100% found this document useful (1 vote)
991 views2 pages

Mosfet Atlas

This document outlines the steps to simulate an n-channel bulk MOSFET using Atlas simulator. It defines the device structure by specifying the mesh, regions, electrodes and doping. It then sets the material model and calculation method, generates the initial solution, runs the simulation for different drain biases and gate sweeps, and outputs the results.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
100% found this document useful (1 vote)
991 views2 pages

Mosfet Atlas

This document outlines the steps to simulate an n-channel bulk MOSFET using Atlas simulator. It defines the device structure by specifying the mesh, regions, electrodes and doping. It then sets the material model and calculation method, generates the initial solution, runs the simulation for different drain biases and gate sweeps, and outputs the results.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
You are on page 1/ 2

# Program to simulate n-channel bulk MOSFET

# Step 1: Generate the device structure


# 1.1 simulator specification
go atlas

# 1.2 mesh definition


mesh space.mult=1.0

# mesh definition in x direction


# loc stands for location, specifying the location of the grid line
x.mesh loc=0.00 spac=0.01
# spac stands for spacing, specifying mesh spacing at a given location
x.mesh loc=0.05 spac=0.001
x.mesh loc=0.09 spac=0.004
x.mesh loc=0.13 spac=0.001
x.mesh loc=0.18 spac=0.01

# mesh definition in y direction


y.mesh loc=-0.002 spac=0.0005
y.mesh loc=0 spac=0.0004
y.mesh loc=0.03 spac=0.008
y.mesh loc=0.10 spac=0.01
# 1.3 region definition
region num=1 y.min=0 silicon
region num=2 y.max=0 oxide
# 1.4 electrode declaration
electrode name=gate number=1 x.min=0.05 x.max=0.13 top
electrode name=source number=2 left length=0.05 y.min=0 y.max=0
electrode name=drain number=3 right length=0.05 y.min=0 y.max=0
electrode name=substrate number=4 bottom
# 1.5 doping specification of distribution, type
doping uniform conc=2e18 p.type region=1
doping uniform conc=1e20 n.type x.left=0 x.right=0.05 y.min=0 y.max=0.03

doping uniform conc=1e20 n.type x.left=0.13 x.right=0.18 y.min=0 y.max=0.03


# 1.6 contact specification
# n.poly sets n+ doped polysilicon as contact material with workfuction=4.17eV
contact name=gate n.poly
contact name=source neutral
contact name=drain neutral
contact name=substrate neutral
#Step 2: Set the material model
models mos print

#Step 3: Set the specific method used to do the calculation


method newton trap

#Step 4: generate initial solution at zero bias


solve init

output con.band val.band

#Step 5: Run the simulator to obtain solution for different bias condition
#solution for different drain bias
solve vdrain=0.1 outf=solve_vdrain1
solve vdrain=0.2 outf=solve_vdrain2
solve vdrain=0.3 outf=solve_vdrain3
solve vdrain=0.4 outf=solve_vdrain4

# ramp gate bias with a specific drain bias solution


load infile=solve_vdrain1

#output the result in a specific log file


log outf=drain1.log
solve name=gate vgate=0 vfinal=1.2 vstep=0.1
load infile=solve_vdrain2
log outf=drain2.log
solve name=gate vgate=0 vfinal=1.2 vstep=0.1
load infile=solve_vdrain3
log outf=drain3.log
solve name=gate vgate=0 vfinal=1.2 vstep=0.1
load infile=solve_vdrain4
save outfile=mosfet.str
tonyplot mosfet.str
log outf=drain4.log
solve name=gate vgate=0 vfinal=1.2 vstep=0.1
#Step 6: Display the results
# display all the log files overlaid together
tonyplot -overlay drain1.log drain2.log drain3.log drain4.log
quit

You might also like