic
149 validation. Thus, robust systems for assessment of drug phenotypes and genetic tools to
151
152 3.1. Biochemical and phenotypic assessment as a method to characterize mechanism of action
153 There are many ways of identifying potent compounds and parasite targets for further hit
154 to lead optimization to develop novel effective drugs for Babesia. Targeted screening approaches
155   such as recombinant protein assays (ie. DHFR, DHODH, Kinases), can determine direct inhibition of
156   the parasite protein (Brobey et al., 1996; Baldwin et al., 2005; Biftu et al., 2005; Qian et al., 2006;
157 Zhang et al., 2006). These assays in Babesia would generally rely on identification of orthologous
158 genes in related parasites. These assays have the advantage of being suitable to HTS of millions of
159 compounds and being specific to the target of interest, being able to counter screen against the
160 host homologs and aid structure based design. However, compounds discovered by this process
161 have several limitations. Firstly, the ability to kill the parasite is dependent on complex properties
162 such as membrane permeability, which is not addressed in these screens. Secondly, the specificity
163 of the compound within the parasite does not always correlate with that seen with recombinant
164 protein. An example of this was with kinase inhibitors, where the activity against recombinant
165 PfCDPK1 protein did not correlate to the anti-Plasmodium activity, most likely due to the primary
166 target within the parasite being a different kinase (Ansell et al., 2014). Other widely used methods
167 rely on phenotypic screening, which may help provide a potential pathway that is being inhibited
168 (i.e., apicoplast function, new permeability pathways, calcium signaling, egress, invasion etc.) but
169 generally do not identify a single parasite molecule as the target (Pillai et al., 2010; Salmon et al.,
170 2001; Boyle et al., 2010; Wu et al., 2015; Dickerman et al., 2016; Sidik et al., 2016).
171 Alternatively, many compounds have been tested in Babesia based on their known target
172 in other systems. As described above, many of these compounds have proven to be potent
173 inhibitors of Babesia, including two of the most common treatments for human babesiosis,
174 atovaquone and azithromycin. However, the strong reliance of screening compounds that are
175 active against related parasites, mainly Plasmodium, will likely not encompass the full chemical
176 space and may miss the most potent anti-babesial compounds. The large evolutionary distance
177 between apicomplexan parasites and more widely studied organisms may lead to false
178 assumptions about a compound’s activity and target. This is exemplified by the mTOR inhibitor,
179   Torin 2, which is an extremely potent inhibitor of Plasmodium falciparum growth, however, no
180   mTOR homolog is present in Plasmodium parasites (Hanson et al., 2013; Sun et al., 2014b). More
181 recently, significant advancements have been developed in metabolomics and proteomic methods
182 leading to the identification of several drug-target pairs (Sun et al., 2014a; Allman et al., 2016;
183 Creek et al., 2016; Dickerman et al., 2016). While each of these methods are valuable for
184 identifying potential inhibitors and their broad mode of action, genetic methods are still required
185 to validate specific targets within the parasite, and as previously mentioned can be used to
187 A critical step in the characterization of a novel compound is elucidation of the phenotypic
188 effect generated upon treatment. Stage specificity has been critical in understanding the
189 mechanism of action in the related Plasmodium parasites (i.e. Skinner et al., 1996; Sriwilaijareon
190 et al., 2002). In comparison to Plasmodium, Babesia spp. have a relatively simple asexual life cycle
191 by which parasites invade a red blood cell, egress from the parasitophorous vacuole, grow and
192 divide by binary fission, and finally egress from the host cell (Mackenstedt et al., 1990; Hunfeld et
193 al., 2008; Chauvin et al., 2009; Eisen and Gage, 2009; Mosqueda et al., 2012; Rossouw et al., 2015;
194 Cursino-Santos et al., 2017). For several species such as B. bovis, only one division occurs per host
195 cell prior to egress (Hunfeld et al., 2008). However, in other species such as B. divergens and B.
196 microti, the parasite is able to undergo multiple rounds of binary fission or budding prior to egress
197 (Rossouw et al., 2015; Cursino-Santos et al., 2016, 2017). The differences in asexual cycles
198 between different species present challenges in identifying compounds which have conserved
199 modes of action based on phenotyping alone. However, the unifying developmental steps
200 between all Babesia parasites, such as invasion, egress, and motility, provide novel avenues of
201 attack for future compounds. For example, compounds which block egress would lead to an
202 accumulation of merozoites within a host cell, likely regardless of species. Indeed, in B. bovis
203   treatment with bumped kinase inhibitors halts egress and leads to an accumulation of merozoites
204   (Pedroni et al., 2016). Similarly, upon treatment with EGTA, B. divergens fails to egress and a
206 uniquely parasitic process with a clear phenotype, it presents a promising potential target.
207 Compounds which elicit similar or identical phenotypes in multiple species should be prioritized
210 relative lack of transcriptomic and proteomic data to characterize the various cellular states of the
211 parasite as it progresses through the cell cycle. Transcriptomic studies that exist have mainly
212 focused on characterizing pathogenesis and host-pathogen interactions (Gohil et al., 2010;
213 Pedroni et al., 2013; Silva et al., 2016a; Eichenberger et al., 2017). Recently, more detailed
215 have been released for B. divergens, B. bovis, and Babesia canis (Pedroni et al., 2013; Rossouw et
216 al., 2015; Eichenberger et al., 2017). The availability of these data provides an important new
217 resource to be used in the identification of novel anti-babesials. Additional detailed transcriptomic
218 studies which fully characterize the cell cycle of both the sexual and asexual stages of Babesia
219 parasites will be essential moving forward with high-throughput drug discovery. Proteomic studies
220 have focused on identification of novel secreted antigens, mainly for diagnostic purposes. Smaller
221 studies which study expression of specific families of proteins have been undertaken, but fully
222 characterized proteomes remain to be generated (Alzan et al., 2016; Cornillot et al., 2016; Silva et
223 al., 2016a; Eichenberger et al., 2017; Johnson et al., 2017). Of Babesia parasites, B. bovis is the
224 most well characterized, and may serve as a model for future technological development
225 (reviewed in Gohil et al. (2010). Compounding these challenges is a relative lack of available
226 complete genome sequences, although culture systems exist for many species of Babesia.
227   Genomes exist for B. microti, Babesia ovata, B. bovis, B. bigemina, B. canis, and B. divergens
228   (Brayton et al., 2007b; Cornillot et al., 2012b; Cuesta et al., 2014a; Jackson et al., 2014b;
229 Eichenberger et al., 2017; Yamagishi et al., 2017). Additionally, genomic sequences for several
230 Theileria spp. are available, which could be useful in identifying essential piroplasmid pathways
231 (Gardner et al., 2005; Pain et al., 2005; Hayashida et al., 2012; Kappmeyer et al., 2012).
232
234 In order to accelerate drug development, effective means for identifying molecular targets
235 are essential. Due to the ease of phenotypic screening, often potent compounds are identified
236 without a hint as to the mechanism of action. Target identification is important in understanding
237 mechanisms of action and, more broadly, pharmacological properties of a novel compound
238 (reviewed in Schenone et al. (2013). Indeed, target identification is often the first step in the drug
239 discovery pathway. Understanding the target of a compound can aid in understanding potential
240 off target or toxic effects. This helps circumvent costly clinical failures (reviewed in Chan et al.
241 (2010). Simply identifying potential targets is insufficient for the drug discovery pipeline-
242 successful progression of novel compounds relies on both the identification and validation of their
243 interacting partners (Cong et al., 2012). Target discovery and validation can be long and arduous,
244 however for Babesia the small genome size (6-14 Mbp) and rapid replication cycle may facilitate
245 this process (Brayton et al., 2007a; Lau, 2009; Cornillot et al., 2012a, 2013; Cuesta et al., 2014b;
246 Jackson et al., 2014a; Eichenberger et al., 2017). The methods by which targets can be identified
248
250 Using in vitro evolution followed by chemical genomics is an effective method for
251   identifying target-inhibitor pairs in many parasites. This is a strategy whereby resistant organisms
252   are generated against a compound of interest, potential causal mutations are identified through
253 whole genome sequencing, and validated downstream using reverse genetic techniques (Cowell et
254 al., 2018). This strategy was successful in identifying cytB as the target of the small molecule
255 inhibitor GNF7686 in Trypanosoma cruzi (Khare et al., 2015). In related apicomplexan parasites
256 Toxoplasma and Plasmodium, chemical genomics is one of the main strategies for target
257 identification (reviewed in McFadden et al. (2001); Luth et al. (2018)). For example, in vitro
258 evolution was used in Toxoplasma gondii to identify novel mutations in the dihydrofolate
259 reductase (DHFR) gene which confer resistance to pyrimethamine (Reynolds et al., 2001). Further,
260 this technique has been extensively used in the closely related parasite Plasmodium falciparum to
261 identify several novel target-inhibitor pairs (Ariey et al., 2014; Corey et al., 2016; Cowell et al.,
262 2018). The existence of many in vitro systems in Babesia and Theileria presents a unique
263 opportunity to take advantage of chemical genomics in a comparative fashion. Indeed, resistance
264 to several compounds has been generated in vitro in Babesia, such as diminazine aceturate in
265 Babesia gibsoni (Hwang et al., 2010). Unfortunately, a genome sequence for B. gibsoni remains to
266 be fully elucidated, thus identification of mutations in previously generated lines will be difficult
267 (Goo and Xuan, 2014). Imidocarb dipropionate has been an important treatment for veterinary
268 babesiosis. However, the mechanism of action for this compound has remained elusive (McHardy
269 et al., 1986; Coldham et al., 1995; Rodriguez and Trees, 1996; Belloli et al., 2006; Mosqueda et al.,
270 2012). Drug-adapted lines in B. bovis were generated against imidocarb over two decades ago,
271 prior to the genome being published. As the B. bovis genome is now available and annotated,
272 sequencing of those isolates may reveal insights into either the mechanism of action or
273 determinants of resistance (Rodriguez and Trees, 1996). Identification of targets for known and
274 novel compounds will be facilitated by the generation of genome sequence of wild-type and
275   previously generated resistant lines in the corresponding species. Once mutations are identified in
276   whole genome sequence, targets will need to be validated. This will require the development of
278
280 The development of genetic tools to study parasites in general has vastly expanded our
281 knowledge of cellular biology and has allowed for the identification and validation of small
282 molecule inhibitor - parasite target pairs: a challenge that remains for Babesia spp. Development
283 of transient transfection systems for B. bovis, B. bigemina, B. gibsoni and B. ovata has permitted
284 the assessment and optimization of different transcriptional elements and transfection methods
285 (Suarez et al., 2004, 2006; Suarez and McElwain, 2008; Hakimi et al., 2016; Silva et al., 2016b; Liu
286 et al., 2017a, 2017b). This has since led to the ability to stably transfect each of these organisms,
287 as well as B. divergens (Elsworth et al., unpublished data ) (Suarez and McElwain, 2009; Hakimi et
288 al., 2016; Liu et al., 2018; Silva et al., 2018a). Using these tools, the generation of parasites with
289 gene deletions, episomal and stable overexpression of two selection markers (BSD and hDHFR) as
290 well as reporter proteins, tick antigens and native Babesia proteins for gene complementation, is
291 now possible and has assisted in the elucidation of novel Babesia biology (Suarez and McElwain,
292 2009; Asada et al., 2012, 2015, 2018; Wang et al., 2012; Laughery et al., 2014; Pellé et al., 2015;
293 Hakimi et al., 2016; Oldiges et al., 2016; Alzan et al., 2017; Liu et al., 2018; Silva et al., 2018a;
295 Many aspects of Babesia biology make it highly suitable to genetic manipulation and drug
296 target identification. Babesia spp. have a minimalized genome in comparison to most parasites,
297 both in terms of genome size (6-14 MB) and number of genes (~3500-3800) and are also haploid
298 during the asexual cycle, reducing the number of potential targets (Brayton et al., 2007a; Lau,
299   2009; Cornillot et al., 2012a, 2013; Cuesta et al., 2014b; Jackson et al., 2014a; Eichenberger et al.,
300   2017). Babesia spp. have a relatively balanced GC content (~40%) and small intergenic regions –
301 and therefore untranslated regions (UTRs) – aiding in the development of plasmids and
302 sequencing (Brayton et al., 2007a; Lau, 2009; Cornillot et al., 2012a, 2013; Cuesta et al., 2014b;
303 Jackson et al., 2014a; Eichenberger et al., 2017). Homologous recombination is highly efficient and
304 specific, allowing the rapid transfection of linear constructs to manipulate the genome (Suarez et
305 al., 2015). However, the poorly characterized genomes, in terms of gene function and essentiality
306 (with ~50% of the genome having no predicted function), in Babesia parasites presents a challenge
307 moving forward (Brayton et al., 2007a; Lau, 2009; Cornillot et al., 2012a, 2013; Cuesta et al.,
308 2014b; Jackson et al., 2014a; Eichenberger et al., 2017). Furthermore, the relative lack of
309 experimental tools and knowledge (synchronization and purification methods, specific antibodies,
310 genomic, transcriptomic and proteomic datasets, etc.) compared with related parasites presents a
311 major barrier to understanding Babesia biology and identifying drug targets, especially in less
312 studied species. It also remains unclear how readily genetic and experimental tools will be
313 transferable between species, with the requirement for generating species-specific reagents likely,
314 and whether compounds will primarily target the same parasite molecule in all species.
