Digital Signal Processing:) (E X e N N X
Digital Signal Processing:) (E X e N N X
X (e j ) X (e j ( 2 ) )
F.T. is linear transform
DIGITAL SIGNAL PROCESSING x1[n] X 1 (e j )
ECE/EEE F434 Lecture 10-13
Sarang C. Dhongdi x 2 [ n ] X 2 ( e j )
Example x[n] a
n
a 1
Time shifting
Frequency shifting
x[n] X (e j )
x[n] [n n0 ] e jno
2 o 2k
e jon k
Example Example
x[n] X (e j )
x[n] X (e j )
x[n] X (e j ) dX (e j )
nx[n] j
d
Conjugation
x * [ n] X * ( e j )
1
9/4/2019
x[n] X (e j ) x[n] X (e j )
n
1
x[n]
1 2
X (e
2 j
x[n] cos 0 n X (e j 0 ) X (e j 0 ) ) d
2 n 2 2
D.T.F.T. D.F.T.
2
9/4/2019
D.F.T. is the powerful computational tool that allows to For sampling the D.T.F.T., we will take N samples in
evaluate F.T. on digital computer or specially designed the principle range.
digital hardware. 2
k k k 0,1,2,..., N 1
N
D.F.T. is defined only for finite length sequences. So, we define,
X ( k ) X ( e j ) 2 Periodic?
k
N
D.T.F.T. is continuous and periodic, D.F.T. is obtained by 2
N 1 j nk
sampling one period of D.T.F.T. at a finite number of X ( k ) x( n )e N k 0,1,2,..., N 1
frequency points. n 0
X (k ) DFT {x[n]}
X (k ) x[n]
k k
N
Samples of the DTFT of an aperiodic sequence It is not necessary to know the DTFT at all
can be thought of as DFS coefficients frequencies
of a periodic sequence To recover the discrete-time sequence in time domain
obtained through summing periodic replicas of original
sequence Discrete Fourier Transform
Representing a finite length sequence by samples of DTFT
If the original sequence
is of finite length
and we take sufficient number of samples of its DTFT
the original sequence can be recovered by
~x n 0 n N 1
xn
0 else
3
9/4/2019
x (n )
x(n) N’=9
0 N’1 n
n
0 8
~
X ( k ) X ( e j ) ~
x ( n) N=12
2k / N
n
> ~ 0 8 12
N =
< N’ x ( n)
N=7
n
0 8 12
X k x[0]e j 2k ( 0) / 4 x[1]e j 2k (1) / 4 x[2]e j 2k ( 2) / 4 x[3]e j 2k (3) / 4
1 2e jk / 2 2e jk 1e j 3k / 2 , k 0, 1, 2, 3
6 k 0
1 j k 1
Xk
0 k 2
1 j k 3
4
9/4/2019
x[ n]
1
4
X 0 X 1e j 2 (1) n / 4 X 2 e j 2 ( 2 ) n / 4 X 3e j 2 (3) n / 4 1
x[1] X 0 X 1e j / 2 X 2 e j X 3e j 3 / 2
4
1
6 (1 j ) j (0)(1) (1 j )( j )
4
1
6 j 1 j 1 8 / 4 2
4
N 1
X k xnWNkn
1 2
6 ( 1 j )(1) (0) ( 1 j )( 1) j kn
4
1 n 0
e N
WNkn
6 1 j 1 j
4 Synthesis equation
8/ 4 2
N 1
1
xn X k W kn
1
x[3] X 0 X 1e j 3 / 2 X 2 e j 3 X 3e j18 / 4
4
N k 0
N
1
6 (1 j )( j ) (0) ( 1 j )( j ) DFT
xn X k
4
1
6 j 1 j 1
4
4/ 4 1
1 2e jk / 2 2e jk 1e j 3k / 2 , k 0, 1, 2, 3 x[3]
X (0) 1(1) 2(1) 2(1) 1(1) 6
X [0] W40 W40 W40 W40 x[0]
X (1) 1(1) 2( j ) 2(1) 1( j ) 1 j X [1] 0 1 x[1]
W4 W4 W42 W43
X (2) 1(1) 2(1) 2(1) 1(1) 0 XN
X [ 2] W4 W42
0 4
