0% found this document useful (0 votes)
141 views12 pages

Indrani

This document contains calculations for the design of reinforced concrete beams and slabs. Key details include: 1) Beam FB/2 requires 686mm^2 of steel with 3-16Φ + 1-12Φ at the support top due to an under-reinforced section. 2) Beam at point C requires 2-12Φ at the top to resist a negative moment of 16.27Kn/m. 3) Transverse reinforcement of 8Φ @ 130mm c/c is designed for beam FB/14 to resist shear and satisfy code requirements. 4) Multiple beams are designed for various positive and negative moments with calculations shown for steel area, development length

Uploaded by

Sajal9474
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
141 views12 pages

Indrani

This document contains calculations for the design of reinforced concrete beams and slabs. Key details include: 1) Beam FB/2 requires 686mm^2 of steel with 3-16Φ + 1-12Φ at the support top due to an under-reinforced section. 2) Beam at point C requires 2-12Φ at the top to resist a negative moment of 16.27Kn/m. 3) Transverse reinforcement of 8Φ @ 130mm c/c is designed for beam FB/14 to resist shear and satisfy code requirements. 4) Multiple beams are designed for various positive and negative moments with calculations shown for steel area, development length

Uploaded by

Sajal9474
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
You are on page 1/ 12

Balance from-4 Flow Beam FB/2

Reinforce for –Ve moment at B=83kn

End portion will be designed as rectangular section

Mulim as calculated earlis is more than MuD is 83kn

So the section is under reinforced,

So 83 x 106=0.87fyAst.d(1-Astfy/bdfck)

or,83 x 106 =141532Ast-29.97Ast2

Or,Ast=686mm2

Use 3-16Φ+1-12Φ at the support top

Negative moment at C =16.27Kn/m

Use 2-12Φ at top 0f section at C.

Transverse Reinforce

% steel at support =(100 x 3 x 113.1)/(250 x 3.92)=0.345%

τcfck 0.346%will be from table=0.36+(0.12/0.25) x 0.096=0.41N/mm2

τuc > τc,Transverse shear Reinforce essestial.

Asu =τu,Su/b1d1(0.87f)+VuSu/2.5d1(0.87fy)

Assume 8Ф stirrap b1=250-(25-4) x 2=208

d1=425-(25-4) x 2=383

6/208 x 383)+(63.34 x
(Asu x 0.87fy/Su)=(τu/b1d1+Vu/2.5 X d1)=(8.43 x 10
1000/383)=106+165=271N/mm

Also Asu =(τve-τc) x bsu/0.87fy

Or,Asu x 0.87fy/su=(τve-τc)b=(0.669-0.41) x 250=65N/mm

We know,(Asu/Su)=271/0.87fy=0.75

Su=(2 x 50.3/0.75)=134N/mm
Hance stirrap 8Ф @130 c/c

This should not excud x1(x1+y1)/4

X1=250-2 x 2=200, y1425-2 x 25=375

(x1+y1)/4=200+375/4=144

Hance 8Ф @130 c/c satisfy the coad,

Beam FB/5 ,FB/6 ,FB/4 ,FB/5 ,FB/6

K=1

K=3.72 N=3.72 O=3.34 P=3,72 Q=3.72 R

K=I/L, 700cos=1146, Table,250 x 425, K=4265, Table=250 x 350,


K =3828, col:Beam:Beam

1:3.72:3.34

DF-MN=(3.72/5.72)=0.65, MN=(3.72/9.44)=0.39, NO=0.39,


ON=0.41, OP=0.41, PO=0.41, PQ=0.41, QR=0.39, QP=0.39, RQ=0.65,

Mome Spa F.EMdue Stirrap moment S.F


nt n todu+lim
FB/ MN/Q 4.5 (47.13 X (47.13 X (47.13 X
5 R 4.52/12)=79.53 4.52/8)=119.3
4.252/2)=100.
15
FB/ NO/Q 4.5 (47.356 X (47.356 X (47.356 X
6 P 4.52/12)=79.91 4.52/8)=119.87 4.52/2)=100.6
3
FB/ OP/2. 2.8 (16.26 X (16.26 X (16.26 X
4 8 282/12)=10.62 282/8)=15.93 282/2)=22.76
(60 X (60 X (60 X
2.8)/8=(21.00/3 2.8)/4=(42.00/5 57/2)=(28.00/
1.62) 7.93) 51.6)