315
316 5. Looking forward: new genetic approaches for drug target identification in Babesia
318 In recent years the genetic toolkit available in parasites has greatly expanded to include
319 methods for rapid and markerless gene editing, inducible knockdown and knockout as well as
320 genome-wide knockdown and knockout studies (a summary of available genetic tools in related
321 organisms is shown in Table 1). Currently no such technologies are available in any Babesia
322 species, however, the lessons learnt from related parasites could be used to accelerate the
325 attempting gene deletion by homologous recombination. Gene deletion has limited value for
326 studying essential genes as the inability to delete a gene does not strictly show essentiality and
327 provides no information on the function of the gene. For these reasons the parasite field has
328 widely adopted inducible knockdown and knockout strategies (reviewed in de Koning-Ward et al.
329 (2015). Inducible knockdown systems can broadly be grouped into those that alter gene
330 transcription (Tet-off, Cre-Lox) (Gossen et al., 1995; Wirtz and Clayton, 1995; Meissner et al., 2001,
331 2005; Pino et al., 2012; Collins et al., 2013), mRNA stability/translation (glmS, TetR, TetR-DOZI)
332 (Prommana et al., 2013; Goldfless et al., 2014; Ganesan et al., 2016), protein stability (DD and
333 DDD) (Banaszynski et al., 2006; Armstrong and Goldberg, 2007; Iwamoto et al., 2010;
334 Muralidharan et al., 2011; Beck et al., 2014) and protein localization (knock-sideways) (Robinson
335 et al., 2010; Birnbaum et al., 2017). The appropriateness of each system will depend on the gene
336 of interest (GOI) and intended use. For example, the protein targeting systems require a protein
337 tag that may interfere with the natural function of the GOI. On the other hand, the protein
338 targeting systems tend to act faster (knock-sideways acts within minutes) than the RNA systems,
339 which require natural turnover of the protein (Robinson et al., 2010; Birnbaum et al., 2017).
340 Inducible gene deletion using the Cre-Lox system could also be used and is likely to produce a
341 stronger phenotype than knockdown systems (Andenmatten et al., 2013; Collins et al., 2013). A
342 single study has described the use of RNA interference (RNAi) in B. bovis, a technique used in
343 Trypanosoma brucei drug discovery, however, the relatively low success rate and lack of
344 identifiable RNAi machinery in the parasite will need to be investigated further before this
345 technique can be widely applied (Baker et al., 2011; Burkard et al., 2011; AbouLaila et al., 2016).
346
349 a compound, for example to validate mutations observed after generation of resistant parasites or
350 through rational mutation based on homologs (Donald et al., 2006; Lourido et al., 2010; Chow et
351 al., 2016; LaMonte et al., 2016; Ng et al., 2016; Crawford et al., 2017; Dhingra et al., 2017; Sonoiki
352 et al., 2017). Parasites harboring point mutations can be generated by homologous
353 recombination, which is already possible in Babesia, or could be generated with a CRISPR/Cas9
354 system which would require less cumbersome plasmid design (Suarez and McElwain, 2009; Hakimi
356 Synthetic lethal or overexpression studies, which rely on altered expression of the parasite
357 target causing increased or decreased sensitivity to an inhibitor, respectively, are widely used for
358 target validation or target orientated screening (i.e. Arakaki et al., 2008; Goldfless et al., 2014;
359 Sleebs et al., 2014; Aroonsri et al., 2016). Early Plasmodium studies utilized truncated 3’UTRs to
360 reduce the expression level of native genes (Waller et al., 2003; Nkrumah et al., 2009). While this
361 approach could be used with existing techniques in Babesia, development of the inducible systems
362 mentioned above would offer a tunable expression system that would be more widely applicable.
363 An alternative approach is to overexpress a GOI, which can either be the native GOI or a divergent
364 homolog with altered susceptibility to a compound, such as Saccharomyces cerevisiae DHODH
365 expression in P. falciparum (Baldwin et al., 2005; Gardiner et al., 2006; Painter et al., 2007;
366 Ganesan et al., 2011; Hoepfner et al., 2012; Sleebs et al., 2014; Phillips et al., 2015; Dickerman et
367 al., 2016). This can be achieved either by episomal expression of the gene, with the advantage of
368 multiple extra copies, or integration of a second copy of the gene into the genome, which will
370
373 a hypothesized target of a compound or for screening compound libraries against a high priority
374 target of interest. Genome-wide screens that look for genes that are over- or under-represented
375 when exposed to an inhibitor have been widely used in drug discovery with no prior knowledge of
376 the inhibitor’s mechanism of action. This can be done with genome-wide overexpression libraries
377 as has been performed in Leishmania infantum and T. brucei, using methods which could be
378 adapted to Babesia, however, it would require significant effort to generate the library (Begolo et
379 al., 2014; Koushik et al., 2014; Gazanion et al., 2016; Tejera Nevado et al., 2016; Fernandez-Prada
380 et al., 2018). To date no large-scale knockdown screens have been performed in parasites lacking
381 RNAi, however, novel high-throughput methods have recently been developed for mammalian
382 cells and have been widely adopted in the mammalian drug screening field (Gilbert et al., 2013,
383 2014; Konermann et al., 2015; Joung et al., 2017). Cas13 is a newly described molecule that is able
384 to specifically cleave target mRNA, with the only requirement for activity being the presence of a
385 corresponding guide RNA, thus making library production more feasible (Abudayyeh et al., 2016,
386 2017; Cox et al., 2017; Konermann et al., 2018). The lack of non-homologous end joining (NHEJ)
387 repair mechanisms in Babesia precludes the use of CRISPR/Cas9 to perform genome-wide
388 knockout screens, however, the piggyBac transposon, which randomly inserts into TTAA sites in
389 the genome, has recently been used in P. falciparum, which can be used to help prioritize essential
390 genes (Zhang et al., 2018). An advantage of the piggyBac system is that insertion into the 5’ and 3’
391 UTR of genes can lead to altered gene expression (Pradhan et al., 2015; Zhang et al., 2018). Using
392 pools of piggyBac mutants has revealed novel genes that alter sensitivity to inhibitors as well as
393 networks of mutants that have similarly altered sensitivity to multiple compounds, suggesting a
394 related role in the parasite (Pradhan et al., 2015; Zhang et al., 2018).
395
396   6. Conclusions
397 Perhaps the greatest challenge in identifying novel anti-babesials is the extraordinary
398 diversity of the genus. The variability of the Babesia genus generates uncertainty about the ease
399 of adapting tools from orthologous systems. Yet, this diversity provides a unique opportunity to
400 study the parasites in a comparative manner to identify core, conserved biology. The large number
401 of piroplasmid species of medical and veterinary importance necessitates the development of a
402 species-transcendent compound. To date, no single compound shows broad range efficacy against
403 all species. Further, no target-inhibitor pairs have been conclusively validated in Babesia spp. using
404 genetic techniques. In related species, there has been rapid development of systems for genetic
405 manipulation to identify and validate druggable genes. This has lead to the discovery of lead
406 compounds and accelerated compound development (Phillips et al., 2015, 2016). The plethora of
407 in vitro and in vivo culture systems which are available for piroplasmids offers an unprecedented
408 opportunity to identify novel, conserved biology which could be leveraged in development of
409 species-transcendent compounds for treatment of medical and veterinary infections. The recent
410 success of transfection methods for Babesia spp. offers the prospect for development of more
411 advanced techniques. Such techniques would greatly accelerate drug discovery and development.
