Polymers: Electrospraying, A Reproducible Method For Production of Polymeric Microspheres For Biomedical Applications
Polymers: Electrospraying, A Reproducible Method For Production of Polymeric Microspheres For Biomedical Applications
3390/polym3010131
OPEN ACCESS
polymersISSN 2073-4360
www.mdpi.com/journal/polymers
Article
Received: 11 November 2010; in revised form: 3 December 2010 / Accepted: 21 December 2010 /
Published: 5 January 2011
texture, determined by the polymer entanglement regime taking place during electrospraying.
No toxic residue was detected by this process based on preliminary cell work using DNA
quantification assays, validating this method as suitable for further loading of bioactive
components.
1. Introduction
The use of polymeric particles has been of great interest in the biomedical field for the last 50 years,
with a particular niche present in the field of drug delivery [1,2]. Current technologies allow the
production of biodegradable nano- and micro-sized materials able to encapsulate therapeutic molecules
to be gradually released through diffusion and degradation in vivo. The motivation behind this process
is the possibility to overcome the limitations faced in bolus delivery of molecules, especially proteins
where the harsh in vivo environment can cause denaturation, shortening their half-life after delivery,
and thus reducing action efficacy [3]. Polymeric particles are therefore presented as reservoir systems
able to protect the proteins from their environment, enhancing their long-term biological activity.
Ideally, these systems are also able to provide tailored release rates, required by certain therapies, by
the control of particle morphology, size and polymeric matrix [4]. Importantly, such particles have the
potential to minimize the propagation of drug payloads to non-targeted areas, limiting unwanted
effects and allowing a site-specific delivery [1-3,5].
Several techniques have been presented in the literature for fabrication of polymeric nano- and
microparticles, the most popular being based on emulsion techniques [5-10]. Molecules are dispersed
or dissolved into a polymer solution and emulsified to form micro-droplets that are further dried after
solvent removal [11]. However, the use of organic solvents, unless carefully controlled, is a drawback
in many of these techniques since it can lead to denaturation of protein-based drugs during processing,
increasing the variability in encapsulation efficiencies and loading capacities [6]. Secondly, the size
distributions of particles fabricated by emulsion-based techniques tend to be inhomogeneous and
broad, contributing to their lack of reproducibility, which in turn hinders their clinical use. Size
distribution is a crucial parameter and it was shown that monodisperse size would enable a better
control of release profiles and bioavailability of the loaded drug in the body [12,13]. Particle
morphology is also important since it affects the internalization by non-phagocytic cells and the
degradation of the polymer matrix which, in turn, determines the release kinetics of the loaded
component. Therefore, homogeneity of morphology is also an important consideration to ensure
particles with reproducible characteristics are obtained.
Fabrication of polymer microparticles by electrospraying has the potential to overcome the limitations
of emulsion-based techniques and to provide reproducibly loaded nano- and microparticles [14].
Electrospraying is a one-step technique which has potential to generate narrow size distributions of
submicrometric particles, with limited agglomeration of particles and high yields [15]. The principles
of electrospraying are based on the ability of an electric field to deform the interface of a liquid drop,
Polymers 2011, 3 133
established by Lord Rayleigh in 1882 [16], further developed by Zeleny in 1917 [17] and Sir Taylor
in 1964 [18]. The theory of charged droplets states that if an electrified field is applied to any droplet,
the electric charge generates an electrostatic force inside the droplet, known as the Coulomb force,
which competes with the cohesive force intrinsic to the droplet. When the applied Coulomb force is
able to overcome the cohesive force of the droplet manifested in the surface tension, the droplet will
undergo breakup into smaller droplets in the micro- to nano-scales. This phenomenon begins at the
Taylor Cone, referring to the progressive shrinkage of the unstable, charged macro-droplet into a cone
from which the smaller charged droplets will be ejected as soon as the surface tension is overcome by
the Coulomb force. Rayleigh predicted a limit to determine the breakup of the droplet, called the
Rayleigh limit, LR, expressed in Equation (1). LR is a function of q the surface charge of the droplet, ε
the permittivity of the surrounding medium, γ the surface tension of the liquid and R the radius of the
droplet. The maximum surface charge of the droplet is given by Equation (2). Based on these equations,
monodisperse electrosprayed particles can be fabricated by using the appropriate parameters.
2 3
64 (1)
8 (2)
Electrospinning is based on the same principles of charged droplets involving the ejection of a
nano-jet instead of droplets from the Taylor Cone. The difference between the electrospinning and
electrospraying techniques lies in the chain entanglement density of the polymer solution [19].
