Prius Zvw30 HVDM
Prius Zvw30 HVDM
ZVW30 Series
Foreword
This guide was developed to educate and assist dismantlers in the safe handling of Toyota Prius
gasoline-electric hybrid vehicles. Prius dismantling procedures are similar to other non-hybrid Toyota
vehicles with the exception of the high voltage electrical system. It is important to recognize and
understand the high voltage electrical system features and specifications of the Toyota Prius hybrid, as
they may not be familiar to dismantlers.
High voltage electricity powers the A/C compressor, electric motor, generator, and inverter/converter.
All other conventional automotive electrical devices such as the headlights, radio, and gauges are
powered from a separate 12 Volt auxiliary battery. Numerous safeguards have been designed into the
Prius to help ensure the high voltage, approximately 201.6 Volt, Nickel Metal Hydride (NiMH) Hybrid
Vehicle (HV) battery pack is kept safe and secure in an accident.
The NiMH HV battery pack contains sealed batteries that are similar to rechargeable batteries used in
some battery operated power tools and other consumer products. The electrolyte is absorbed in the cell
plates and will not normally leak out even if the battery is cracked. In the unlikely event the electrolyte
does leak, it can be easily neutralized with a dilute boric acid solution or vinegar.
High voltage cables, identifiable by orange insulation and connectors, are isolated from the metal chassis
of the vehicle.
By following the information in this guide, dismantlers will be able to handle Prius-electric vehicles as
safely as the dismantling of a conventional non-hybrid automobile.
ii
Table of Contents
Prius Identification....................................................................................................................................2
Exterior .........................................................................................................................................................3
Spills..........................................................................................................................................................14
iii
About the Prius
The Prius continues into its 3rd generation as a gasoline-electric hybrid vehicle.
Hybrid Synergy Drive means that the vehicle contains a gasoline engine and electric
motors for power. The two hybrid power sources are stored on board the vehicle:
The result of combining these two power sources is improved fuel economy and
reduced emissions. The gasoline engine also powers an electric generator to recharge
the battery pack; unlike a pure all electric vehicle, the Prius never needs to be recharged
from an external electric power source.
Depending on the driving conditions one or both sources are used to power the vehicle.
The following illustration demonstrates how the Prius operates in various driving
modes.
n During light acceleration at low speeds, the vehicle is powered by the electric motor.
The gasoline engine is shut off.
o During normal driving, the vehicle is powered mainly by the gasoline engine. The
gasoline engine also powers the generator to recharge the battery pack.
p During full acceleration, such as climbing a hill, both the gasoline engine and the
electric motor power the vehicle.
q During deceleration, such as when braking, the vehicle regenerates the kinetic
energy from the wheels to produce electricity that recharges the battery pack.
r While the vehicle is stopped, the gasoline engine and electric motor are off, however
the vehicle remains on and operational.
1
Prius Identification
In appearance, the 2010 model year Prius is a 5-door hatchback. Exterior, interior, and engine
compartment illustrations are provided to assist in identification.
The alphanumeric 17 character Vehicle Identification Number (VIN) is provided in the front
windshield cowl and on the driver door pillar.
2
Prius Identification (Continued)
Exterior
o
p
n n
o
n n
3
Prius Identification (Continued)
Interior
q Instrument cluster (speedometer, READY light, shift position indicators, warning lights)
located in center of the dash and near the base of the windshield.
Hint:
If the vehicle is shut off, the instrument cluster gauges will be “blacked out”, not
illuminated.
4
Prius Identification (Continued)
Engine Compartment
Power Cables
5
Hybrid Component Locations & Descriptions
Fuel Tank and Fuel Undercarriage and The fuel tank provides gasoline via a fuel line to the
Line v Center engine. The fuel line is routed under the center of
vehicle.
*Numbers in the component column apply to the illustrations on the following page.
6
Hybrid Component Locations & Descriptions (Continued)
Specifications
Gasoline Engine: 98 hp (73 kW), 1.8-liter Aluminum Alloy Engine
Electric Motors 80 hp (60 kW), Permanent Magnet Motor
Transmission: Automatic Only (electrically controlled continuously variable transaxle)
HV Battery: 201.6 Volt Sealed NiMH Battery
Curb Weight: 3,080 lbs/1,397 kg
Fuel Tank: 11.9 gals/45.0 liters
Fuel Economy
Ratings: 51/48 (City/Hwy) miles/gal
4.7/4.8 (City/Hwy) liters/100 km
Frame Material: Steel Unibody
Body Material: Steel Panels except for Aluminum Hood and Back Door
Seating Capacity: 5 standard
r o
u q p
ts
7
Hybrid Synergy Drive Operation
Once the READY indicator is illuminated in the instrument cluster, the vehicle may be
driven. However, the gasoline engine does not idle like a typical automobile and will
start and stop automatically. It is important to recognize and understand the READY
indicator provided in the instrument cluster. When illuminated, it informs the driver
that the vehicle is on and operational even though the gasoline engine may be off and
the engine compartment is silent.
Vehicle Operation
• With the Prius, the gasoline engine may stop and start at any time while the READY
indicator is on.