MN, >Span(Span as AB)=(250 x 425)=47.12N/mm


NO, >Span(Span as BC)=(250 x 425)=26.56N/mm

OP, >Span(Span as op)=(250 x 350)=12.50N/mm

Now for slab w.t=0.35 x 0.25 x 25 x 1.5=3.28

Wall w.t=1 x 3.06 x 0.2 x 19 x 0.744 x 1.5=12.98, TOTAL=16.26

Point M N O P

D.F MN NM NO QN OP PQ PQ

D.F 0.65 0.39 0.39 0.41 0.41 0.41 0.41

F.EM -79.53 +79.53 -79.91 +79.91 -31.62 +31.62 -79.91

Dist +51.69 +0.148 +0.148 -19.80 -19.80 +19.80 +19.80

c.o +0.074 +25.84 -9.90 +0.074 +9.90 -9.90 +19.90


Dist -0.048 -6.22 -6.22 -4.03 -4.03
-27.814 +99.303 +95.852 +56.154 -45.55

Due to beam=FB/13=60.00, FE/4=(60 X 2.8)/8=21K/mm

M27.81 N O P Q R27.81

95.85 45.55 +12.4 45.65

F.EM

Beam MN & QR/FB15=250 X 450

+Ve moment 119.3-(27.81 + 99.303/2)=55.74

-ve moment at M & R=27.81


-Ve moment at N & Q=99.303

Beam NO & PQ /FB16=250 X 450

+Ve moment at =119.87-(95.86 x 56.16/2)=43.87

-ve moment at N & Q=95.88

-ve moment at O & P=56.154

Beam OP –FB/15 250X350

+Ve Moment – 57.93-45.55=12.38

-Ve Moment at P80=45.55

Beam- FB 5 450x250 MM

1700 +ve =55.74

155 -Ve at M =27.81

450 -Ve at M =99.303

Bf=(L0/6+6X X DF+bw)

250 =0.7 x 4.5 + 6 x 155 + 250=1700

Using 16Ф rod, d=450–25–8=417mm

Eff. Span=4.5m

D=√99.303 x 106/2.761 x 250=379<417

MuD =55.74

Mulim =.36fck x df x bf x Df x (d-.42 x Df)

=.36 x 20 x 1700 x 155 x (417-65.1)

=1.8972 x 351.9 x 106

=667.62Kn.m>MUD

So it is under reinforce section

AST =.5fck/fy(1-√1-4.6MUD/fck x bf x d2) x bf x d


-Ve moment 56.154 KN.M

1.874x106 = 5024 Ast2

Ast = 5024-4212 = 406m2

Shear force
100.63𝑋1000
S.F Vu = 100.63, there = = 0.965 N/m2
250𝑋417
100𝑋3𝑋113.1
% of poisons ratio = = 0.325
250𝑋417
0.12
ĨC = 0.36+ X 0.075 = 0.396 N/m2
0.25

VuS = Vu- 0.396X250X417 = 100630-41283 = 59347 N


0.87𝑋415𝑋2𝑋50.3𝑋417
Space of 8ɸ stirrup = = 255
59347

Space of 8ɸ stirrup @ 250 C\C

Beam FB14(0P) 250X350


𝑙𝑜
700 bf= + 𝑏𝑤 + 3𝑑𝑦
12
2.8∗.7
= +250+300
12

=163+250+300

=713 ͌700

Calculate beam-

+ve=12.38kn/m

-Ve=45.5kn/m

45.55∗10⌃6
Req d=√ =257
2.76∗250

d=350-25-6 =319>257

effient =2.8m
+ve moment of midsfe =12.38

Xu max =0.48*319=153

mediam=0.36*20*250*153(319-42*153)