Previous studies have demonstrated that a critical polymer concentration called cov can dictate the
behavior of electrospraying/electrospinning [20]. This critical concentration can be found for each type
of polymer solution and represents the critical chain overlap concentration where entanglement begins
to occur. In order to produce fibers, the polymer concentration, c, must be chosen such that a threshold
ratio c/cov is overcome. Therefore, at low chain entanglement density, electrospraying of droplets
instead of electrospinning of fibers will occur at the Taylor Cone. The c/cov ratio must be determined
experimentally for each type of polymer, for example c/cov for poly(methylmethacrylate) is between 3
and 10 depending on the molecular weight distribution of the polymer chains in solution [20].
The electrospraying process is conceptually simple: a polymer solution is loaded into a syringe and
infused at a constant rate using a syringe pump through a small but highly charged capillary (e.g.,
a 16–26 gauge needle). The applied voltage used is typically up to + or −30 kV and the collector might
be placed at a 7 to 30 cm distance from the capillary. Once the droplets have detached from the Taylor
cone, the solvent evaporates, generating dense and solid particles, propelled towards the collector. In
the context of drug loading, the bioactive molecule is mixed to the polymer solution before
electrospraying and can further be emulsified [21]. Some studies which have been undertaken include
encapsulation of hydrophilic and hydrophobic model drugs [12], model proteins [21-25],
antibiotics [14,26] and anti-cancer drugs [13] in polylactide (PLA) [12,21], poly(lactic-co-glycolic
acid) (PLGA) [24,26], polycaprolactone (PCL) [13,24] and chitosan [14].
During the electrospraying process, there are several parameters which all have an inter-dependent
influence on viscosity, electrical conductivity, particle size, distribution, encapsulation efficiencies,
loading capacities and in vitro release profiles [12,14,15,21-22,24,27]. These parameters include
voltage, distance to collector, needle gauge, flow rate, polymer, drug, solvent, surfactant,
Polymers 2011, 3 134
2. Experimental Section
2.1. Materials
Polycaprolactone (PCL), Mn = 50,000 kDa (Perstorp Ltd, UK—Capa® 6500C) was used to
produce the microspheres. Ultra-pure chloroform (99.0–99.4%) from Merck, Germany was used to
dissolve PCL. Different concentrations were prepared: 5, 7.5, 9 and 10 %w/v (i.e., for 10 %w/v, 10 g
of PCL were dissolved in chloroform and made up to 100 mL total volume). The polymer solutions
were magnetically stirred for 3 hours at room temperature to allow complete dissolution before
electrospraying.
Figure 1(a) shows a typical schematic of the electrospraying setup used to produce the
microspheres. Initially, the electrospraying parameters chosen in this work were based on previous
studies on optimization of electrosprayed particles [15,26-30,33,36,37]. Temperature and relative
humidity ranged from 22 to 24 °C, and 44 to 49% respectively. Collectors were made of standard
aluminum foils (20 × 20 cm2). PCL solutions were loaded in a 2.5 mL glass syringe (Hamilton, USA)
Polymers 2011, 3 135
fitted with a 21 or 26-gauge stainless steel nozzle (Terumo, Japan and Becton Dickinson, USA). PCL
solutions were extruded through the nozzle at a constant rate of either 0.2 or 0.5 mL/h using a syringe
pump (WPI, USA). The tip-to-collector (TTC) distance was set to 15, 20 or 25 cm respectively.
High-voltage was applied between the needle and collector ranging from 10 to 18 kV. After
electrospraying, the collectors were placed under vacuum for a further 72 hours, to remove any
chloroform residue from microspheres. The microspheres were then transferred into glass vials and
further evacuated for storage. The different experimental parameters employed are summarized in
Table 1. The microspheres produced under each set of parameters are abbreviated as M, with a number
referring to the condition type (a set of parameters). For example: for condition 1, the produced
microspheres are M1-type.
Figure 1. (a) Schematic of a typical electrospraying setup. (b) Picture of the aluminum foil
collected after the electrospraying process. (c) Dried microspheres collected from the
aluminum foil and further placed in a glass vial for storage. (d) Microspheres taken from
the glass vial and analyzed on a microscope slide. (e) Picture of the electrospraying
process, inside the safety box, comprising the syringe pump, syringe loaded with polymer
solution, collector and electrodes. (f) Picture of the power supply located outside the
safety box.
