0% found this document useful (0 votes)
56 views10 pages

Digital Signal Processing:) (E X e N N X

The document discusses several theorems related to the Fourier transform (FT). It begins by stating that the FT is always periodic and linear. It then discusses theorems regarding time shifting, frequency shifting, time reversal, conjugation, convolution, multiplication, modulation, and Parseval's theorem. The document transitions to discussing how the discrete Fourier transform (DFT) provides a computational tool to evaluate the FT on digital computers by sampling the discrete-time Fourier transform (DTFT) at discrete frequency points.

Uploaded by

dishank
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
56 views10 pages

Digital Signal Processing:) (E X e N N X

The document discusses several theorems related to the Fourier transform (FT). It begins by stating that the FT is always periodic and linear. It then discusses theorems regarding time shifting, frequency shifting, time reversal, conjugation, convolution, multiplication, modulation, and Parseval's theorem. The document transitions to discussing how the discrete Fourier transform (DFT) provides a computational tool to evaluate the FT on digital computers by sampling the discrete-time Fourier transform (DTFT) at discrete frequency points.

Uploaded by

dishank
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 10

9/4/2019

Fourier transform theorems

 F.T. is always periodic

X (e j )  X (e j (  2 ) )
 F.T. is linear transform
DIGITAL SIGNAL PROCESSING x1[n]  X 1 (e j )
ECE/EEE F434 Lecture 10-13
Sarang C. Dhongdi x 2 [ n ]  X 2 ( e j )

ax1[n]  bx2 [n]  aX 1 (e j )  bX 2 (e j )

 Example x[n]  a
n
a 1

Fourier transform theorems Fourier transform theorems

 Time shifting
 Frequency shifting
x[n]  X (e j )

x[ n  n0 ]  e  jn0 X (e j ) e j0 n x[n]  X (e j ( 0 ) )

x[n]   [n  n0 ]  e jno

2   o  2k 
e jon  k
 Example  Example
 

Fourier transform theorems Fourier transform theorems

 Time reversal  Differentiation in frequency

x[n]  X (e j )
x[n]  X (e j )

x[n]  X (e  j ) dX (e j )
nx[n]  j
d
 Conjugation

x * [ n]  X * ( e  j )

1
9/4/2019

Fourier transform theorems Fourier transform theorems

 Convolution theorem  Multiplication theorem

Input x[n]  X (e j ) x1[n]  X 1 (e j )


Impulse response h[n]  H (e j ) x 2 [ n ]  X 2 ( e j )
output j
y[n]  Y (e )
x1[ n] x2 [ n]  X 1 (e j ) * X 2 (e j )
y[n]  x[n] * h[n] 1
 X (e
j
x1[ n] x2 [ n]  ) X 2 (e j (  ) ) d
2
1
j j j
Y (e )  X (e ) H ( e ) 2

Fourier transform theorems Fourier transform theorems

 Modulation theorem  Parseval’s theorem

x[n]  X (e j ) x[n]  X (e j )

n
1
   x[n]
1 2
 X (e
2 j
x[n] cos 0 n  X (e j 0 )  X (e j 0 )  ) d
2 n   2 2

D.T.F.T.  D.F.T.

• Not practical for (real-time) computation on a digital computer.

• The DTFT is not numerically computable transform.

• Solution: limit the extent of the summation to N points and


From D.T.F.T.  D.F.T. evaluate the continuous function of frequency at N equally
spaced points.
DISCRETE FOURIER
TRANSFORM

2
9/4/2019

Discrete Fourier transform Discrete Fourier transform

D.F.T. is the powerful computational tool that allows to  For sampling the D.T.F.T., we will take N samples in
evaluate F.T. on digital computer or specially designed the principle range.
digital hardware. 2
k  k k  0,1,2,..., N  1
N
D.F.T. is defined only for finite length sequences.  So, we define,
X ( k )  X ( e j ) 2  Periodic?
 k
N
D.T.F.T. is continuous and periodic, D.F.T. is obtained by 2
N 1 j nk
sampling one period of D.T.F.T. at a finite number of X ( k )   x( n )e N k  0,1,2,..., N  1
frequency points. n 0

X (k )  DFT {x[n]}
X (k )  x[n]

Sampling the Fourier transform Review of D.T.F.S. and D.T.F.T.