=0.2754*106*255 =70.227*106kn>12.38
𝑎𝑠𝑡∗𝑓𝑦
Therefore, 12.38*106=.8780*ast*d(1- )
𝑓𝑎𝑘𝑏𝑑

415𝑎𝑠𝑡
=.87*415*319ast(1- )
20∗250∗319

=115175*29.97ast2

0.413*106=384ast-ast2

Therefore,
3843−3622
Ast=
2

=111m2

Mean ‘m ruf’
Ast 0.85 0.85𝑋250
= ast = = 163m
bd 𝑓𝑦 415

So use – 2-12

-ve moment = 45.55 < Mulim


𝑎𝑠𝑡 𝑓𝑦
45.55X106 =0.87fy ast X d (1- )
𝑓𝑐𝑙 𝑏𝑑

415 𝑎𝑠𝑡
= 0.87X415X319 ast (1- )
20𝑋250𝑋313

=115175 ast – 29.97 ast2

1.52X106=3843ast-ast2
3843−2948
Ast= = 448mm2
2

Use-u12ɸ are= 4X113.1 = 452.4m2

Shear force
52760
Vu= 52.76KN, ĩu= = 0.662nm2
250319
100𝑋2𝑋113.1
Area of rif = = 0.284
250𝑋319
0.12
Ĩc = 0.36+ X0.034 = 0.376 N/m2
0.25

BEAM FB/16

CALCULATION 250*450

+ve moment = 43.87

-ve moment = 95.88

-ve moment = 56.154

d = 450-25-8=417

= 4.5m

Bf = 1700
95.88∗10
D =√ = 372<417
2.761∗250
+ve moment = 43.83

=0.36*fok*bf*Df(d-0.42 Df )

=0.36 * 20*1700*155 (417-0.42*155)

=1.8972*326.9*106=620.19*106 kn/h>43.87

Under section
415 𝑎𝑠ℎ
Therefour, 43.87*106 = 0.87 fy * ash *d(1- )
𝑏𝑓∗𝑑∗𝑓𝑐𝑙𝑒

415𝑎𝑠ℎ
=.87*415*417 ash (1- )
1700∗417∗20

=141532 ash – 4.41 ash

W 9.948*106 = 32093-ash
32093−31468
Ash= = 313 m2
2

Wlc-3-12 R atbftm

-ve moment 95.88 kn/m

Xu max. =0.48*417=200.16 muti = 0.36* xcle * d * xu max. *(d-


0’’42 xu max. )

= 0.36*20*250*260.16(417-0.42*200.16)

= 0.3607*333 = 119.82 kn/m> 95.88

Undwe requr sec.

𝑎𝑠𝑡𝑓𝑦
Therefour, 95.88*106 =0.87 fy* sh *d (1- )
𝑏𝑑𝑓𝑐𝑘

𝑎𝑠𝑡∗415
=0.87*415*417 ast (1- )
250417∗20

=150588ast -2937 ast2

W 3.2*106=5024 ast- ast2


5024−3527
Ast = =749 mm2
2

use-4-16 of at top

0.5𝑓𝑐𝑘 4.6∗𝑚𝑢𝑑
ast= [1-√1 − ] log 𝑑
415 𝑓𝑐𝑘 log 𝑑

10
= [1-0.978]1700*417= 376mm2
415

Use_ 2-16 of at top

Hegeli 99.303 at n & q

X max.=0.48, x max=.48*47= 200

Then, = 0.36 fek*d*x max.*(d-0.42x max.)