412
413 Acknowledgements
414 Brendan Elsworth was supported by an Australian National Health and Medical Research
415 Council CJ Martin fellowship (#1148392). Caroline D. Keroack was supported by a National
417
418
419   References
420 AbouLaila, M., Munkhjargal, T., Sivakumar, T., Ueno, A., Nakano, Y., Yokoyama, M., Yoshinari, T.,
421 Nagano, D., Katayama, K., El-Bahy, N., 2012. Apicoplast-targeting antibacterials inhibit the
423 AbouLaila, M., Yokoyama, N., Igarashi, I., 2016 RNA interference (RNAi) for some genes from
424 Babesia bovis. Res J Applied Biotechnol (RJAB) ISSN 2356, 9433. 2, 81-92
425 Abudayyeh, O.O., Gootenberg, J.S., Essletzbichler, P., Han, S., Joung, J., Belanto, J.J., Verdine, V.,
426 Cox, D.B.T., Kellner, M.J., Regev, A., Lander, E.S., Voytas, D.F., Ting, A.Y., Zhang, F., 2017.
428 Abudayyeh, O.O., Gootenberg, J.S., Konermann, S., Joung, J., Slaymaker, I.M., Cox, D.B.T.,
429 Shmakov, S., Makarova, K.S., Semenova, E., Minakhin, L., Severinov, K., Regev, A., Lander,
430 E.S., Koonin, E.V., Zhang, F., 2016. C2c2 is a single-component programmable RNA-guided
432 Adaszek, L., Winiarczyk, S., 2011. In vitro cultivation of Babesia canis canis parasites isolated from
434 Allman, E.L., Painter, H.J., Samra, J., Carrasquilla, M., Llinás, M., 2016. Metabolomic profiling of the
435 malaria box reveals antimalarial target pathways. Antimicrob Agents Chemother 60, 6635-
436 6649.
437 Alzan, H.F., Lau, A.O., Knowles, D.P., Herndon, D.R., Ueti, M.W., Scoles, G.A., Kappmeyer, L.S.,
438 Suarez, C.E., 2016. Expression of 6-Cys Gene Superfamily Defines Babesia bovis Sexual
439 Stage Development within Rhipicephalus microplus. PLoS One 11, e0163791.
440 Alzan, H.F., Silva, M.G., Davis, W.C., Herndon, D.R., Schneider, D.A., Suarez, C.E., 2017. Geno-and
441 phenotypic characteristics of a transfected Babesia bovis 6-Cys-E knockout clonal line.
446 Ansell, K.H., Jones, H.M., Whalley, D., Hearn, A., Taylor, D.L., Patin, E.C., Chapman, T.M., Osborne,
447 S.A., Wallace, C., Birchall, K., 2014. Biochemical and antiparasitic properties of inhibitors of
448 the Plasmodium falciparum calcium-dependent protein kinase PfCDPK1. Antimicrob Agents
450 Arakaki, T.L., Buckner, F.S., Gillespie, J.R., Malmquist, N.A., Phillips, M.A., Kalyuzhniy, O., Luft, J.R.,
451 DeTitta, G.T., Verlinde, C.L., Van Voorhis, W.C., 2008. Characterization of Trypanosoma
452 brucei dihydroorotate dehydrogenase as a possible drug target; structural, kinetic and RNAi
454 Ariey, F., Witkowski, B., Amaratunga, C., Beghain, J., Langlois, A.C., Khim, N., Kim, S., Duru, V.,
455 Bouchier, C., Ma, L., Lim, P., Leang, R., Duong, S., Sreng, S., Suon, S., Chuor, C.M., Bout,
456 D.M., Menard, S., Rogers, W.O., Genton, B., Fandeur, T., Miotto, O., Ringwald, P., Le Bras,
457 J., Berry, A., Barale, J.C., Fairhurst, R.M., Benoit-Vical, F., Mercereau-Puijalon, O., Menard,
460 Armstrong, C.M., Goldberg, D.E., 2007. An FKBP destabilization domain modulates protein levels in
462 Aroonsri, A., Akinola, O., Posayapisit, N., Songsungthong, W., Uthaipibull, C., Kamchonwongpaisan,
463 S., Gbotosho, G.O., Yuthavong, Y., Shaw, P.J., 2016. Identifying antimalarial compounds
467 real-time detection of H2O2 in Babesia bovis merozoites in vitro. Vet Parasitol 255, 78-82.
468 Asada, M., Tanaka, M., Goto, Y., Yokoyama, N., Inoue, N., Kawazu, S.-i., 2012. Stable expression of
469 green fluorescent protein and targeted disruption of thioredoxin peroxidase-1 gene in
470 Babesia bovis with the WR99210/dhfr selection system. Mol Biochem Parasitol 181, 162-
471 170.
472 Asada, M., Yahata, K., Hakimi, H., Yokoyama, N., Igarashi, I., Kaneko, O., Suarez, C.E., Kawazu, S.-i.,
473 2015. Transfection of Babesia bovis by Double Selection with WR99210 and Blasticidin-S
474 and Its Application for Functional Analysis of Thioredoxin Peroxidase-1. PLoS ONE 10,
475 e0125993.
476 Astashkina, A., Mann, B., Grainger, D.W., 2012. A critical evaluation of in vitro cell culture models
477 for high-throughput drug screening and toxicity. Pharmacol Therapeut 134, 82-106.
478 Baker, N., Alsford, S., Horn, D., 2011. Genome-wide RNAi screens in African trypanosomes identify
479 the nifurtimox activator NTR and the eflornithine transporter AAT6. Mol Biochem Parasitol
481 Baldwin, J., Michnoff, C.H., Malmquist, N.A., White, J., Roth, M.G., Rathod, P.K., Phillips, M.A.,
482 2005. High-throughput screening for potent and selective inhibitors of Plasmodium
484 Banaszynski, L.A., Chen, L.-c., Maynard-Smith, L.A., Ooi, A.L., Wandless, T.J., 2006. A rapid,
485 reversible, and tunable method to regulate protein function in living cells using synthetic
487 Beck, J.R., Muralidharan, V., Oksman, A., Goldberg, D.E., 2014. PTEX component HSP101 mediates
488          export of diverse malaria effectors into host erythrocytes. Nature 511, 592.
489   Begolo, D., Erben, E., Clayton, C., 2014. Drug target identification using a trypanosome
491 Belloli, C., Lai, O.R., Ormas, P., Zizzadoro, C., Sasso, G., Crescenzo, G., 2006. Pharmacokinetics and
492 mammary elimination of imidocarb in sheep and goats. J Dairy Sci 89, 2465-2472.
493 Ben Musa, N., Phillips, R.S., 1991. The adaptation of three isolates of Babesia divergens to
495 Biftu, T., Feng, D., Ponpipom, M., Girotra, N., Liang, G.-B., Qian, X., Bugianesi, R., Simeone, J.,
496 Chang, L., Gurnett, A., Liberator, P., Dulski, P., Leavitt, P.S., Crumley, T., Misura, A., Murphy,
497 T., Rattray, S., Samaras, S., Tamas, T., Mathew, J., Brown, C., Thompson, D., Schmatz, D.,
498 Fisher, M., Wyvratt, M., 2005. Synthesis and SAR of 2,3-diarylpyrrole inhibitors of parasite
499 cGMP-dependent protein kinase as novel anticoccidial agents. Bioorgan Med Chem Lett 15,
500 3296-3301.
501 Birnbaum, J., Flemming, S., Reichard, N., Soares, A.B., Mesén-Ramírez, P., Jonscher, E., Bergmann,
502 B., Spielmann, T., 2017. A genetic system to study Plasmodium falciparum protein function.
504 Bloch, E.M., Herwaldt, B.L., Leiby, D.A., Shaieb, A., Herron, R.M., Chervenak, M., Reed, W., Hunter,
505 R., Ryals, R., Hagar, W., Xayavong, M.V., Slemenda, S.B., Pieniazek, N.J., Wilkins, P.P.,
506 Kjemtrup, A.M., 2012. The third described case of transfusion-transmitted Babesia duncani.
508 Bock, R., Jackson, L., De Vos, A., Jorgensen, W., 2004. Babesiosis of cattle. Parasitology 129, S247-
509 S269.
510 Bonnet, S., Brisseau, N., Hermouet, A., Jouglin, M., Chauvin, A., 2009. Experimental in vitro
511          transmission of Babesia sp.(EU1) by Ixodes ricinus. Vet Res 40, 1-8.
512   Bork, S., Okamura, M., Boonchit, S., Hirata, H., Yokoyama, N., Igarashi, I., 2004. Identification of
515 Boyle, M. J., Wilson D. W., Richards J. S., Riglar D. T., Tetteh K. K., Conway D. J., Ralph S. A., Baum J.
516 and Beeson J. G., 2010. Isolation of viable Plasmodium falciparum merozoites to define
517 erythrocyte invasion events and advance vaccine and drug development. Proc Nat Acad
519 Brayton, K.A., Lau, A.O., Herndon, D.R., Hannick, L., Kappmeyer, L.S., Berens, S.J., Bidwell, S.L.,
520 Brown, W.C., Crabtree, J., Fadrosh, D., 2007a. Genome sequence of Babesia bovis and
522 Brayton, K.A., Lau, A.O., Herndon, D.R., Hannick, L., Kappmeyer, L.S., Berens, S.J., Bidwell, S.L.,
523 Brown, W.C., Crabtree, J., Fadrosh, D., Feldblum, T., Forberger, H.A., Haas, B.J., Howell,
524 J.M., Khouri, H., Koo, H., Mann, D.J., Norimine, J., Paulsen, I.T., Radune, D., Ren, Q., Smith,
525 R.K., Jr., Suarez, C.E., White, O., Wortman, J.R., Knowles, D.P., Jr., McElwain, T.F., Nene,
526 V.M., 2007b. Genome sequence of Babesia bovis and comparative analysis of
528 Brobey, R.K., Sano, G.-i., Itoh, F., Aso, K., Kimura, M., Mitamura, T., Horii, T., 1996. Recombinant
531 Burkard, G.S., Jutzi, P., Roditi, I., 2011. Genome-wide RNAi screens in bloodstream form
532 trypanosomes identify drug transporters. Mol Biochem Parasitol 175, 91-94.
533 Chan, J.N.Y., Nislow, C., Emili, A., 2010. Recent advances and method development for drug target
536 adaptation to long-lasting interactions as a way to achieve efficient transmission. Vet Res
538 Chow, E.D., Lim, L., Fidock, D.A., Diagana, T.T., Winzeler, E.A., Bifani, P., 2016. UDP-galactose and
540 16166.
541 Coldham, N.G., Moore, A.S., Dave, M., Graham, P.J., Sivapathasundaram, S., Lake, B.G., Sauer,
542 M.J., 1995. Imidocarb residues in edible bovine tissues and in vitro assessment of
543 imidocarb metabolism and cytotoxicity. Drug Metab Dispos 23, 501-505.
544 Collins, C.R., Das, S., Wong, E.H., Andenmatten, N., Stallmach, R., Hackett, F., Herman, J.P., Müller,
545 S., Meissner, M., Blackman, M.J., 2013. Robust inducible Cre recombinase activity in the
546 human malaria parasite Plasmodium falciparum enables efficient gene deletion within a
547 single asexual erythrocytic growth cycle. Mol Microbiol 88, 687-701.