 Sampling points on unit circle


x[n]  cos o n
X ( e j )

2 -2π-w0 -2π -2π +w0 -w0 0 w0 2π-w0 2π 2π +w0

k  k
N

Sampling the Fourier Transform Sampling the Fourier Transform

 Samples of the DTFT of an aperiodic sequence  It is not necessary to know the DTFT at all
 can be thought of as DFS coefficients frequencies
 of a periodic sequence  To recover the discrete-time sequence in time domain
 obtained through summing periodic replicas of original
sequence  Discrete Fourier Transform
 Representing a finite length sequence by samples of DTFT
 If the original sequence
 is of finite length
 and we take sufficient number of samples of its DTFT
 the original sequence can be recovered by

~x n 0  n  N  1
xn  
 0 else

3
9/4/2019

Taking D.F.T. of aperiodic sequence Taking D.F.T. of aperiodic sequence

x (n )
x(n) N’=9
0 N’1 n
n
0 8
~
X ( k )  X ( e j ) ~
x ( n) N=12
  2k / N

n
> ~ 0 8 12
N =
< N’ x ( n)
N=7
n
0 8 12

Taking D.F.T. of aperiodic sequence Taking D.F.T. of aperiodic sequence

 Samples of the Fourier transform of an aperiodic sequence can


be thought of as DFS coefficients of a periodic sequence
obtained through periodic replication of x[n]

 If we take sufficient number of samples of F.T. (greater than or


equal to length of x[n]), then F.T. is recoverable from its
samples, and equivalently x[n] is also recoverable.

Taking D.F.T. of aperiodic sequence Computing Discrete Fourier transform

x[0]  1, x[1]  2, x[2]  2, x[3]  1, x[n]  0 , otherwise


3
X k   x[n]e  j 2kn / 4 , k  0, 1, 2, 3
n 0

X k  x[0]e  j 2k ( 0) / 4  x[1]e  j 2k (1) / 4  x[2]e  j 2k ( 2) / 4  x[3]e  j 2k (3) / 4
 1  2e  jk / 2  2e  jk  1e  j 3k / 2 , k  0, 1, 2, 3

 6 k 0
 1  j k  1

Xk  
 0 k 2
 1  j k  3

4
9/4/2019

Computing I.D.F.T. Computing I.D.F.T.


1
 Inverse D.F.T. x[0]  X 0  X 1  X 2  X 3 
4
N 1 1
x[n] 
1
X k e j 2kn / N , n  0, 1, ..., N  1  6  1  j  1  j 
N k 0 4
1

x[ n] 
1
4

X 0  X 1e j 2 (1) n / 4  X 2 e j 2 ( 2 ) n / 4  X 3e j 2 (3) n / 4  1

x[1]  X 0  X 1e j / 2  X 2 e j  X 3e j 3 / 2
4

1
 6  (1  j ) j  (0)(1)  (1  j )( j )
4
1
 6  j  1  j  1  8 / 4  2
4

Computing I.D.F.T. Simplifying the calculations


1

x[2]  X 0  X 1e j  X 2e j 2  X 3e j 3
4
  Analysis equation

N 1
X k    xnWNkn
1 2
 6  ( 1  j )(1)  (0)  ( 1  j )( 1) j kn
4
1 n 0
e N
 WNkn
 6  1  j  1  j 
4  Synthesis equation
 8/ 4  2
N 1
1
xn   X k W  kn
1

x[3]  X 0  X 1e j 3 / 2  X 2 e j 3  X 3e j18 / 4
4
 N k 0
N

1
 6  (1  j )( j )  (0)  ( 1  j )( j ) DFT
xn  X k 
4
1
 6  j  1  j  1

4
 4/ 4 1

Matrix form Matrix form


3
X k   x[n]e  j 2kn / 4 , k  0, 1, 2, 3  x[0]
n 0 3  x[1] 
X k   x[n]WNkn  x
X k  x[0]e  j 2k ( 0) / 4  x[1]e  j 2k (1) / 4  x[2]e  j 2k ( 2) / 4  x[3]e  j 2k (3) / 4 n 0  x[2] N