polymer solution
stainless steel capillary
(d)
aluminium foil
power supply
aluminium plate
(e) (f)
Polymers 2011, 3 136
The effect of electrosprayed microspheres on cells was assessed by two methods: the extraction
method and direct contact method as per ISO 10993-12. The extraction method, also known as the
elution method, required an extract from the material to be tested. The extract was placed on a
Polymers 2011, 3 137
near-confluent monolayer of fibroblast cells and toxicity was evaluated by observing cell numbers using
DNA measures. M3-type microspheres were used for this experiment, UV sterilized for 40 minutes
immediately before the assay. 0.1 and 1 %w/v of microspheres were placed in completed Dulbecco’s
modified Eagle medium (DMEM) (10% fetal bovine serum, 1% penicillin/streptomycin) for 1
and 24 h. The extract solutions were further removed, filtered and seeded on cells. For the direct
contact method, 0.01 and 0.1 %w/v M3-type microspheres were rinsed in media for 15 minutes and 1
hour, before being placed on the near-confluent monolayer of fibroblast cells, or left non-rinsed but
incubated for the same amount of time (37 °C, 5 %CO2). In both methods, NIH3T3 cells were cultured
for 24 h before exposure to the test solutions for another 48 h (initial seeding density: 3 × 104 cells).
DNA quantification was determined using CyQUANT® (Invitrogen) (n = 4). Results were expressed
in normalized averages ±SE.
3.1.1. Morphology
Electrospraying resulted in either microspheres or flattened particles, both with textured surfaces.
The spherical morphology was obtained only for high polymer concentrations (9 and 10 %w/v), while
flattened morphology and coalescence between particles was observed for decreased polymer
concentrations (5 and 7.5 %w/v) (Figure 2). These results are in accordance with previous studies,
where polymer concentration was often shown to be the most critical parameter in the morphology of
electrosprayed particles [33].
(a) (b)
(c) (d)
Polymers 2011, 3 138
of solvent used and its concentration [15]. It was shown that solvents with boiling points >140 °C, like
N,N-dimethylformamide 146 °C, or benzaldehyde 178 °C, would be able to generate smooth surfaces
during electrospraying. Chloroform has a much lower boiling point of 61.2 °C, explaining the textured
surface that was observed. Such texture was also seen in an even more pronounced way when
electrospraying PCL with dichloromethane [33], which boils at 40 °C, corroborating this theory. In the
case of in vivo implantation, it is noted that the topographical complexity of a biomaterial is preferred
for cell attachment since it generates an increased number of anchoring sites for cells [38]. As a
consequence, from this point of view, chloroform can be considered as an adequate solvent to be used
in electrospraying of particles to be used in vivo.
Figure 3 illustrates that some of the electrosprayed microspheres presented a certain degree of
concomitant fiber formation between the particles. This was shown to occur for the highest polymer
concentration (10 %w/v) and was favored by lower rates (0.2 versus 0.5 mL/h), indicating that a higher
concentration favored the formation of fibers. No differences in fiber formation were seen in the 10
to 18 kV voltage range while feed rate was clearly a determinant in that respect as seen in column 1
(0.2 mL/h) compared to column 3 (0.5 mL/h) of Figure 3. Fibers were extremely thin, on the
nanometer scale, acting as a discrete coating on top of the spheres. Such nanofibers were almost
non-existent for the 0.5 mL/h generated microspheres, while they were more numerous on
the 0.2 mL/h generated microspheres.
Figure 3. Influence of feed rate and voltage on microsphere morphology with a high and
low magnification for each type of microsphere: (a-b) M9-type (c-d) M7-type,
(e-f) M11-type, (g-h) M10-type, (i-j) M13-type, (k-l) M12-type. In the first and third
columns, scale bar is 10 µm. In the second and fourth columns, scale bar is 100 µm.
10 kV
16 kV
18 kV
Polymers 2011, 3 140
The microspheres produced for conditions 3 and 5–13 had narrow quasi-monodisperse size
distributions with average diameters ranging from 10.64 to 17.80 µm (standard deviations (SD)
ranging from 2.05 to 4.93) (Figure 4). Electrospraying was shown to be reproducible for most
conditions, with average particle sizes always comprised within a 3 µm difference. A short
tip-to-collector (TTC) distance, however, did not ensure reproducibility with 15 cm being too close
(condition 4). Distances of 20 cm and 25 cm led to better reproducibility, with a trend showing a
slightly narrower size distribution when using a slower feed rate (0.2 mL/h instead of 0.5 mL/h), as
shown by standard deviations from Figure 4(d).