548 Cong, F., Cheung, A.K., Huang, S.M., 2012. Chemical genetics-based target identification in drug
550 Conrad, P.A., Kjemtrup, A.M., Carreno, R.A., Thomford, J., Wainwright, K., Eberhard, M., Quick, R.,
551 Telford, S.R., 3rd, Herwaldt, B.L., 2006. Description of Babesia duncani n.sp. (Apicomplexa:
552 Babesiidae) from humans and its differentiation from other piroplasms. Int J Parasitol 36,
553 779-789.
554 Corey, V.C., Lukens, A.K., Istvan, E.S., Lee, M.C., Franco, V., Magistrado, P., Coburn-Flynn, O.,
555 Sakata-Kato, T., Fuchs, O., Gnadig, N.F., Goldgof, G., Linares, M., Gomez-Lorenzo, M.G., De
556 Cozar, C., Lafuente-Monasterio, M.J., Prats, S., Meister, S., Tanaseichuk, O., Wree, M.,
557          Zhou, Y., Willis, P.A., Gamo, F.J., Goldberg, D.E., Fidock, D.A., Wirth, D.F., Winzeler, E.A.,
558          2016. A broad analysis of resistance development in the malaria parasite. Nat Commun 7,
559 11901.
560 Cornillot, E., Dassouli, A., Garg, A., Pachikara, N., Randazzo, S., Depoix, D., Carcy, B., Delbecq, S.,
561 Frutos, R., Silva, J.C., 2013. Whole genome mapping and re-organization of the nuclear and
563 Cornillot, E., Dassouli, A., Pachikara, N., Lawres, L., Renard, I., Francois, C., Randazzo, S., Bres, V.,
564 Garg, A., Brancato, J., Pazzi, J.E., Pablo, J., Hung, C., Teng, A., Shandling, A.D., Huynh, V.T.,
565 Krause, P.J., Lepore, T., Delbecq, S., Hermanson, G., Liang, X., Williams, S., Molina, D.M.,
566 Ben Mamoun, C., 2016. A targeted immunomic approach identifies diagnostic antigens in
568 Cornillot, E., Hadj-Kaddour, K., Dassouli, A., Noel, B., Ranwez, V., Vacherie, B., Augagneur, Y., Bres,
569 V., Duclos, A., Randazzo, S., 2012a. Sequencing of the smallest Apicomplexan genome from
570 the human pathogen Babesia microti. Nucleic Acids Res 40, 9102-9114.
571 Cornillot, E., Hadj-Kaddour, K., Dassouli, A., Noel, B., Ranwez, V., Vacherie, B., Augagneur, Y., Bres,
572 V., Duclos, A., Randazzo, S., Carcy, B., Debierre-Grockiego, F., Delbecq, S., Moubri-Menage,
573 K., Shams-Eldin, H., Usmani-Brown, S., Bringaud, F., Wincker, P., Vivares, C.P., Schwarz,
574 R.T., Schetters, T.P., Krause, P.J., Gorenflot, A., Berry, V., Barbe, V., Ben Mamoun, C.,
575 2012b. Sequencing of the smallest Apicomplexan genome from the human pathogen
577 Cowell, A.N., Istvan, E.S., Lukens, A.K., Gomez-Lorenzo, M.G., Vanaerschot, M., Sakata-Kato, T.,
578 Flannery, E.L., Magistrado, P., Owen, E., Abraham, M., LaMonte, G., Painter, H.J., Williams,
579 R.M., Franco, V., Linares, M., Arriaga, I., Bopp, S., Corey, V.C., Gnadig, N.F., Coburn-Flynn,
580 O., Reimer, C., Gupta, P., Murithi, J.M., Moura, P.A., Fuchs, O., Sasaki, E., Kim, S.W., Teng,
581          C.H., Wang, L.T., Akidil, A., Adjalley, S., Willis, P.A., Siegel, D., Tanaseichuk, O., Zhong, Y.,
582          Zhou, Y., Llinas, M., Ottilie, S., Gamo, F.J., Lee, M.C.S., Goldberg, D.E., Fidock, D.A., Wirth,
583 D.F., Winzeler, E.A., 2018. Mapping the malaria parasite druggable genome by using in
585 Cox, D.B.T., Gootenberg, J.S., Abudayyeh, O.O., Franklin, B., Kellner, M.J., Joung, J., Zhang, F., 2017.
587 Crawford, E.D., Quan, J., Horst, J.A., Ebert, D., Wu, W., DeRisi, J.L., 2017. Plasmid-free CRISPR/Cas9
588 genome editing in Plasmodium falciparum confirms mutations conferring resistance to the
590 Creek, D.J., Chua, H.H., Cobbold, S.A., Nijagal, B., MacRae, J.I., Dickerman, B.K., Gilson, P.R., Ralph,
591 S.A., McConville, M.J., 2016. Metabolomics-based screening of the Malaria Box reveals
592 both novel and established mechanisms of action. Antimicrob Agents Chemother 60, 6650-
593 6663.
594 Cuesta, I., Gonzalez, L.M., Estrada, K., Grande, R., Zaballos, A., Lobo, C.A., Barrera, J., Sanchez-
595 Flores, A., Montero, E., 2014a. High-Quality Draft Genome Sequence of Babesia divergens,
596 the Etiological Agent of Cattle and Human Babesiosis. Genome Announc 2.
597 Cuesta, I., González, L.M., Estrada, K., Grande, R., Zaballos, Á., Lobo, C.A., Barrera, J., Sanchez-
598 Flores, A., Montero, E., 2014b. High-quality draft genome sequence of Babesia divergens,
599 the etiological agent of cattle and human babesiosis. Genome Announc 2, e01194-01114.
600 Cursino-Santos, J.R., Singh, M., Pham, P., Lobo, C.A., 2017. A novel flow cytometric application
601 discriminates among the effects of chemical inhibitors on various phases of Babesia
603 Cursino-Santos, J.R., Singh, M., Pham, P., Rodriguez, M., Lobo, C.A., 2016. Babesia divergens builds
604 a complex population structure composed of specific ratios of infected cells to ensure a
605          prompt response to changing environmental conditions. Cell Microbiol 18, 859-874.
606   de Koning-Ward, T.F., Gilson, P.R., Crabb, B.S., 2015. Advances in molecular genetic systems in
608 de Rezende, J., Rangel, C.P., McIntosh, D., Silveira, J.A., Cunha, N.C., Ramos, C.A., Fonseca, A.H.,
611 Dhingra, S.K., Redhi, D., Combrinck, J.M., Yeo, T., Okombo, J., Henrich, P.P., Cowell, A.N., Gupta, P.,
612 Stegman, M.L., Hoke, J.M., 2017. A variant PfCRT isoform can contribute to Plasmodium
613 falciparum resistance to the first-line partner drug piperaquine. MBio 8, e00303-00317.
614 Dickerman, B.K., Elsworth, B., Cobbold, S.A., Nie, C.Q., McConville, M.J., Crabb, B.S., Gilson, P.R.,
615 2016. Identification of inhibitors that dually target the new permeability pathway and
616 dihydroorotate dehydrogenase in the blood stage of Plasmodium falciparum. Sci Rep 6,
617 37502.
618 Donald, R.G., Zhong, T., Wiersma, H., Nare, B., Yao, D., Lee, A., Allocco, J., Liberator, P.A., 2006.
619 Anticoccidial kinase inhibitors: identification of protein kinase targets secondary to cGMP-
621 Eichenberger, R.M., Ramakrishnan, C., Russo, G., Deplazes, P., Hehl, A.B., 2017. Genome-wide
622 analysis of gene expression and protein secretion of Babesia canis during virulent infection
624 Eisen, R.J., Gage, K.L., 2009. Adaptive strategies of Yersinia pestis to persist during inter-epizootic
626 Fernandez-Prada, C., Sharma, M., Plourde, M., Bresson, E., Roy, G., Leprohon, P., Ouellette, M.,
627 2018. High-throughput Cos-Seq screen with intracellular Leishmania infantum for the
628 discovery of novel drug-resistance mechanisms. Int J Parasitol Drugs Drug Resist 8, 165-
629          173.
630   Ganesan, S.M., Falla, A., Goldfless, S.J., Nasamu, A.S., Niles, J.C., 2016. Synthetic RNA–protein
631 modules integrated with native translation mechanisms to control gene expression in
633 Ganesan, S.M., Morrisey, J.M., Ke, H., Painter, H.J., Laroiya, K., Phillips, M.A., Rathod, P.K., Mather,
634 M.W., Vaidya, A.B., 2011. Yeast dihydroorotate dehydrogenase as a new selectable marker
635 for Plasmodium falciparum transfection. Mol Biochem Parasitol 177, 29-34.
636 Gardiner, D.L., Trenholme, K.R., Skinner-Adams, T.S., Stack, C.M., Dalton, J.P., 2006.
639 Gardner, M.J., Bishop, R., Shah, T., de Villiers, E.P., Carlton, J.M., Hall, N., Ren, Q., Paulsen, I.T.,
640 Pain, A., Berriman, M., Wilson, R.J., Sato, S., Ralph, S.A., Mann, D.J., Xiong, Z., Shallom, S.J.,
641 Weidman, J., Jiang, L., Lynn, J., Weaver, B., Shoaibi, A., Domingo, A.R., Wasawo, D.,
642 Crabtree, J., Wortman, J.R., Haas, B., Angiuoli, S.V., Creasy, T.H., Lu, C., Suh, B., Silva, J.C.,
643 Utterback, T.R., Feldblyum, T.V., Pertea, M., Allen, J., Nierman, W.C., Taracha, E.L.,
644 Salzberg, S.L., White, O.R., Fitzhugh, H.A., Morzaria, S., Venter, J.C., Fraser, C.M., Nene, V.,
645 2005. Genome sequence of Theileria parva, a bovine pathogen that transforms
647 Gardner, R.A., Molyneux, D.H., 1987. Babesia vesperuginis: natural and experimental infections in
649 Gazanion, É., Fernández-Prada, C., Papadopoulou, B., Leprohon, P., Ouellette, M., 2016. Cos-Seq
650 for high-throughput identification of drug target and resistance mechanisms in the
651 protozoan parasite Leishmania. Proc Nat Acad Sci 113, E3012-E3021.
652 Gharbi, M., Latrach, R., Sassi, L., Darghouth, M.A., 2012. Evaluation of a simple Theileria annulata
653          culture protocol from experimentally infected bovine whole blood. Parasite 19, 281-283.