• Never assume that the vehicle is shut off just because the engine is off. Always look for
the READY indicator status. The vehicle is shut off when the READY indicator is off.
8
Hybrid Vehicle (HV) Battery Pack and Auxiliary Battery
The Prius features a high voltage Hybrid Vehicle (HV) battery pack that contains sealed Nickel
Metal Hydride (NiMH) battery modules.
HV Battery Pack
• The HV battery pack is enclosed in a metal case and is rigidly mounted to the cago area
floor pan cross member behind the rear seat. The metal case is isolated from high
voltage and concealed by carpet in the cabin area.
• The HV battery pack consists of 28 low voltage (7.2 Volt) NiMH battery modules
connected in series to produce approximately 201.6 Volts. Each NiMH battery module is
non-spillable and in a sealed case.
• The electrolyte used in the NiMH battery module is an alkaline mixture of potassium and
sodium hydroxide. The electrolyte is absorbed into the battery cell plates and will not
normally leak, even in a collision.
• In the unlikely event that the battery pack is overcharged, the modules vent gases directly
outside the vehicle through a vent hose.
HV Battery Pack
Battery pack voltage 201.6 V
Number of NiMH battery modules in the pack 28
NiMH battery module voltage 7.2 V
NiMH battery module dimensions 11.2 x 0.8 x 4.6 in
(285 x 19.6 x 117.8 mm)
NiMH module weight 2.3 lbs (1.04 kg)
NiMH battery pack dimensions 11.7 x 23.2 x 0.42 in
(297 x 590 x 10.7 mm)
NiMH battery pack weight 90 lbs (41 kg)
9
Hybrid Vehicle (HV) Battery Pack and Auxiliary Battery (Continued)
Auxiliary Battery
• The Prius also contains a lead-acid 12 Volt battery. This 12 Volt auxiliary battery powers
the vehicle electrical system similar to a conventional vehicle. As with other conventional
vehicles, the auxiliary battery is grounded to the metal chassis of the vehicle.
• The auxiliary battery is located in the cargo area. It is concealed by a fabric cover on the
passenger side in the rear quarter panel well.
201.6 Volt HV Battery Pack 12 Volt Auxiliary Battery Mounted in Cargo Area
10
High Voltage Safety
The HV battery pack powers the high voltage electrical system with DC electricity. Positive
and negative orange colored high voltage power cables are routed from the battery pack, under
the vehicle floor pan, to the inverter/converter. The inverter/converter contains a circuit that
boosts the HV battery voltage from 201.6 to 650 Volts DC. The inverter/converter creates
3-phase AC to power the motors. Power cables are routed from the inverter/converter to each
high voltage motor (front and rear electric motors, electric generator, and A/C compressor).
The following systems are intended to help keep occupants in the vehicle and emergency
responders safe from high voltage electricity:
• Positive and negative high voltage power cables o* connected to the HV battery pack are
controlled by 12 Volt normally open relays p*. When the vehicle is shut off, the relays
stop electricity flow from leaving the HV battery pack.
WARNING:
・ The high voltage system may remain powered for up to 10
minutes after the vehicle is shut off or disabled. To prevent
serious injury or death from severe burns or electric shock,
avoid touching, cutting, or opening any orange high voltage
power cable or high voltage component.
• Both positive and negative power cables o* are insulated from the metal chassis, so there is
no possibility of electric shock when touching the metal chassis.
• A ground-fault monitor continuously monitors for high voltage leakage to the metal chassis
while the vehicle is running. If a malfunction is detected, the hybrid vehicle computer q*
will illuminate the master warning light in the instrument cluster and indicate
“CHECK HYBRID SYSTEM” on the multi-information display.
• The HV battery pack relays will automatically open to stop electricity flow in a collision
sufficient to activate the SRS.
11
High Voltage Safety (Continued)
o
o o
p p
12
Precaution to be observed when dismantling the vehicle
WARNING:
・ The high voltage system may remain powered for up to 10
minutes after the vehicle is shut off or disabled. To prevent
serious injury or death from severe burns or electric shock,
avoid touching, cutting, or opening any orange high voltage
power cable or high voltage component.
Necessary Items
• Protective clothing such as insulated gloves (electrically insulated), rubber gloves, safety goggles,
and safety shoes.
• Insulating tape such as electrical tape that has a suitable electrical insulation rating.
• Before wearing insulated gloves, make sure that they are not cracked, ruptured, torn, or damaged in
any way. Do not wear wet insulated gloves.
• An electrical tester that is capable of measuring DC 750 Volts or more.
13
Spills
The Prius contains the same common automotive fluids used in other non-hybrid Toyota vehicles, with
the exception of the NiMH electrolyte used in the HV battery pack. The NiMH battery electrolyte is a
caustic alkaline (pH 13.5) that is damaging to human tissues. The electrolyte, however, is absorbed in
the cell plates and will not normally spill or leak out even if a battery module is cracked. A
catastrophic crash that would breach both the metal battery pack case and a metal battery module would
be a rare occurrence.