=0.36*20*250*200(417-0.42*200)

=0.336*106*333=119.88 km/h>99.303 km/h

Sec. b under require


𝑎𝑠𝑡∗𝑡𝑦
So 99.303*106=0.87 fo*ast*d(1- )
𝑙𝑜𝑑 𝑓𝑜𝑘

15055 8 ast-as2

W 3.313*106=5024 ast –art2


5024−3464
Ast = = 780 m2
2

Use 4-16ᶲ

s.f =100’15 kh
100150 100150
Ʈve= = =0.916 kn/m2
𝑏𝑑 250∗417
100∗2∗201
%of stel= = 0.386
250∗417

0.12
Ʈc=0.’36+ *0.136 = 0.425 kn/m2+
.25

Vus= vu-Ʈcbd= 100 sd -.425*250*447


=100150-44306= 55844kh

.87∗415∗2∗50.3∗417
Spec.981= = 271
55844

Use 8ᶲ @ 270 cle all this.

Beam FB/7 & FB/8 (AG,GM)

A G B

5.0 4.5

LOADING

AG

Self wt = 0.45x0.25x1.5=4.22 kn/m

Wall = 0.80x0.2x2.96x19x1.5= 13.50

Slab 19.82

37.54 Kn/m

GM

Self Wt = 0.4x0.25x25+1.5 = 3.75


Wall = 0.8x0.2x3x19x1.5= 13.73
Slab = 18.63
36.11 Kn/m

MEMBER SPAN F.E.M


SPAN MEM
AG 5.0 37.54X52/12= 78.2
( (37.54X52/8)=117.31

GM 4.536.11X4.52/12=60.94

(36.11X4.52/8) = 91.40

S.F
(37.54X4.75/2) = 89.16

K = for col = 1145 D.F = AG = 0.67


(36.11X4.25/2) = 76.73

Beam =4556 GA = 0.44

400 x 25 = 3556 GM= 0.34

Col : 450 : 400 = 1 : 4 : 3.1 MG = 0.61

Joint A G M

Member AG GA GM MG

D.f 0.67 0.44 0.34 0.61

F.e.m -78.2 +78.2 -60.94 +60.94

Duf +52.39 -7.6 -5.86 -37.18

C.o -3.8 +26.20 -18.59 -2.39

Dist +2.55 -3.35 -2.59 +1.79

Slab Ag

27.06 93.45 87.98 22.62 117.31-(22.06+93.45)

=59.56 Kn/m2

A G M Gm = 91.40-(87.98-
22.6)

=36.10 Kn/m2

BEAM FB/7 (Am)

+ve moment = 59.56 kn-m

-ve moment at G = 27.06 kn-m

-ve moment at G = 93.45 kn-m

BEAM FB/8(GM)

+ve moment = 36.10 kn-m


-ve moment at G = 87.98 kn-m

-ve moment at M = 22.60 kn-m

BEAM FB/7 450X250 (AG)

1000 Lef = (l0 /12 +lw + 3df) = (5000x0.7)/12


+ 250+3x155

155

450 Eff depth = 450-25-8= 417


750 Eff span = 5000

Tu=19.82x0.75x(0.75/2)(5-0.25)x1/2=13.24

250 Vu=(4.75x37.54/2)=89.16

Vd=Vu+1.6(Tu/6)=89.16+1.6(13.24/6)=92.69

Tue=(92.69/250x417)=0.889 Kn-m2

LAP REINFORCEMENT

Mel=Mu+Me=59.56+21.18=81.37,
Me=Tu(1+D16/1.7)=13.24(1+0.45/1.7)=21.81

Mulim=0.36xfckx(Xumax/d)x(1-0.42xXumax/d)bd2 =
71.72x0.7984x250x4172=3.57

5.97x417= 24891.5 Kn-m>81.37

81.37x106 = 0.87fyxAstxd(1-fyAst/bdfck)

=150558Ast-29.97Ast2

0r, 2.715x106 = 5024 – Ast2

=Ast = (5024 – 3792/2) = 616m2

Use = 2 – 16@ + 2- 12@ at mid span.

You might also like