In accordance with previous studies, the flow rate and polymer concentration were the main
parameters to tune particle size, while gauge had non-significant effect on particle size as shown by
M7 and M8 sizes in Figure 4 (21 G versus 26 G). However, it was observed that the size distribution
was slightly broader for the bigger gauge with SD = 2.40 for 26G (M7) and SD = 3.42 for the 21 G
(M8) (i.d. = 0.241 mm and 0.495 mm, respectively). It is inferred from this result that a smaller gauge
can produce a narrower size distribution.
Polymers 2011, 3 141
Figure 4. (a) Table of parameters for each electrospraying condition. (b) Average particle
size of each replicate obtained per electrospraying condition (3 replicates per condition)
expressed as box plots (n = 100–1,000). (c) Histograms of size distributions. (d) Average
particle size of each condition expressed as means and standard deviations. (e) Inset
showing the average particle size (means ± standard errors) as a function of the voltage,
for 2 different rates (0.2 and 0.5 mL/h).
The polymer concentration impacts the surface tension of the solution, affecting particle size, as
reported by Hartman et al. in the micro-dripping mode of electrospraying [39] and shown in
Equations (4) and (5):
(4)
(5)
where d is the droplet diameter (m), α is a constant, Q is the liquid flow rate (m3.s−1), ρ is the solution
density, I is the current, ε0 is the permittivity of vacuum, γ is the surface tension of solution in ambient
air, and K is the liquid conductivity. These equations indicate that particle size increases with
decreasing surface tension, thus implying decreased polymer content, and also increases for increasing
flow rate. This is in accordance with the results of PCL microspheres where for similar spraying
conditions (M3 and M7), the 9 %w/v solution led to an average diameter of 17.8 µm (SD = 4.76)
Polymers 2011, 3 142
versus 16.8 µm (SD = 2.40) for the 10 %w/v solution. Although slight, this difference is statistically
significant with p < 0.05 (t-test assuming equal variances, n > 100) and is due to the closeness of the
solution concentrations (9 and 10 %w/v). However, for any drug release application, it must be noted
that such a small size difference would likely not lead to dramatic differences in release profiles.
Interestingly, although voltage is known to have very little effect on particle size in PLA based
polymers [36], we observed a significant effect from 10 kV to voltages ≥16 kV for PCL microspheres.
At 16 and 18 kV, no significant differences in particle size were observed for each feed rate, as shown
by the inset in Figure 5, and as expected from the theory, particle size was only decreased at low feed
rates (0.2 mL/h versus 0.5 mL/h). However, at 10 kV, particle size was significantly larger than at
higher voltages, regardless of feed rates. It might be inferred that voltage has an influence on particle
size, as shown by Equation (4) where particle size decreases with increasing current. The reason for
this decrease is the presence of fibers as confirmed by the morphology images (Figure 3). In fact, in
Figures 3(a,b) and 3(c,d), there is no significant increase in fiber formation for a decreased feed rate at
a fixed voltage of 10 kV, and so there is no significant difference in particle size for that condition.
However at 16 and 18 kV the number of fibers is increased when decreasing the feed rate and the
particle size is decreased accordingly. Therefore it can be concluded that this decrease in particle size
is not only due to the increased voltage, but it is due to fiber formation occurring for a combination of
lower feed rates and higher voltages. This can be confirmed with Equation (3), where φRay is decreased
for increased voltages and decreased feed rates, falling in the case where φov < φRay < φent and extruded
particles are formed, instead of the ideal case where φRay > φent. As a consequence, the size of particles
was reduced since a fraction of smaller offspring droplets were ejected from the initial droplet,
drawing extruded fibers along. Using higher voltages are therefore to be used with care, and a
sufficient high feed rate should be chosen to compensate the high voltage, for remaining in the regime
where φRay > φent.
From the size distribution plots shown in Figure 4(c), a bimodal character could be observed for
some conditions, made up of a majority of primary droplets and a small percentage of smaller particles
(less than 5%). These smaller droplets are offspring droplets caused by Coulomb fission [36,39]. They
are easily ejected from the primary droplet during shrinkage of droplets occurring during evaporation.
The offspring phenomenon was emphasized for decreased polymer concentration contents as shown by
M3-type microspheres compared to M7-type microspheres (9 and 10 %w/v respectively). This is likely
due to decreased entanglement for decreased polymer contents, which favors the occurrence of
offspring droplets. However, in this context, the frequency of offspring droplets is extremely low for
most spraying conditions and thus would have no significant effect on release profiles in the case of
drug loading.
To assess reproducibility of particle formation, condition 7 was used, 6 weeks apart. During this six
week break the electrospraying setup was used by other researchers such that all the parameters had to
be reset. The average particle size for the three runs at week zero was 16.82 µm (n = 330, SD = 2.40)
(Figure 4) while the repeat at 6 weeks had average particle size of 16.16 µm (n = 289, SD = 3.98) with
Polymers 2011, 3 143
unchanged morphology. Apart from non-significant increase in size distribution, the two conditions
were identified as identical.