A caustic alkaline is at the opposite end of the pH scale from a strong acid. A safe (neutral) substance
is approximately in the middle of this scale. Adding a weak acidic mixture, such as a dilute boric acid
solution or vinegar, to the caustic alkaline electrolyte will cause the electrolyte to be neutralized. This
is similar but opposite to the use of baking soda to neutralize a lead-acid battery electrolyte spill.
• Handle NiMH electrolyte spills using the following Personal Protective Equipment (PPE):
• Splash shield or safety goggles. A fold down face shield is not acceptable for acid or
electrolyte spills.
• Rubber, latex or nitrile gloves.
• Apron suitable for alkaline.
• Rubber boots.
14
Dismantling the vehicle
The following 2 pages contain general instructions for use when working on a Prius. Read these
instructions before proceeding to the HV battery removal instructions on page 18.
WARNING:
・ The high voltage system may remain powered for up to 10
minutes after the vehicle is shut off or disabled. To prevent
serious injury or death from severe burns or electric shock, avoid
touching, cutting, or opening any orange high voltage power
cable or any high voltage component.
1. Shut off the ignition (READY indicator is off). Then disconnect the cable from the
auxiliary battery negative (-) terminal.
(1) Remove the center deck board.
(2) Remove the center auxiliary box and
battery cover.
(3) Disconnect the battery negative terminal.
15
3. Carry the removed service plug grip in your pocket to prevent other staff from
accidentally reinstalling it while you are dismantling the vehicle.
4. Make other staff aware that a high-voltage system is being dismantled by using the
following sign: CAUTION: HIGH-VOLTAGE. DO NOT TOUCH (see page 17).
5. If the service plug grip cannot be removed due to damage to the vehicle, remove the
IGCT fuse (30A) and AM2 fuse (7.5A).
Caution:
This operation shuts off the HV system. Be sure to wear insulated gloves
because high voltage is not shut off inside the HV battery. When it is possible to
remove the service plug grip, remove it and continue the procedure.
AM2 fuse
IGCT fuse
16
17
Removal of HV battery
WARNING:
・ Be sure to wear insulated gloves when handling high-voltage
parts.
・ Even if the vehicle is shut off and the relays are off, be sure to
remove the service plug grip before performing any further
work.
・ Power remains in the high voltage electrical system for 10
minutes even after the HV battery pack is shut off because the
circuit has a condenser that stores power.
・ Make sure that the tester reading is 0 V before touching any
high-voltage terminals which are not insulated.
・ The SRS may remain powered for up to 90 seconds after the
vehicle is shut off or disabled. To prevent serious injury or
death from unintentional SRS deployment, avoid cutting the
SRS components.
18
(4) Disconnect the cable from the auxiliary
battery negative (-) terminal.
(5) Disconnect the cable from the auxiliary
battery positive (+) terminal.
(6) Remove the 12volt auxiliary battery.
Caution:
Wear insulated gloves for the following 3
steps.
(1) Raise the release handle of the service
plug grip as shown in the illustration
below.
(2) Remove the service plug grip.
(3) Apply insulating tape to the socket of the
service plug grip to insulate it. Service Plug Grip
19
6. Check the voltage at the terminals in the
inspection point in the power control unit.
Caution:
Wear insulated gloves.
To prevent serious injury or death, do
not proceed with dismantling of the HV
system until the voltage at the terminals
in the inspection point is 0 V.
Standard voltage: 0 V
Hint:
Set the tester to DC 750 Volts measure the
voltage.
This inspection is performed to verify that it is safe to remove the HV battery.
20
9. Remove the rear side seatback assembly
RH
(1) Remove the bolt.
21
(3) Remove the 2 bolts and rear seatback
assembly LH.
22
15. Remove the rear No. 2 floor board
sub-assembly.
(1) Disengage the 2 claws and 2 clips, and
remove the rear No. 1 floor board
sub-assembly.
23
(2) Remove the 2 bolts.
(3) Disengage each guide and remove the 2 luggage hold belt striker assemblies.
(4) Remove the screw.
(5) Disengage the 7 claws and 2 clips, and remove the deck trim side panel assembly RH.
24
19. Remove the No. 1 hybrid battery exhaust
duct.
Caution:
Wear insulated gloves for the following 2
steps.
(1) Using the service plug grip, remove the
battery cover lock striker.
Hint:
Insert the projecting part of the service plug
grip and turn the button of the battery cover
lock striker counterclockwise to release the
lock.
(2) Remove the 4 nuts and upper hybrid battery cover sub-assembly.
25
(2) Disconnect the battery cooling blower
assembly connector and clamp.
(3) Remove the 2 bolts, nut and battery
cooling blower assembly.
26
25. Remove the HV battery assembly.
Caution:
Wear insulated gloves.
(1) Disconnect the connector and electrical
key oscillator clamp.
26. The HV battery pack is recyclable. Contact your Toyota distributor (if included on the
HV battery caution label) or contact the nearest Toyota dealer (see the next 2 pages for
samples of the HV battery caution label).
Caution:
After removing the HV battery, do not reinstall the service plug grip to the HV
battery.
27
HV Battery Caution Label
1. For U.S.A.
2. For CANADA
28
3. For Europe
29