W4 W4 6
x[2]
0
X (3) 1(1) 2( j ) 2(1) 1( j ) 1 j x[3]
3
X [3] W4 W4 W46 W49
5
9/4/2019
Matrix form
W40 W40
0
W40 W40 1 1 1 1
The Discrete Fourier Transform
W4 W4
1
W42 W43 1 j 1 j
W4 W42
0 4
W4 W4 6
1 1 1 1 • Consider a finite length sequence x[n] of length N
0
W4 W4
3
W46 W49 1 j 1 j xn 0 outside of 0 n N 1
If we assume that the inverse exists, then
• For given length-N sequence associate a periodic sequence
x N WN1 X N
~
x n
By the definition of IDFT xn rN
r
1 *
xN WN X N • Since x[n] is of length N there is no overlap between terms of x[n-rN]
N and we can write the periodic sequence as
1 * ~
x n xn mod N xnN
WN1 WN 𝑊 ∗ 𝑊 = 𝑁𝐼
N
2 N=4
1
• Shift the periodic sequence by k units n
0 1 2 3
𝑥[𝑛]
4 4 4 4 4 4
𝑥 𝑛 = 𝑥 𝑛−𝑘 = 𝑥(𝑛 − 𝑘 − 𝑟𝑁) 3 3 3 3 3 3
2 2 2 2 2 2
1 1 1 1 1 1
• Then the finite duration sequence, n
-4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11
𝑥 [𝑛] = 𝑥 [𝑛 − 2]
𝑥 𝑛 = 𝑥 [n] 0≤𝑛 ≤𝑁−1 = 𝑥(𝑛 − 2 − 𝑟𝑁)
4 4 4 4 4 4
= 0 otherwise 3 3 3 3 3 3
2 2 2 2 2 2
1 1 1 1 1 1
-4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 n
Circular Shift
Circular Shifting
4
3 𝑥′ 𝑛 = 𝑥(𝑛 − 2)
2 𝑥 𝑛 = 𝑥( 𝑛 − 𝑘 ) 𝑥(1) 𝑥′(1)
1
-4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11
n
𝑥(2) 𝑥(0) 𝑥′(2) 𝑥′(0)
𝑥 𝑛 = 𝑥 𝑛 − 𝑘, 𝑚𝑜𝑑 𝑁 = 𝑥[[𝑛 − 𝑘]]
𝑥 𝑛 = 𝑥[[𝑛 − 2]]
𝑥(3) 𝑥′(3)
𝒙𝟏 𝟎 = 𝒙[[−𝟐]]𝟒 = 𝒙(𝟐) 𝒙𝟏 𝟐 = 𝒙[[𝟎]]𝟒 = 𝒙(𝟎)
𝒙𝟏 𝟏 = 𝒙[[−𝟏]]𝟒 = 𝒙(𝟑)
x(n) 𝑥′ 𝑛 = 𝑥(𝑛 − 2)
𝒙𝟏 𝟑 = 𝒙[[𝟏]]𝟒 = 𝒙(𝟏)
6
9/4/2019
Circular shifting
Convolution
N 1
x3 n x mx n m
1 2 N
m0
~Xk 0 k N 1 ~
DFT-PROPERTIES Xk
0 else
Xk Xk mod N Xk N
x (0 ) k 0 Multiplication
x(( n)) N
x( N k ) 1 k N 1
k 0 1
X (0) DFT [ x1 (n) x2 (n)] X 1 (k ) X 2 (k )
DFT [ x(( n)) N ] X ((k )) N N
X (N k ) 1 k N 1
7
9/4/2019
Circular convolution
𝑥 𝑚 = 𝑥𝑛ℎ 𝑚−𝑛 0≤𝑚 ≤𝑁−1
Find the circular convolution of
𝑥[𝑛] = [2 1 2 1] 𝑥 0 = 𝑥𝑛ℎ −𝑛
ℎ[𝑛] = [1 2 3 4]
ℎ 𝑚 =[ℎ 0 ℎ 1 ℎ 2 …… ℎ 𝑁 − 2 ℎ 𝑁 −1 ]
𝑥 3 = 𝑥𝑛ℎ 3−𝑛
ℎ −𝑚 = [ ℎ 0 ℎ 𝑁 − 1 ℎ 𝑁−2 …ℎ 2 ℎ 1 ]
ℎ 1 − 𝑚 = [ℎ 1 ℎ 0 ℎ 𝑁 − 1 ℎ 𝑁 − 2 …ℎ 2 ]
ℎ 2 − 𝑚 = [ℎ 2 ℎ 1 ℎ 0 ℎ 𝑁 − 1 ℎ 𝑁 − 2 …]
8
9/4/2019
𝑥 𝑛 =
ℎ 1 ℎ 0 ℎ 3 ℎ(2) 𝑥(1) X k x[n]e j 2kn / 4 , k 0, 1, 2, 3
ℎ 2 ℎ 1 ℎ 0 ℎ(3) 𝑥(2) n 0
ℎ 3 ℎ 2 ℎ 1 ℎ(0) 𝑥(3) 3
X k x[n]WNkn
n 0
1 4 3 2 2 14
2 1 4 3 1 16 X [0] W40 W40 W40 W40 x[0]
𝑥 𝑛 = = X [1] 0 1 x[1]
3 2 1 4 2 14 W4 W4 W42 W43
XN
4 3 2 1 1 16 X [ 2] W40 W42 W44 W46 x[2]
0
x[3]
3
X [3] W4 W4 W46 W49
N 1
x3 n x m h n m N
1 * m 0
xN WN X N
N
𝑦 𝑛 =𝑥 𝑛 ⊗ ℎ 𝑛 0≤𝑛≤𝑁−1
9
9/4/2019
x[n] [1,2]
h[n] [1,2,4]
Solve
• Let 𝑋 𝑘 , 0 ≤ 𝑘 ≤ 11, be the 12-point DFT of a length-12 real
sequence x[n] with first 7 samples of X[k] given by,
• X[k] = { 11, 8-j2, 1-j12, 6+j3, -3+j2, 2+j, 15} 𝟎≤𝒌 ≤𝟔
• 𝑥(0)
•∑ 𝑥[𝑛]
•∑ 𝑥[𝑛]
10