The same reproducibility was not, however, observed for all conditions. For instance, conditions
where flat particles were observed (conditions 1 and 2) intrinsically lacked reproducibility based on
same-day repeats. These conditions reflected the semidilute unentangled regime where smaller
offspring droplets were ejected and droplets were not fully dried.
For semidilute entangled regimes, shown for concentrations > 9 %w/v, more parameters will
influence the reproducibility of electrospraying. For instance, a high TTC distance has to be ensured
for complete solvent evaporation. If the TTC distance is too short, as in condition 4 (TTC = 15 cm),
entangled but not fully dry particles are produced, leading to very broad size distributions as seen in
Figure 4(c). In this study, TTC distances of 20 and 25 cm were shown to be ideal in terms of
reproducibility. The feed rates used were shown to generate reproducible samples either at 0.2 mL/h
or 0.5 mL/h, with the formation of fibers observed for the lowest feed rate, when working at high
polymer concentration (conditions 9, 11 and 13). Although not ideal in terms of final morphology of
microspheres, these conditions were shown to be reproducible from one replicate to the next.
An interesting observation was that although the change in voltage did not affect reproducibility in
particle size and distribution we did notice several collection points of particles at high voltage,
variable for each run, whereas at low voltage the pattern reflected one collection point, circular and
centered. This may be attributed to the stable micro-dripping mode at low voltage versus the
multi-dripping mode at high voltage as observed previously [15,40]. This may be an issue when the
collector is a secondary scaffold, for example when making composite scaffolds.
To conclude, it must be understood that reproducibility can be achieved with electrospraying, but
only for certain parameters intrinsic to each polymer solution. These parameters have to be determined
and optimized first, so that the reproducibility of the process is ensured. The entanglement regime is
the most important to start with and c > cent has to be ensured to meet reproducibility while sufficiently
high TTC distance is also important, to ensure full solvent evaporation.
Differential scanning calorimetry (DSC) was used to ensure that chloroform and electrospraying
process would not lower the crystallization of PCL, impacting on the characteristics of electrosprayed
particles. The initial DSC run was followed by a repeat run with the thermal history erased in order to
check the polymer itself. However, the study of the first run of each sample allowed assessing any
eventual polymer discrepancies caused by the electrospraying process or contact with chloroform.
DSC results, presented in Figure 5, show single melting peaks with a maximum melting
temperature (Tm) of unprocessed PCL of 61.2 °C and a heat of melting (Hm) of 63.6 J/g, while
Tm = 58.9 °C and Hm = 71.9 J/g for electrosprayed microspheres, translating respectively to 45.6%
and 51.5% crystallinity (based on Hm for 100% crystalline PCL of 139.5 J/g [41]). Tm is shown to be
slightly decreased, inferring that smaller crystallites are formed during electrospraying. The degree of
crystallinity of PCL after the second run, with the thermal history removed was shown to be 35.0%
and 38.3% for unprocessed PCL and electrosprayed beads, respectively. These non-significant values
confirm that no intrinsic changes were made to the polymer that went into contact with chloroform,
Polymers 2011, 3 144
and further electrosprayed. The use of chloroform to dissolve PCL can therefore be validated as an
appropriate solvent for electrospraying PCL solutions.
Electrospraying remains a process that employs organic solvents. It is therefore important to ensure
that these organic solvents are fully removed after process; otherwise the electrosprayed particles
might be toxic to cells regardless of whether they comprise FDA-approved polymers. This is an
important step which is often overlooked in many studies, where results are shown for loaded particles
directly. However, when loading expensive growth factors, the risk of induced toxicity by other
components is of concern. For this reason we tested the electrosprayed microspheres by a standard
compatibility assay from the ISO 10993-12, called the elution or extract dilution assay, to ensure that
no toxic residue is released. The microspheres were eluted into media for different times, which was
then removed and seeded on a near-confluent monolayer of cells. If any chloroform residue, which is
known to be highly toxic to cells, was extracted, the DNA quantification by the CyQUANT® assay
was expected to be lower than the control. For the design of our experiment, we used 0.1 and 1 %w/v
of extract and incubated it for 1 and 24 hours, to probe for entrapped chloroform. The results are
presented in Figure 6, which show no statistical difference between cells cultured with or without
addition of extract solution in terms of DNA content, as stated by a two-way ANOVA analysis
(p > 0.05). These preliminary results are a good indication that no chloroform is entrapped in
electrosprayed beads, hence no adverse affect on the cells, and are in accordance with the DSC results
above. However this study should be repeated for longer incubation times matching the whole course
of PCL degradation.