 
 1  2e  jk / 2  2e  jk  1e  j 3k / 2 , k  0, 1, 2, 3  x[3]
X (0)  1(1)  2(1)  2(1)  1(1)  6
 X [0] W40 W40 W40 W40   x[0]
X (1)  1(1)  2( j )  2(1)  1( j )  1  j  X [1]   0 1   x[1] 
W4 W4 W42 W43   
X (2)  1(1)  2(1)  2(1)  1(1)  0 XN   
 X [ 2] W4 W42
0 4
W4 W4 6
 x[2]
   0   
X (3)  1(1)  2( j )  2(1)  1( j )  1  j  x[3]
3
 X [3] W4 W4 W46 W49 

5
9/4/2019

Matrix form
W40 W40
 0
W40 W40  1 1 1 1 
  
The Discrete Fourier Transform
W4 W4
1
W42 W43  1  j 1 j 

W4 W42
0 4
W4 W4 6
1 1 1 1 • Consider a finite length sequence x[n] of length N
 0   
W4 W4
3
W46 W49  1 j 1  j  xn  0 outside of 0  n  N 1
If we assume that the inverse exists, then
• For given length-N sequence associate a periodic sequence
x N  WN1 X N 
~
x n 
By the definition of IDFT  xn  rN
r  
1 *
xN  WN X N • Since x[n] is of length N there is no overlap between terms of x[n-rN]
N and we can write the periodic sequence as

1 * ~
x n  xn mod N  xnN 
WN1  WN 𝑊 ∗ 𝑊 = 𝑁𝐼
N

Circular Shifting x(n)


The Discrete Fourier Transform 3
4

2 N=4
1
• Shift the periodic sequence by k units n
0 1 2 3
𝑥[𝑛]
4 4 4 4 4 4
𝑥 𝑛 = 𝑥 𝑛−𝑘 = 𝑥(𝑛 − 𝑘 − 𝑟𝑁) 3 3 3 3 3 3
2 2 2 2 2 2
1 1 1 1 1 1
• Then the finite duration sequence, n
-4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11
𝑥 [𝑛] = 𝑥 [𝑛 − 2]
𝑥 𝑛 = 𝑥 [n] 0≤𝑛 ≤𝑁−1 = 𝑥(𝑛 − 2 − 𝑟𝑁)
4 4 4 4 4 4
= 0 otherwise 3 3 3 3 3 3
2 2 2 2 2 2
1 1 1 1 1 1

-4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 n

Circular Shift
Circular Shifting
4
3 𝑥′ 𝑛 = 𝑥(𝑛 − 2)
2 𝑥 𝑛 = 𝑥( 𝑛 − 𝑘 ) 𝑥(1) 𝑥′(1)
1

-4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11
n
𝑥(2) 𝑥(0) 𝑥′(2) 𝑥′(0)
𝑥 𝑛 = 𝑥 𝑛 − 𝑘, 𝑚𝑜𝑑 𝑁 = 𝑥[[𝑛 − 𝑘]]
𝑥 𝑛 = 𝑥[[𝑛 − 2]]
𝑥(3) 𝑥′(3)
𝒙𝟏 𝟎 = 𝒙[[−𝟐]]𝟒 = 𝒙(𝟐) 𝒙𝟏 𝟐 = 𝒙[[𝟎]]𝟒 = 𝒙(𝟎)

𝒙𝟏 𝟏 = 𝒙[[−𝟏]]𝟒 = 𝒙(𝟑)
x(n) 𝑥′ 𝑛 = 𝑥(𝑛 − 2)
𝒙𝟏 𝟑 = 𝒙[[𝟏]]𝟒 = 𝒙(𝟏)

6
9/4/2019

Circular shifting
Convolution
N 1
x3 n   x mx n  m 
1 2 N
m0

The Discrete Fourier Transform


• Tomaintain duality between time and frequency, We
choose one period of X~ k  as the Fourier transform of
x[n]

~Xk  0  k  N  1 ~
DFT-PROPERTIES Xk   
 0 else
Xk   Xk mod N  Xk N 

Properties of DFT Properties of DFT


Linearity Circular convolution

ax1 n  bx2 n  aX 1 k   bX 2 k  N 1


x1 (n)  x2 (n)   x1 (m) x2 ((n  m)) N , 0  n N  1
N3=max(N1,N2): N3-point DFT m 0

DFT [ x1 (n)  x2 ( n)]  X 1 ( k ) X 2 ( k )