654   Gilbert, L.A., Horlbeck, M.A., Adamson, B., Villalta, J.E., Chen, Y., Whitehead, E.H., Guimaraes, C.,
655 Panning, B., Ploegh, H.L., Bassik, M.C., Qi, L.S., Kampmann, M., Weissman, J.S., 2014.
656 Genome-Scale CRISPR-Mediated Control of Gene Repression and Activation. Cell 159, 647-
657 661.
658 Gilbert, L.A., Larson, M.H., Morsut, L., Liu, Z., Brar, G.A., Torres, S.E., Stern-Ginossar, N., Brandman,
659 O., Whitehead, E.H., Doudna, J.A., Lim, W.A., Weissman, J.S., Qi, L.S., 2013. CRISPR-
660 mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154, 442-451.
661 Goff, W.L., Yunker, C.E., 1986. Babesia bovis: increased percentage parasitized erythrocytes in
662 cultures and assessment of growth by incorporation of [3H]hypoxanthine. Exp Parasitol 62,
663 202-210.
664 Goff, W.L., Yunker, C.E., 1988. Effects of PH, buffers and medium-storage on the growth of Babesia
666 Gohil, S., Kats, L.M., Sturm, A., Cooke, B.M., 2010. Recent insights into alteration of red blood cells
668 Goldfless, S.J., Wagner, J.C., Niles, J.C., 2014. Versatile control of Plasmodium falciparum gene
670 Goo, Y.K., Xuan, X., 2014. New Molecules in Babesia gibsoni and their application for diagnosis,
671 vaccine development, and drug discovery. Korean J Parasitol 52, 345-353.
672 Gossen, M., Freundlieb, S., Bender, G., Muller, G., Hillen, W., Bujard, H., 1995. Transcriptional
674 Grande, N., Precigout, E., Ancelin, M.L., Moubri, K., Carcy, B., Lemesre, J.L., Vial, H., Gorenflot, A.,
678 Igarashi, I., 2014. Evaluation of a fluorescence-based method for antibabesial drug
680 Hakimi, H., Yamagishi, J., Kegawa, Y., Kaneko, O., Kawazu, S.-i., Asada, M., 2016. Establishment of
681 transient and stable transfection systems for Babesia ovata. Parasites Vectors 9, 171.
682 Hanson, K.K., Ressurreicao, A.S., Buchholz, K., Prudencio, M., Herman-Ornelas, J.D., Rebelo, M.,
683 Beatty, W.L., Wirth, D.F., Hanscheid, T., Moreira, R., Marti, M., Mota, M.M., 2013. Torins
684 are potent antimalarials that block replenishment of Plasmodium liver stage
685 parasitophorous vacuole membrane proteins. Proc Natl Acad Sci U S A 110, E2838-2847.
686 Hayashida, K., Hara, Y., Abe, T., Yamasaki, C., Toyoda, A., Kosuge, T., Suzuki, Y., Sato, Y.,
687 Kawashima, S., Katayama, T., Wakaguri, H., Inoue, N., Homma, K., Tada-Umezaki, M., Yagi,
688 Y., Fujii, Y., Habara, T., Kanehisa, M., Watanabe, H., Ito, K., Gojobori, T., Sugawara, H.,
689 Imanishi, T., Weir, W., Gardner, M., Pain, A., Shiels, B., Hattori, M., Nene, V., Sugimoto, C.,
690 2012. Comparative genome analysis of three eukaryotic parasites with differing abilities to
693 Herwaldt, B., Persing, D.H., Precigout, E.A., Goff, W.L., Mathiesen, D.A., Taylor, P.W., Eberhard,
694 M.L., Gorenflot, A.F., 1996. A fatal case of babesiosis in Missouri: identification of another
695 piroplasm that infects humans. Ann Intern Med 124, 643-650.
696 Herwaldt, B.L., Caccio, S., Gherlinzoni, F., Aspock, H., Slemenda, S.B., Piccaluga, P., Martinelli, G.,
697 Edelhofer, R., Hollenstein, U., Poletti, G., Pampiglione, S., Loschenberger, K., Tura, S.,
701 D.M., Meister, S., Schuierer, S., 2012. Selective and specific inhibition of the Plasmodium
702 falciparum lysyl-tRNA synthetase by the fungal secondary metabolite cladosporin. Cell host
704 Holman, P.J., Chieves, L., Frerichs, W.M., Olson, D., Wagner, G.G., 1994a. Babesia equi erythrocytic
706 Holman, P.J., Craig, T.M., Crider, D.L., Petrini, K.R., Rhyan, J., Wagner, G.G., 1994b. Culture
707 isolation and partial characterization of a Babesia sp. from a North American elk (Cervus
709 Holman, P.J., Petrini, K., Rhyan, J., Wagner, G.G., 1994c. In vitro isolation and cultivation of a
710 Babesia from an American woodland caribou (Rangifer tarandus caribou). J Wildl Dis 30,
711 195-200.
712 Holman, P.J., Spencer, A.M., Droleskey, R.E., Goethert, H.K., Telford, S.R., 3rd, 2005. In vitro
713 cultivation of a zoonotic Babesia sp. isolated from eastern cottontail rabbits (Sylvilagus
715 Holman, P.J., Waldrup, K.A., Wagner, G.C., 1988. In vitro cultivation of a Babesia isolated from a
717 Hostettler, I., Muller, J., Hemphill, A., 2016. In Vitro Screening of the Open-Source Medicines for
718 Malaria Venture Malaria Box Reveals Novel Compounds with Profound Activities against
720 Hunfeld, K.P., Hildebrandt, A., Gray, J.S., 2008. Babesiosis: recent insights into an ancient disease.
722 Hwang, S.J., Yamasaki, M., Nakamura, K., Sasaki, N., Murakami, M., Wickramasekara
723          Rajapakshage, B.K., Ohta, H., Maede, Y., Takiguchi, M., 2010. Development and
724           characterization of a strain of Babesia gibsoni resistant to diminazene aceturate in vitro. J
726 Igarashi, I., Avarzed, A., Tanaka, T., Inoue, N., Ito, M., Omata, Y., Saito, A., Suzuki, N., 1994.
728 Irvin, A.D., Young, E.R., Adams, P.J., 1979. The effects of irradiation on Babesia maintained in vitro.
730 Iwamoto, M., Björklund, T., Lundberg, C., Kirik, D., Wandless, T.J., 2010. A general chemical
731 method to regulate protein stability in the mammalian central nervous system. Chem Biol
733 Jackson, A.P., Otto, T.D., Darby, A., Ramaprasad, A., Xia, D., Echaide, I.E., Farber, M., Gahlot, S.,
734 Gamble, J., Gupta, D., 2014a. The evolutionary dynamics of variant antigen genes in
737 Jackson, A.P., Otto, T.D., Darby, A., Ramaprasad, A., Xia, D., Echaide, I.E., Farber, M., Gahlot, S.,
738 Gamble, J., Gupta, D., Gupta, Y., Jackson, L., Malandrin, L., Malas, T.B., Moussa, E., Nair, M.,
739 Reid, A.J., Sanders, M., Sharma, J., Tracey, A., Quail, M.A., Weir, W., Wastling, J.M., Hall, N.,
740 Willadsen, P., Lingelbach, K., Shiels, B., Tait, A., Berriman, M., Allred, D.R., Pain, A., 2014b.
741 The evolutionary dynamics of variant antigen genes in Babesia reveal a history of genomic
742 innovation underlying host–parasite interaction. Nucleic Acids Res 42, 7113-7131.
743 Jia, N., Zheng, Y.C., Jiang, J.F., Jiang, R.R., Jiang, B.G., Wei, R., Liu, H.B., Huo, Q.B., Sun, Y., Chu, Y.L.,
744 Fan, H., Chang, Q.C., Yao, N.N., Zhang, W.H., Wang, H., Guo, D.H., Fu, X., Wang, Y.W.,
745 Krause, P.J., Song, J.L., Cao, W.C., 2018. Human Babesiosis Caused by a Babesia crassa-like
748 Stage-Specific Protein Expression during Babesia Bovis Development within Female
750 Joung, J., Konermann, S., Gootenberg, J.S., Abudayyeh, O.O., Platt, R.J., Brigham, M.D., Sanjana,
751 N.E., Zhang, F., 2017. Genome-scale CRISPR-Cas9 knockout and transcriptional activation
753 Kamyingkird, K., Cao, S., Masatani, T., Moumouni, P.F.A., Vudriko, P., Mousa, A.A.E.M., Terkawi,
754 M.A., Nishikawa, Y., Igarashi, I., Xuan, X., 2014. Babesia bovis Dihydroorotate
755 Dehydrogenase (BboDHODH) is a Novel Molecular Target of Drug for Bovine Babesiosis. J
757 Kappmeyer, L.S., Thiagarajan, M., Herndon, D.R., Ramsay, J.D., Caler, E., Djikeng, A., Gillespie, J.J.,
758 Lau, A.O., Roalson, E.H., Silva, J.C., Silva, M.G., Suarez, C.E., Ueti, M.W., Nene, V.M.,
759 Mealey, R.H., Knowles, D.P., Brayton, K.A., 2012. Comparative genomic analysis and
761 Kessl, J.J., Lange, B.B., Merbitz-Zahradnik, T., Zwicker, K., Hill, P., Meunier, B., Palsdottir, H., Hunte,
762 C., Meshnick, S., Trumpower, B.L., 2003. Molecular basis for atovaquone binding to the
764 Khare, S., Roach, S.L., Barnes, S.W., Hoepfner, D., Walker, J.R., Chatterjee, A.K., Neitz, R.J., Arkin,
765 M.R., McNamara, C.W., Ballard, J., Lai, Y., Fu, Y., Molteni, V., Yeh, V., McKerrow, J.H.,
766 Glynne, R.J., Supek, F., 2015. Utilizing Chemical Genomics to Identify Cytochrome b as a
767 Novel Drug Target for Chagas Disease. PLOS Path 11, e1005058.
768 Konermann, S., Brigham, M.D., Trevino, A.E., Joung, J., Abudayyeh, O.O., Barcena, C., Hsu, P.D.,
769 Habib, N., Gootenberg, J.S., Nishimasu, H., Nureki, O., Zhang, F., 2015. Genome-scale
772 Engineering with RNA-Targeting Type VI-D CRISPR Effectors. Cell 173, 665-676.e614.
773 Koushik, A.B., Welter, B.H., Rock, M.L., Temesvari, L.A., 2014. A genomewide overexpression
774 screen identifies genes involved in the phosphatidylinositol 3-kinase pathway in the human
776 LaMonte, G., Lim, M.Y.-X., Wree, M., Reimer, C., Nachon, M., Corey, V., Gedeck, P., Plouffe, D., Du,
777 A., Figueroa, N., 2016. Mutations in the Plasmodium falciparum cyclic amine resistance
779 Lau, A.O., 2009. An overview of the Babesia, Plasmodium and Theileria genomes: a comparative
781 Laughery, J.M., Knowles, D.P., Schneider, D.A., Bastos, R.G., McElwain, T.F., Suarez, C.E., 2014.
782 Targeted surface expression of an exogenous antigen in stably transfected Babesia bovis.
784 Lawres, L.A., Garg, A., Kumar, V., Bruzual, I., Forquer, I.P., Renard, I., Virji, A.Z., Boulard, P.,
785 Rodriguez, E.X., Allen, A.J., Pou, S., Wegmann, K.W., Winter, R.W., Nilsen, A., Mao, J.,
786 Preston, D.A., Belperron, A.A., Bockenstedt, L.K., Hinrichs, D.J., Riscoe, M.K., Doggett, J.S.,
787 Ben Mamoun, C., 2016. Radical cure of experimental babesiosis in immunodeficient mice
788 using a combination of an endochin-like quinolone and atovaquone. J Exp Med 213, 1307-
789 1318.