Polymers 2011, 3 145
130
DNA quantification (% to control)
125
90
Media 0.1%EX 1%EX
Test solutions
A direct contact assay from the same ISO 10993-12 was also performed to ensure that microspheres
were physically compatible with cells. The microspheres were rinsed or left non-rinsed in media for
different incubation times so that the effect of different conditions and times on cell viability could be
assessed. Different concentrations of microspheres were used: 0.01% and 0.1 %w/v. It must be noted
that such densities were extremely high relative to cell numbers and the study of cell morphology after
contact with microspheres was not possible with microscopy since immersed microspheres would
settle down on cells and completely cover them. However, after removal of microspheres, cell DNA
contents were not lower than the controls for any of the condition tested and combinations (rinsed
microspheres, non-rinsed microspheres, 1h incubation, 24 h incubation), showing that microspheres
did not have any physical adverse effects on cells (Figure 7), as determined by a two-way ANOVA
analysis (p > 0.05).
The CyQUANT® assay applied to toxicity determination only allows DNA quantification
compared to a control. However in future studies, metabolic assays such as AlamarBlue or
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assays will give quantitative
data regarding toxicity [42]. Subsequently, proliferative activity will be assessed with the
CyQUANT® or PicoGreen assays ensuring that microspheres do not impair cell proliferation.
Polymers 2011, 3 146
125
DNA quantification (% to control)
120
Incubation time
115
of test solutions
110 before exposure
to cells (37 C)
105
Control
100 Non-Incubated
95 Incubated 15 min
Incubated 1h
90
85
Test solutions
4. Conclusions
Electrospraying was shown to be a reproducible method for generating spherical PCL particles with
narrow quasi-monodispere size distributions, with average sizes ranging from 10 to 20 µm, which
could be tuned with electrospraying flow rate and polymer concentration. Control of particle
morphology was shown to be tailored with these same variables by determining the polymer
entanglement regime taking place in the course of electrospraying. In order to avoid fiber formation
and offspring droplets, an increased polymer concentration must be coupled with an increased feed
rate, ensuring electrospraying in the semidilute entangled regime, which leads to the formation of
spherical, homogeneous and reproducible particles. Chloroform was shown to be an appropriate
solvent for PCL particles, conferring a reproducible embossed texture to the electrosprayed
microspheres, potentially beneficial for cell adherence. Chloroform did not act as a plasticizer in
contact with PCL and was inferred to be fully removed after drying. Furthermore, electrosprayed
microspheres showed no adverse effects on cell viability after 48 h exposure. In conclusion, this study
has demonstrated precise control over polymer microsphere characteristics which may be used as a
template for future microsphere-growth factor delivery systems.
Acknowledgements
T. R. D. acknowledges the Queensland Smart State Fellowship Scheme and Tissue Therapies Ltd.
for financial support. M. A. W. is supported by the QUT Vice Chancellor’s Fellowship Scheme and an
ARC Linkage Grant (LP100200084).
Polymers 2011, 3 147
References
1. Freiberg, S.; Zhu, X. Polymer microspheres for controlled drug release. Int. J. Pharm. 2004, 282,
1-18.
2. Park, J.S.; Lee, J.H.; Shin, H.S.; Lee, T.W.; Kim, M.S.; Khang, G.; Rhee, J.M.; Lee, H.K.;
Lee, H.B. Biodegradable polymer microspheres for controlled drug release. Tissue Eng.
Regenerative Med. 2007, 4, 347-359.
3. Ye, M.; Kim, S.; Park, K. Issues in long-term protein delivery using biodegradable microparticles.
J. Control. Release 2010, 146, 241-260.
4. Sokolsky-Papkov, M.; Agashi, K.; Olaye, A.; Shakesheff, K.; Domb, A.J. Polymer carriers for
drug delivery in tissue engineering. Adv. Drug Del. Rev. 2007, 59, 187-206.
5. Lassalle, V.; Ferreira, M.L. PLA nano- and microparticles for drug delivery: An overview of the
methods of preparation. Macromol. Biosci. 2007, 7, 767-783.
6. Yang, Y.Y.; Chung, T.S.; Bai, X.L.; Chan, W.K. Effect of preparation conditions on morphology
and release profiles of biodegradable polymeric microspheres containing protein fabricated by
double-emulsion method. Chem. Eng. Sci. 2000, 55, 2223-2236.