Circular Folding

 x (0 ) k 0 Multiplication
x(( n)) N  
 x( N  k ) 1  k  N  1
k 0 1
 X (0) DFT [ x1 (n)  x2 (n)]  X 1 (k )  X 2 (k )
DFT [ x(( n)) N ]  X ((k )) N   N
 X (N  k ) 1  k  N 1

7
9/4/2019

Circular convolution
𝑥 𝑚 = 𝑥𝑛ℎ 𝑚−𝑛 0≤𝑚 ≤𝑁−1
Find the circular convolution of

𝑥[𝑛] = [2 1 2 1] 𝑥 0 = 𝑥𝑛ℎ −𝑛

ℎ[𝑛] = [1 2 3 4]

𝑥 𝑛 = 𝑥𝑚ℎ 𝑛−𝑚 0 ≤ 𝑛 ≤ 𝑁−1

𝑥 𝑚 = 𝑥𝑛ℎ 𝑚−𝑛 0≤𝑚 ≤𝑁−1

𝑥 𝑚 = 𝑥𝑛ℎ 𝑚−𝑛 0≤𝑚 ≤𝑁−1 𝑥 𝑚 = 𝑥𝑛ℎ 𝑚−𝑛 0≤𝑚 ≤𝑁−1

𝑥 1 = 𝑥𝑛ℎ 1−𝑛 𝑥 2 = 𝑥𝑛ℎ 2−𝑛

𝑥 𝑚 = 𝑥𝑛ℎ 𝑚−𝑛 0≤𝑚 ≤𝑁−1

ℎ 𝑚 =[ℎ 0 ℎ 1 ℎ 2 …… ℎ 𝑁 − 2 ℎ 𝑁 −1 ]
𝑥 3 = 𝑥𝑛ℎ 3−𝑛

ℎ −𝑚 = [ ℎ 0 ℎ 𝑁 − 1 ℎ 𝑁−2 …ℎ 2 ℎ 1 ]
ℎ 1 − 𝑚 = [ℎ 1 ℎ 0 ℎ 𝑁 − 1 ℎ 𝑁 − 2 …ℎ 2 ]

ℎ 2 − 𝑚 = [ℎ 2 ℎ 1 ℎ 0 ℎ 𝑁 − 1 ℎ 𝑁 − 2 …]

8
9/4/2019

Circular convolution using DFT


ℎ 0 ℎ 3 ℎ 2 ℎ(1) 𝑥(0)
3

𝑥 𝑛 =
ℎ 1 ℎ 0 ℎ 3 ℎ(2) 𝑥(1) X k   x[n]e  j 2kn / 4 , k  0, 1, 2, 3
ℎ 2 ℎ 1 ℎ 0 ℎ(3) 𝑥(2) n 0

ℎ 3 ℎ 2 ℎ 1 ℎ(0) 𝑥(3) 3
X k   x[n]WNkn
n 0
1 4 3 2 2 14
2 1 4 3 1 16  X [0] W40 W40 W40 W40   x[0]
𝑥 𝑛 = =  X [1]   0 1   x[1] 
3 2 1 4 2 14 W4 W4 W42 W43   
XN   
4 3 2 1 1 16  X [ 2] W40 W42 W44 W46   x[2]
   0   
 x[3]
3
 X [3] W4 W4 W46 W49 

Linear convolution using circular convolution


Matrix form Find the linear convolution using circular convolution
strategy
W40 W40 W40 W40  1 1 1 1 
 0   
W4 W4
1
W42 W43  1  j 1 j 
 𝑥[𝑛] = [2 1 2 1]
W4 W42
0 4
W4 W4 6
1 1 1 1
 0   
W4 W4
3
W46 W49  1 j 1  j  ℎ[𝑛] = [1 2 3 4]