790 Lemieux, J.E., Tran, A.D., Freimark, L., Schaffner, S.F., Goethert, H., Andersen, K.G., Bazner, S., Li,
791 A., McGrath, G., Sloan, L., Vannier, E., Milner, D., Pritt, B., Rosenberg, E., Telford, S., 3rd,
792 Bailey, J.A., Sabeti, P.C., 2016. A global map of genetic diversity in Babesia microti reveals
793 strong population structure and identifies variants associated with clinical relapse. Nat
797 Liu, M., Asada, M., Cao, S., Moumouni, P.F.A., Vudriko, P., Efstratiou, A., Hakimi, H., Masatani, T.,
798 Sunaga, F., Kawazu, S.-i., 2017a. Transient transfection of intraerythrocytic Babesia gibsoni
800 Liu, M., Moumouni, P.F.A., Asada, M., Hakimi, H., Masatani, T., Vudriko, P., Lee, S.-H., Kawazu, S.-i.,
801 Yamagishi, J., Xuan, X., 2018. Establishment of a stable transfection system for genetic
803 Liu, M., Moumouni, P.F.A., Cao, S., Asada, M., Wang, G., Gao, Y., Guo, H., Li, J., Vudriko, P.,
805 functional promoters between Babesia gibsoni and Babesia bovis. Ticks Tick-Borne Dis.
806 Lourido, S., Shuman, J., Zhang, C., Shokat, K.M., Hui, R., Sibley, L.D., 2010. Calcium-dependent
807 protein kinase 1 is an essential regulator of exocytosis in Toxoplasma. Nature 465, 359-362.
808 Luth, M.R., Gupta, P., Ottilie, S., Winzeler, E.A., 2018. Using in Vitro Evolution and Whole Genome
809 Analysis To Discover Next Generation Targets for Antimalarial Drug Discovery. ACS Infect
811 Mackenstedt, U., Gauer, M., Mehlhorn, H., Schein, E., Hauschild, S., 1990. Sexual cycle of Babesia
813 McFadden, D.C., Camps, M., Boothroyd, J.C., 2001. Resistance as a tool in the study of old and new
815 McHardy, N., Woollon, R.M., Clampitt, R.B., James, J.A., Crawley, R.J., 1986. Efficacy, toxicity and
816 metabolism of imidocarb dipropionate in the treatment of Babesia ovis infection in sheep.
821 Meissner, M., Krejany, E., Gilson, P.R., de Koning-Ward, T.F., Soldati, D., Crabb, B.S., 2005.
823 stages using Toxoplasma gondii transactivators. Proc Nat Acad Sci USA 102, 2980-2985.
824 Molinar, E., James, M.A., Kakoma, I., Holland, C., Ristic, M., 1982. Antigenic and immunogenic
825 studies on cell culture-derived Babesia canis. Vet Parasitol 10, 29-40.
826 Mosqueda, J., Olvera-Ramirez, A., Aguilar-Tipacamu, G., J Canto, G., 2012. Current advances in
827 detection and treatment of babesiosis. Curr Med Chem 19, 1504-1518.
828 Muralidharan, V., Oksman, A., Iwamoto, M., Wandless, T.J., Goldberg, D.E., 2011. Asparagine
829 repeat function in a Plasmodium falciparum protein assessed via a regulatable fluorescent
831 Musa, N.B., Abdel Gawad, M.A., 2004. Adaptation of three Babesia divergens isolates to
832 continuous culture in rat erythrocytes. J Egypt Soc Parasitol 34, 333-344.
833 Nagai, A., Yokoyama, N., Matsuo, T., Bork, S., Hirata, H., Xuan, X., Zhu, Y., Claveria, F.G., Fujisaki, K.,
834 Igarashi, I., 2003. Growth-Inhibitory Effects of Artesunate, Pyrimethamine, and Pamaquine
835 against Babesia equi and Babesia caballi in In Vitro Cultures. Antimicrob Agents Chemother
837 Ng, C.L., Siciliano, G., Lee, M., de Almeida, M.J., Corey, V.C., Bopp, S.E., Bertuccini, L., Wittlin, S.,
838 Kasdin, R.G., Le Bihan, A., 2016. CRISPR-Cas9-modified pfmdr1 protects Plasmodium
839 falciparum asexual blood stages and gametocytes against a class of piperazine-containing
840 compounds but potentiates artemisinin-based combination therapy partner drugs. Mol
843 Wellems, T.E., Akabas, M.H., Fidock, D.A., 2009. Probing the multifactorial basis of
845 the sodium-proton exchanger PfNHE. Mol Biochem Parasitol 165, 122-131.
846 Okubo, K., Yokoyama, N., Govind, Y., Alhassan, A., Igarashi, I., 2007. Babesia bovis: effects of
847 cysteine protease inhibitors on in vitro growth. Exp Parasitol 117, 214-217.
848 Oldiges, D.P., Laughery, J.M., Tagliari, N.J., Leite Filho, R.V., Davis, W.C., da Silva Vaz Jr, I.,
849 Termignoni, C., Knowles, D.P., Suarez, C.E., 2016. Transfected Babesia bovis Expressing a
850 Tick GST as a Live Vector Vaccine. PLOS Negl Trop Dis 10, e0005152.
851 Omar, M.A., Salama, A., Elsify, A., Rizk, M.A., Al-Aboody, M.S., AbouLaila, M., El-Sayed, S.A.,
852 Igarashi, I., 2016. Evaluation of in vitro inhibitory effect of enoxacin on Babesia and
854 Ord, R.L., Lobo, C.A., 2015. Human Babesiosis: Pathogens, Prevalence, Diagnosis and Treatment.
856 Pain, A., Renauld, H., Berriman, M., Murphy, L., Yeats, C.A., Weir, W., Kerhornou, A., Aslett, M.,
857 Bishop, R., Bouchier, C., Cochet, M., Coulson, R.M., Cronin, A., de Villiers, E.P., Fraser, A.,
858 Fosker, N., Gardner, M., Goble, A., Griffiths-Jones, S., Harris, D.E., Katzer, F., Larke, N., Lord,
859 A., Maser, P., McKellar, S., Mooney, P., Morton, F., Nene, V., O'Neil, S., Price, C., Quail,
860 M.A., Rabbinowitsch, E., Rawlings, N.D., Rutter, S., Saunders, D., Seeger, K., Shah, T.,
861 Squares, R., Squares, S., Tivey, A., Walker, A.R., Woodward, J., Dobbelaere, D.A., Langsley,
862 G., Rajandream, M.A., McKeever, D., Shiels, B., Tait, A., Barrell, B., Hall, N., 2005. Genome
863 of the host-cell transforming parasite Theileria annulata compared with T. parva. Science
867 Park, H., Hong, S.H., Kim, K., Cho, S.H., Lee, W.J., Kim, Y., Lee, S.E., Park, Y., 2015. Characterizations
868 of individual mouse red blood cells parasitized by Babesia microti using 3-D holographic
870 Paul, A.S., Moreira, C.K., Elsworth, B., Allred, D.R., Duraisingh, M.T., 2016. Extensive Shared
873 Pedroni, M.J., Sondgeroth, K.S., Gallego-Lopez, G.M., Echaide, I., Lau, A.O., 2013. Comparative
874 transcriptome analysis of geographically distinct virulent and attenuated Babesia bovis
875 strains reveals similar gene expression changes through attenuation. BMC Genomics 14,
876 763.
877 Pedroni, M.J., Vidadala, R.S., Choi, R., Keyloun, K.R., Reid, M.C., Murphy, R.C., Barrett, L.K., Van
878 Voorhis, W.C., Maly, D.J., Ojo, K.K., Lau, A.O., 2016. Bumped kinase inhibitor prohibits
880 Pellé, K.G., Jiang, R.H., Mantel, P.Y., Xiao, Y.P., Hjelmqvist, D., Gallego-Lopez, G.M., OT Lau, A.,
881 Kang, B.H., Allred, D.R., Marti, M., 2015. Shared elements of host-targeting pathways
882 among apicomplexan parasites of differing lifestyles. Cell Microbiol 17, 1618-1639.
883 Penzhorn, B.L., Lewis, B.D., Lopez-Rebollar, L.M., Swan, G.E., 2000. Screening of five drugs for
884 efficacy against Babesia felis in experimentally infected cats. J South African Vet Assoc 71,
885 53-57.
886 Phillips, M.A., Lotharius, J., Marsh, K., White, J., Dayan, A., White, K.L., Njoroge, J.W., El Mazouni,
887          F., Lao, Y., Kokkonda, S., 2015. A long-duration dihydroorotate dehydrogenase inhibitor
888          (DSM265) for prevention and treatment of malaria. Sci Translat Med 7, 296ra111-
889 296ra111.
890 Phillips, M.A., White, K.L., Kokkonda, S., Deng, X., White, J., El Mazouni, F., Marsh, K., Tomchick,
892 Dehydrogenase Inhibitor with Improved Drug-like Properties for Treatment and Prevention
894 Pillai, A.D., Pain, M., Solomon, T., Bokhari, A.A., Desai, S.A., 2010. A cell-based high-throughput
895 screen validates the plasmodial surface anion channel as an antimalarial target. Mol
897 Pino, P., Sebastian, S., Kim, E.A., Bush, E., Brochet, M., Volkmann, K., Kozlowski, E., Llinás, M.,
898 Billker, O., Soldati-Favre, D., 2012. A tetracycline-repressible transactivator system to study
899 essential genes in malaria parasites. Cell Host Microbe 12, 824-834.