7. Mundargi, R.C.; Babu, V.R.; Rangaswamy, V.; Patel, P.; Aminabhavi, T.M. Nano/micro
technologies for delivering macromolecular therapeutics using poly(D,L-lactide-co-glycolide) and
its derivatives. J. Control. Release 2008, 125, 193-209.
8. Kempen, D.H.R.; Kim, C.W.; Lu, L.; Dhert, W.J.A.; Currier, B.L.; Yaszemski, M.J. Controlled
release from poly(lactic-co-glycolic acid) microspheres embedded in an injectable, biodegradable
scaffold for bone tissue engineering. Mater. Sci. Forum 2003, doi: 10.4028/www.scientific.net/
MSF.426-432.3151.
9. Cohen, S.; Yoshioka, T.; Lucarelli, M.; Hwang, L.H.; Langer, R. Controlled delivery systems for
proteins based on poly(lactic glycolic acid) microspheres Pharm. Res. 1991, 8, 713-720.
10. Carrascosa, C.; Torres-Aleman, I.; Lopez-Lopez, C.; Carro, E.; Espejo, L.; Torrado, S.;
Torrado, J.J. Microspheres containing insulin-like growth factor I for treatment of chronic
neurodegeneration. Biomaterials 2004, 25, 707-714.
11. Freitas, S.; Merkle, H.P.; Gander, B. Microencapsulation by solvent extraction/evaporation:
Reviewing the state of the art of microsphere preparation process technology. J. Control. Release
2005, 102, 313-332.
12. Valo, H.; Peltonen, L.; Vehvilainen, S.; Karjalainen, M.; Kostiainen, R.; Laaksonen, T.;
Hirvonen, J. Electrospray encapsulation of hydrophilic and hydrophobic drugs in poly(L-lactic
acid) nanoparticles. Small 2009, 5, 1791-1798.
13. Ding, L.; Lee, T.; Wang, C.H. Fabrication of monodispersed Taxol-loaded particles using
electrohydrodynamic atomization. J. Control. Release 2005, 102, 395-413.
14. Arya, N.; Chakraborty, S.; Dube, N.; Katti, D.S. Electrospraying: A facile technique for synthesis
of chitosan-based micro/nanospheres for drug delivery applications. J. Biomed. Mater. Res.
B-Appl. Biomater. 2009, 88B, 17-31.
15. Park, C.H.; Lee, J. Electrosprayed polymer particles: Effect of the solvent properties. J. Appl.
Polym. Sci. 2009, 114, 430-437.
Polymers 2011, 3 148
16. Rayleigh, L. On the equilibrium of liquid conducting masses charged with electricity. Phil. Mag.
Ser. 5 1882, 14, 184-186.
17. Zeleny, J. The electrical discharge from liquid points, and a hydrostatic method of measuring the
electric intensity at their surfaces. Phys. Rev. 1914, 3, 69-91.
18. Taylor, G. Disintegration of water drops in an electric field. Proc. Roy. Soc. London Ser. A Math.
Phys. Sci. 1964, 280, 383-397.
19. Shenoy, S.L.; Bates, W.D.; Frisch, H.L.; Wnek, G.E. Role of chain entanglements on fiber
formation during electrospinning of polymer solutions: Good solvent, non-specific
polymer-polymer interaction limit. Polymer 2005, 46, 3372-3384.
20. Gupta, P.; Elkins, C.; Long, T.E.; Wilkes, G.L. Electrospinning of linear homopolymers of
poly(methyl methacrylate): Exploring relationships between fiber formation, viscosity, molecular
weight and concentration in a good solvent. Polymer 2005, 46, 4799-4810.
21. Xu, Y.X.; Hanna, M.A. Electrospray encapsulation of water-soluble protein with polylactide—
Effects of formulations on morphology, encapsulation efficiency and release profile of particles.
Int. J. Pharm. 2006, 320, 30-36.
22. Amsden, B.G.; Goosen, M.F.A. An examination of factors affecting the size, distribution and
release characteristics of polymer microbeads made using electrostatics. J. Control. Release 1997,
43, 183-196.
23. Xu, Y.X.; Hanna, M.A. Electrosprayed bovine serum albumin-loaded tripolyphosphate
cross-linked chitosan capsules: Synthesis and characterization. J. Microencapsul. 2007, 24,
143-151.
24. Xie, J.W.; Lim, L.K.; Phua, Y.Y.; Hua, J.S.; Wang, C.H. Electrohydrodynamic atomization for
biodegradable polymeric particle production. J. Colloid Interface Sci. 2006, 302, 103-112.