N 1
x3  n    x  m h   n  m   N 
1 * m 0
xN  WN X N
N

Linear Convolution using Circular convolution Circular convolution


Find the linear convolution using circular convolution
𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑥 𝑛 𝑜𝑓 𝑙𝑒𝑛𝑔𝑡ℎ 𝑙1
strategy.
𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 ℎ 𝑛 𝑜𝑓 𝑙𝑒𝑛𝑔𝑡ℎ 𝑙2
𝑦 𝑛 =𝑥 𝑛 ∗ℎ 𝑛 𝑙𝑒𝑛𝑔𝑡ℎ 𝑁 = 𝑙1 + 𝑙2 − 1
𝑥 [n] = [2 1 2 1 0 0 0]
𝐷𝑒𝑓𝑖𝑛𝑒 𝑡ℎ𝑒 𝑡𝑤𝑜 𝑙𝑒𝑛𝑔𝑡ℎ − 𝑁 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠
ℎ [n] = [1 2 3 4 0 0 0 ]
𝑥𝑛 0 ≤ 𝑛 ≤ 𝑙1 − 1
𝑥 𝑛 =
0 𝑙1 ≤ 𝑛 ≤ 𝑁 − 1
ℎ𝑛 0 ≤ 𝑛 ≤ 𝑙2 − 1
ℎ 𝑛 = 𝑥 𝑛 = 𝑥 𝑚ℎ 𝑛−𝑚 0 ≤ 𝑛 ≤ 𝑁−1
0 𝑙2 ≤ 𝑛 ≤ 𝑁 − 1

𝑦 𝑛 =𝑥 𝑛 ⊗ ℎ 𝑛 0≤𝑛≤𝑁−1

9
9/4/2019

Linear and Circular convolution


1 0 0 0 4 3 2 2 2
Find the circular convolution of
2 1 0 0 0 4 3 1 5
3 2 1 0 0 0 4 2 10 x[ n]  [1,2]
𝑥 𝑛 = 4 3 2 1 0 0 0 1 = 16 h[ n]  [1,2,4]
0 4 3 2 1 0 0 0 12
0 0 4 3 2 1 0 0 11
0 0 0 4 3 2 1 0 4 Find the linear convolution of

x[n]  [1,2]
h[n]  [1,2,4]

Linear Convolution using DFT Linear Convolution using DFT


𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑥 𝑛 𝑜𝑓 𝑙𝑒𝑛𝑔𝑡ℎ 𝑙1
𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 ℎ 𝑛 𝑜𝑓 𝑙𝑒𝑛𝑔𝑡ℎ 𝑙2 𝑥 𝑛
Zero padding 𝑋 𝑘
𝑥𝑛 (l1+l2-1) point
𝑦 𝑛 =𝑥 𝑛 ∗ℎ 𝑛 𝑙𝑒𝑛𝑔𝑡ℎ 𝑁 = 𝑙1 + 𝑙2 − 1 with (l2-1)
𝑙𝑒𝑛𝑔𝑡ℎ 𝑙1 DFT
zeros
(l1+l2-1) point
𝐷𝑒𝑓𝑖𝑛𝑒 𝑡ℎ𝑒 𝑡𝑤𝑜 𝑙𝑒𝑛𝑔𝑡ℎ − 𝑁 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠 IDFT
Zero padding
𝑥𝑛 0 ≤ 𝑛 ≤ 𝑙1 − 1 ℎ𝑛 (l1+l2-1) point
with (l1-1)
𝑥 𝑛 = 𝑙𝑒𝑛𝑔𝑡ℎ 𝑙2 DFT y𝑛
0 𝑙1 ≤ 𝑛 ≤ 𝑁 − 1 zeros
ℎ 𝑛 𝐻 𝑘 𝑙𝑒𝑛𝑔𝑡ℎ
ℎ𝑛 0 ≤ 𝑛 ≤ 𝑙2 − 1 𝑙1 + 𝑙2 − 1
ℎ 𝑛 =
0 𝑙2 ≤ 𝑛 ≤ 𝑁 − 1
• Take N point DFT of xe[n] (i.e. Xe(k)) and N point DFT of he[n] (i.e. He(k)).
• Take N point IDFT of the product Xe(k) He(k)

Solve
• Let 𝑋 𝑘 , 0 ≤ 𝑘 ≤ 11, be the 12-point DFT of a length-12 real
sequence x[n] with first 7 samples of X[k] given by,
• X[k] = { 11, 8-j2, 1-j12, 6+j3, -3+j2, 2+j, 15} 𝟎≤𝒌 ≤𝟔

• Determine the remaining samples of X[k]. Evaluate the following


functions of x[n] without computing the IDFT of X[k].

• 𝑥(0)
•∑ 𝑥[𝑛]
•∑ 𝑥[𝑛]

10

You might also like