900 Posnett, E.S., Metaferia, E., Wiliamson, S., Brown, C.G., Canning, E.U., 1998. In vitro cultivation of
901 an African strain of Babesia bigemina, its characterisation and infectivity in cattle. Parasitol
903 Pradhan, A., Siwo, G.H., Singh, N., Martens, B., Balu, B., Button-Simons, K.A., Tan, A., Zhang, M.,
904 Udenze, K.O., Jiang, R.H.Y., Ferdig, M.T., Adams, J.H., Kyle, D.E., 2015. Chemogenomic
905 profiling of Plasmodium falciparum as a tool to aid antimalarial drug discovery. Sci Rep 5,
906 15930.
907 Prommana, P., Uthaipibull, C., Wongsombat, C., Kamchonwongpaisan, S., Yuthavong, Y., Knuepfer,
908 E., Holder, A.A., Shaw, P.J., 2013. Inducible knockdown of Plasmodium gene expression
910 Qian, X., Liang, G.-B., Feng, D., Fisher, M., Crumley, T., Rattray, S., Dulski, P.M., Gurnett, A., Leavitt,
911          P.S., Liberator, P.A., Misura, A.S., Samaras, S., Tamas, T., Schmatz, D.M., Wyvratt, M., Biftu,
912          T., 2006. Synthesis and SAR Studies of diarylpyrrole anticoccidial agents. Bioorgan Med
914 Rajkumari, N., 2015. Epidemiological profile of “Babesia venatorum”. Lancet Infect Dis 15, 877-
915 878.
916 Reynolds, M.G., Oh, J., Roos, D.S., 2001. In vitro generation of novel pyrimethamine resistance
919 Rizk, M.A., El-Sayed, S.A., AbouLaila, M., Tuvshintulga, B., Yokoyama, N., Igarashi, I., 2016. Large-
920 scale drug screening against Babesia divergens parasite using a fluorescence-based high-
922 Rizk, M.A., El-Sayed, S.A., Terkawi, M.A., Youssef, M.A., El Said el Sel, S., Elsayed, G., El-Khodery, S.,
923 El-Ashker, M., Elsify, A., Omar, M., Salama, A., Yokoyama, N., Igarashi, I., 2015.
924 Optimization of a Fluorescence-Based Assay for Large-Scale Drug Screening against Babesia
926 Rizk, M.A., El-Sayed, S.A.E., AbouLaila, M., Eltaysh, R., Yokoyama, N., Igarashi, I., 2017.
929 Robinson, M.S., Sahlender, D.A., Foster, S.D., 2010. Rapid inactivation of proteins by rapamycin-
931 Rodriguez, R.I., Trees, A.J., 1996. In vitro responsiveness of Babesia bovis to imidocarb
932 dipropionate and the selection of a drug-adapted line. Vet Parasitol 62, 35-41.
933 Rossouw, I., Maritz-Olivier, C., Niemand, J., van Biljon, R., Smit, A., Olivier, N.A., Birkholtz, L.M.,
934 2015. Morphological and Molecular Descriptors of the Developmental Cycle of Babesia
935          divergens Parasites in Human Erythrocytes. PLoS Negl Trop Dis 9, e0003711.
936   Saito-Ito, A., Kawai, A., Ohmori, S., Nagano-Fujii, M., 2016. Continuous in vivo culture and indirect
937 fluorescent antibody test for zoonotic protozoa of Babesia microti. Parasitol Int 65, 526-
938 531.
939 Sakuma, M., Setoguchi, A., Endo, Y., 2009. Possible emergence of drug-resistant variants of
940 Babesia gibsoni in clinical cases treated with atovaquone and azithromycin. J Vet Intern
942 Salmon, B. L., Oksman A. and Goldberg D. E., 2001. Malaria parasite exit from the host
943 erythrocyte: a two-step process requiring extraerythrocytic proteolysis. Proc Nat Acad Sci
945 Schenone, M., Dancik, V., Wagner, B.K., Clemons, P.A., 2013. Target identification and mechanism
946 of action in chemical biology and drug discovery. Nat Chem Biol 9, 232-240.
947 Schreeg, M.E., Marr, H.S., Tarigo, J.L., Cohn, L.A., Bird, D.M., Scholl, E.H., Levy, M.G., Wiegmann,
948 B.M., Birkenheuer, A.J., 2016. Mitochondrial Genome Sequences and Structures Aid in the
950 Schuster, F.L., 2002. Cultivation of Babesia and Babesia-Like Blood Parasites: Agents of an
952 Shikano, S., Nakada, K., Hashiguchi, R., Shimada, T., Ono, K., 1995. A short term in vitro cultivation
953 of Babesia rodhaini and Babesia microti. J. Vet. Med. Sci. 57, 955-957.
954 Sidik, S.M., Hortua Triana, M.A., Paul, A.S., El Bakkouri, M., Hackett, C.G., Tran, F., Westwood, N.J.,
955 Hui, R., Zuercher, W.J., Duraisingh, M.T., Moreno, S.N.J., Lourido, S., 2016. Using a
956 Genetically Encoded Sensor to Identify Inhibitors of Toxoplasma gondii Ca2+ Signaling. J
958 Silva, J.C., Cornillot, E., McCracken, C., Usmani-Brown, S., Dwivedi, A., Ifeonu, O.O., Crabtree, J.,
959          Gotia, H.T., Virji, A.Z., Reynes, C., Colinge, J., Kumar, V., Lawres, L., Pazzi, J.E., Pablo, J.V.,
960          Hung, C., Brancato, J., Kumari, P., Orvis, J., Tretina, K., Chibucos, M., Ott, S., Sadzewicz, L.,
961 Sengamalay, N., Shetty, A.C., Su, Q., Tallon, L., Fraser, C.M., Frutos, R., Molina, D.M.,
962 Krause, P.J., Ben Mamoun, C., 2016a. Genome-wide diversity and gene expression profiling
963 of Babesia microti isolates identify polymorphic genes that mediate host-pathogen
965 Silva, M.G., Domingos, A., Esteves, M.A., Cruz, M.E.M., Suarez, C.E., 2013. Evaluation of the
966 growth-inhibitory effect of trifluralin analogues on in vitro cultured Babesia bovis parasites.
968 Silva, M.G., Knowles, D.P., Mazuz, M.L., Cooke, B.M., Suarez, C.E., 2018a. Stable transformation of
969 Babesia bigemina and Babesia bovis using a single transfection plasmid. Sci Rep 8, 6096.
970 Silva, M.G., Knowles, D.P., Suarez, C.E., 2016b. Identification of interchangeable cross-species
971 function of elongation factor-1 alpha promoters in Babesia bigemina and Babesia bovis.
973 Silva, M.G., Villarino, N.F., Knowles, D.P., Suarez, C.E., 2018b. Assessment of Draxxin®
974 (tulathromycin) as an inhibitor of in vitro growth of Babesia bovis, Babesia bigemina and
976 Simon, M.S., Westblade, L.F., Dziedziech, A., Visone, J.E., Furman, R.R., Jenkins, S.G., Schuetz, A.N.,
977 Kirkman, L.A., 2017. Clinical and Molecular Evidence of Atovaquone and Azithromycin
978 Resistance in Relapsed Babesia microti infection associated with Rituximab and Chronic
980 Skinner, T.S., Manning, L.S., Johnston, W.A., Davis, T.M.E., 1996. In vitro stage-specific sensitivity
981 of Plasmodium falciparum to quinine and artemisinin drugs. Int J Parasitol 26, 519-525.
982 Sleebs, B.E., Lopaticki, S., Marapana, D.S., O'Neill, M.T., Rajasekaran, P., Gazdik, M., Günther, S.,
983          Whitehead, L.W., Lowes, K.N., Barfod, L., 2014. Inhibition of Plasmepsin V activity
984           demonstrates its essential role in protein export, PfEMP1 display, and survival of malaria
986 Solano-Gallego, L., Sainz, A., Roura, X., Estrada-Pena, A., Miro, G., 2016. A review of canine
988 Sonoiki, E., Ng, C.L., Lee, M.C., Guo, D., Zhang, Y.-K., Zhou, Y., Alley, M., Ahyong, V., Sanz, L.M.,
990 Plasmodium falciparum cleavage and polyadenylation specificity factor homologue. Nature
992 Sriwilaijareon, N., Petmitr, S., Mutirangura, A., Ponglikitmongkol, M., Wilairat, P., 2002. Stage
993 specificity of Plasmodium falciparum telomerase and its inhibition by berberine. Parasitol
995 Suarez, C.E., Johnson, W.C., Herndon, D.R., Laughery, J.M., Davis, W.C., 2015. Integration of a
996 transfected gene into the genome of Babesia bovis occurs by legitimate homologous
998 Suarez, C.E., Laughery, J.M., Schneider, D.A., Sondgeroth, K.S., McElwain, T.F., 2012. Acute and
999 persistent infection by a transfected Mo7 strain of Babesia bovis. Mol Biochem Parasitol
1001 Suarez, C.E., McElwain, T.F., 2008. Transient transfection of purified Babesia bovis merozoites. Exp
1003 Suarez, C.E., McElwain, T.F., 2009. Stable expression of a GFP-BSD fusion protein in Babesia bovis
1005 Suarez, C.E., Norimine, J., Lacy, P., McElwain, T.F., 2006. Characterization and gene expression of
1008 Intergenic regions in the rhoptry associated protein-1 (rap-1) locus promote exogenous
1010 Sun, W., Tanaka, T.Q., Magle, C.T., Huang, W., Southall, N., Huang, R., Dehdashti, S.J., McKew, J.C.,
1011 Williamson, K.C., Zheng, W., 2014a. Chemical signatures and new drug targets for
1013 Sun, W., Tanaka, T.Q., Magle, C.T., Huang, W., Southall, N., Huang, R., Dehdashti, S.J., McKew, J.C.,
1014 Williamson, K.C., Zheng, W., 2014b. Chemical signatures and new drug targets for
1016 Tejera Nevado, P., Bifeld, E., Höhn, K., Clos, J., 2016. A Telomeric Cluster of Antimony Resistance
1018 5262-5275.
1019 Thomford, J.W., Conrad, P.A., Boyce, W.M., Holman, P.J., Jessup, D.A., 1993. Isolation and in vitro
1020 cultivation of Babesia parasites from free-ranging desert bighorn sheep (Ovis canadensis
1021 nelsoni) and mule deer (Odocoileus hemionus) in California. J Parasitol 79, 77-84.
1022 Thomford, J.W., Conrad, P.A., Telford, S.R., 3rd, Mathiesen, D., Bowman, B.H., Spielman, A.,
1023 Eberhard, M.L., Herwaldt, B.L., Quick, R.E., Persing, D.H., 1994. Cultivation and
1026 Thomson, J.G., Fantham, H.B., 1914. The successful cultivation of Babesia (Piroplasma) canis in
1027 vitro, following the method of Bass. Trans Royal Soc Trop Med Hyg 7, 119-125.