25. Xu, Y.X.; Skotak, M.; Hanna, M. Electrospray encapsulation of water-soluble protein with
polylactide. I. Effects of formulations and process on morphology and particle size. J.
Microencapsul. 2006, 23, 69-78.
26. Hong, Y.L.; Li, Y.Y.; Yin, Y.Z.; Li, D.M.; Zou, G.T. Electrohydrodynamic atomization of
quasi-monodisperse drug-loaded spherical/wrinkled microparticles. J. Aerosol Sci. 2008, 39,
525-536.
27. Hao, X.F.; Lu, X.F.; Li, Z.Y.; Zhao, Y.Y.; Shang, T.C.; Yang, Q.B.; Wang, C.; Li, L.J. Effects of
the electrospray ionization parameters on the formation and morphology of colloidal microspheres
of polyacrylonitrile. J. Appl. Polym. Sci. 2006, 102, 2889-2893.
28. Almeria, B.; Deng, W.W.; Fahmy, T.M.; Gomez, A. Controlling the morphology of
electrospray-generated PLGA microparticles for drug delivery. J. Colloid Interface Sci. 2010,
343, 125-133.
29. Fantini, D.; Zanetti, M.; Costa, L. Polystyrene microspheres and nanospheres produced by
electrospray. Macromol. Rapid Commun. 2006, 27, 2038-2042.
30. Loscertales, I.G.; Barrero, A.; Guerrero, I.; Cortijo, R.; Marquez, M.; Ganan-Calvo, A.M.
Micro/nano encapsutation via electrified coaxial liquid jets. Science 2002, 295, 1695-1698.
31. Sinha, V.R.; Bansal, K.; Kaushik, R.; Kumria, R.; Trehan, A. Poly-epsilon-caprolactone
microspheres and nanospheres: An overview. Int. J. Pharm. 2004, 278, 1-23.
Polymers 2011, 3 149
32. Woodruff, M.A.; Hutmacher, D.W. The return of a forgotten polymer—Polycaprolactone in the
21st century. Prog. Polym. Sci. 2010, 35, 1217-1256.
33. Wu, Y.Q.; Kennedy, S.J.; Clark, R.L. Polymeric particle formation through electrospraying at low
atmospheric pressure. J. Biomed. Mater. Res. B-Appl. Biomater. 2009, 90B, 381-387.
34. Xie, J.W.; Wang, C.H. Encapsulation of proteins in biodegradable polymeric microparticles using
electrospray in the Taylor Cone-Jet mode. Biotechnol. Bioeng. 2007, 97, 1278-1290.
35. Hwang, Y.K.; Jeong, U.; Cho, E.C. Production of uniform-sized polymer core-shell
microcapsules by coaxial electrospraying. Langmuir 2008, 24, 2446-2451.
36. Meng, F.Z.; Jiang, Y.; Sun, Z.H.; Yin, Y.Z.; Li, Y.Y. Electrohydrodynamic liquid atomization of
biodegradable polymer microparticles: Effect of electrohydrodynamic liquid atomization variables
on microparticles. J. Appl. Polym. Sci. 2009, 113, 526-534.
37. Nie, H.; Dong, Z.; Arifin, D.Y.; Hu, Y.; Wang, C.-H. Core/shell microspheres via coaxial
electrohydrodynamic atomization for sequential and parallel release of drugs. J. Biomed. Mater.
Res. A 2010, 95A, 709-716.
38. Place, E.S.; Evans, N.D.; Stevens, M.M. Complexity in biomaterials for tissue engineering. Nat.
Mater. 2009, 8, 457-470.
39. Hartman, R.P.A.; Brunner, D.J.; Camelot, D.M.A.; Marijnissen, J.C.M.; Scarlett, B. Jet break-up
in electrohydrodynamic atomization in the cone-jet mode. J. Aerosol. Sci. 2000, 31, 65-95.
40. Jaworek, A.; Sobczyk, A.T. Electrospraying route to nanotechnology: An overview. J.
Electrostat. 2008, 66, 197-219.
41. Crescenzi, V.; Manzini, G.; Calzolari, G.; Borri, C. Thermodynamics of fusion of
poly-β-propiolactone and poly-ε-caprolactone. Comparative analysis of the melting of aliphatic
polylactone and polyester chains. Eur. Polym. J. 1972, 8, 449-463.
42. Quent, V.M.C.; Loessner, D.; Friis, T.; Reichert, J.C.; Hutmacher, D.W. Discrepancies between
metabolic activity and DNA content as tool to assess cell proliferation in cancer research. J. Cell.
Mol. Med. 2010, 14, 1003-1013.
© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/3.0/).