1028 Tuvshintulga, B., AbouLaila, M., Sivakumar, T., Tayebwa, D.S., Gantuya, S., Naranbaatar, K.,
1029 Ishiyama, A., Iwatsuki, M., Otoguro, K., Omura, S., Terkawi, M.A., Guswanto, A., Rizk, M.A.,
1030          Yokoyama, N., Igarashi, I., 2017. Chemotherapeutic efficacies of a clofazimine and
1031          diminazene aceturate combination against piroplasm parasites and their AT-rich DNA-
1033 Van Niekerk, C.J., Zweygarth, E., 1996. In vitro cultivation of Babesia occultans. Onderstepoort J
1035 Van Voorhis, W.C., Adams, J.H., Adelfio, R., Ahyong, V., Akabas, M.H., Alano, P., Alday, A., Aleman
1036 Resto, Y., Alsibaee, A., Alzualde, A., Andrews, K.T., Avery, S.V., Avery, V.M., Ayong, L.,
1037 Baker, M., Baker, S., Ben Mamoun, C., Bhatia, S., Bickle, Q., Bounaadja, L., Bowling, T.,
1038 Bosch, J., Boucher, L.E., Boyom, F.F., Brea, J., Brennan, M., Burton, A., Caffrey, C.R.,
1039 Camarda, G., Carrasquilla, M., Carter, D., Belen Cassera, M., Chih-Chien Cheng, K.,
1040 Chindaudomsate, W., Chubb, A., Colon, B.L., Colon-Lopez, D.D., Corbett, Y., Crowther, G.J.,
1041 Cowan, N., D'Alessandro, S., Le Dang, N., Delves, M., DeRisi, J.L., Du, A.Y., Duffy, S., Abd El-
1042 Salam El-Sayed, S., Ferdig, M.T., Fernandez Robledo, J.A., Fidock, D.A., Florent, I., Fokou,
1043 P.V., Galstian, A., Gamo, F.J., Gokool, S., Gold, B., Golub, T., Goldgof, G.M., Guha, R.,
1044 Guiguemde, W.A., Gural, N., Guy, R.K., Hansen, M.A., Hanson, K.K., Hemphill, A., Hooft van
1045 Huijsduijnen, R., Horii, T., Horrocks, P., Hughes, T.B., Huston, C., Igarashi, I., Ingram-Sieber,
1046 K., Itoe, M.A., Jadhav, A., Naranuntarat Jensen, A., Jensen, L.T., Jiang, R.H., Kaiser, A.,
1047 Keiser, J., Ketas, T., Kicka, S., Kim, S., Kirk, K., Kumar, V.P., Kyle, D.E., Lafuente, M.J.,
1048 Landfear, S., Lee, N., Lee, S., Lehane, A.M., Li, F., Little, D., Liu, L., Llinas, M., Loza, M.I.,
1049 Lubar, A., Lucantoni, L., Lucet, I., Maes, L., Mancama, D., Mansour, N.R., March, S.,
1050 McGowan, S., Medina Vera, I., Meister, S., Mercer, L., Mestres, J., Mfopa, A.N., Misra, R.N.,
1051 Moon, S., Moore, J.P., Morais Rodrigues da Costa, F., Muller, J., Muriana, A., Nakazawa
1052 Hewitt, S., Nare, B., Nathan, C., Narraidoo, N., Nawaratna, S., Ojo, K.K., Ortiz, D., Panic, G.,
1053 Papadatos, G., Parapini, S., Patra, K., Pham, N., Prats, S., Plouffe, D.M., Poulsen, S.A.,
1054          Pradhan, A., Quevedo, C., Quinn, R.J., Rice, C.A., Abdo Rizk, M., Ruecker, A., St Onge, R.,
1055          Salgado Ferreira, R., Samra, J., Robinett, N.G., Schlecht, U., Schmitt, M., Silva Villela, F.,
1056 Silvestrini, F., Sinden, R., Smith, D.A., Soldati, T., Spitzmuller, A., Stamm, S.M., Sullivan, D.J.,
1057 Sullivan, W., Suresh, S., Suzuki, B.M., Suzuki, Y., Swamidass, S.J., Taramelli, D., Tchokouaha,
1058 L.R., Theron, A., Thomas, D., Tonissen, K.F., Townson, S., Tripathi, A.K., Trofimov, V.,
1059 Udenze, K.O., Ullah, I., Vallieres, C., Vigil, E., Vinetz, J.M., Voong Vinh, P., Vu, H., Watanabe,
1060 N.A., Weatherby, K., White, P.M., Wilks, A.F., Winzeler, E.A., Wojcik, E., Wree, M., Wu, W.,
1061 Yokoyama, N., Zollo, P.H., Abla, N., Blasco, B., Burrows, J., Laleu, B., Leroy, D., Spangenberg,
1062 T., Wells, T., Willis, P.A., 2016. Open Source Drug Discovery with the Malaria Box
1063 Compound Collection for Neglected Diseases and Beyond. PLoS Pathog 12, e1005763.
1064 Vannier, E., Gewurz, B.E., Krause, P.J., 2008. Human babesiosis. Infect Dis Clin North Am 22, 469-
1065 488.
1066 Vannier, E.G., Diuk-Wasser, M.A., Ben Mamoun, C., Krause, P.J., 2015. Babesiosis. Infect Dis Clin
1068 Vayrynen, R., Tuomi, J., 1982. Continuous in vitro cultivation of Babesia divergens. Acta Vet Scand
1070 Vega, C.A., Buening, G.M., Green, T.J., Carson, C.A., 1985a. In vitro cultivation of Babesia bigemina.
1072 Vega, C.A., Buening, G.M., Rodriguez, S.D., Carson, C.A., McLaughlin, K., 1985b. Cryopreservation
1073 of Babesia bigemina for in vitro cultivation. Am J Vet Res 46, 421-423.
1074 Viseras, J., Garcia-Fernandez, P., Adroher, F.J., 1997. Isolation and establishment in in vitro culture
1075 of a Theileria annulata-infected cell line from Spain. Parasitol Res 83, 394-396.
1076 Waller, K.L., Muhle, R.A., Ursos, L.M., Horrocks, P., Verdier-Pinard, D., Sidhu, A.B.S., Fujioka, H.,
1077          Roepe, P.D., Fidock, D.A., 2003. Chloroquine Resistance Modulated in Vitro by Expression
1078          Levels of the Plasmodium falciparum Chloroquine Resistance Transporter. J Biol Chem 278,
1079 33593-33601.
1080 Wang, X., Xiao, Y.-P., Bouchut, A., Al-Khedery, B., Wang, H., Allred, D.R., 2012. Characterization of
1081 the unusual bidirectional ves promoters driving VESA1 expression and associated with
1083 Wirtz, E., Clayton, C., 1995. Inducible gene expression in trypanosomes mediated by a prokaryotic
1085 Wormser, G.P., Prasad, A., Neuhaus, E., Joshi, S., Nowakowski, J., Nelson, J., Mittleman, A.,
1086 Aguero-Rosenfeld, M., Topal, J., Krause, P.J., 2010. Emergence of Resistance to
1089 Wu, W., Herrera, Z., Ebert, D., Baska, K., Cho, S.H., DeRisi, J.L., Yeh, E., 2015. A chemical rescue
1090 screen identifies a Plasmodium falciparum apicoplast inhibitor targeting MEP isoprenoid
1092 Yabsley, M.J., Shock, B.C., 2013. Natural history of Zoonotic Babesia: Role of wildlife reservoirs. Int
1094 Yamagishi, J., Asada, M., Hakimi, H., Tanaka, T.Q., Sugimoto, C., Kawazu, S.-i., 2017. Whole-
1095 genome assembly of Babesia ovata and comparative genomics between closely related
1097 Yamasaki, M., Asano, H., Otsuka, Y., Yamato, O., Tajima, M., Maede, Y., 2000. Use of canine red
1098 blood cell with high concentrations of potassium, reduced glutathione, and free amino acid
1099 as host cells for in vitro cultivation of Babesia gibsoni. Am J Vet Res 61, 1520-1524.
1100 Yeruham, I., Pipano, E., Davidson, M., 1985. A field strain of Babesia bovis apparently resistant to
1103 Nare, B., Liberator, P., 2006. Highly substituted terphenyls as inhibitors of parasite cGMP-
1105 Zhang, M., Wang, C., Otto, T.D., Oberstaller, J., Liao, X., Adapa, S.R., Udenze, K., Bronner, I.F.,
1106 Casandra, D., Mayho, M., Brown, J., Li, S., Swanson, J., Rayner, J.C., Jiang, R.H.Y., Adams,
1107 J.H., 2018. Uncovering the essential genes of the human malaria parasite Plasmodium
1109 Zhao, J., Liu, Z., Yao, B., Ma, L., 2002. Culture-derived Babesia orientalis exoantigens used as a
1111 Zweygarth, E., Just, M.C., de Waal, D.T., 1995. Continuous in vitro cultivation of erythrocytic stages
1113 Zweygarth, E., Lopez-Rebollar, L.M., 2000. Continuous in vitro cultivation of Babesia gibsoni.
1115 Zweygarth, E., van Niekerk, C.J., de Waal, D.T., 1999. Continuous in vitro cultivation of Babesia
1117
1118
1120 Fig. 1. Presented is an illustrative phylogeny based loosely on available 18S rRNA sequence data
1121 and current phylogenetic studies of piroplasm species of veterinary and medical importance, as
1122 well as all species which can currently be cultured in vitro. Filled circles represent the existence of
1123 the denoted system (green: in vitro culture; blue: in vivo model; purple: genetic system
1124 established). Parasites of zoonotic importance are denoted by a red human silhouette. B., Babesia;
1127  The poorly understood biology and the large diversity of piroplasmids poses a challenge to
1129  The ability to culture many Babesia spp. in vitro and in vivo provides an opportunity to
1131  The availability of many genetic tools in related parasites will help accelerate genetic
1133  The use of sophisticated genetic techniques will be essential for the identification and
1135
1136
1137
1138   Table 1. Genetic tools available for drug target identification. ‘Yes’ represents technologies that
1139 are currently available for that organism. ‘Possible’ represents technologies where there are no
1140 obvious biological features of the organism that would prevent its development. ‘Not possible’
1141 represents technologies where the biology of the organism is expected to prevent the successful
1143
       Genetic tool               Mammalian/    Trypanosoma      Toxoplasma     Plasmodium      Babesia
                                  Yeast         brucei           gondii         falciparum      spp.
Gene editing
Overexpression
Reduced expression