14 Basics Final
14 Basics Final
Basics
                                                                                          1
                                                                                                              Page 1
Download FREE Study Package from www.TekoClasses.com & Learn on Video
www.MathsBySuhag.com Phone : 0 903 903 7779, 98930 58881
                                 ,sls izkd`r la[;k,Wa tks dsoy Loa; vFkok 1 ls gh HkkT; gks] vHkkT; la[;k,Wa
                                 dgykrh gSa
                                 mnkgj.k 2] 3] 5] 7] 11] 13] 17]19] 23] 29] 31 ----------------
                                             (vii)     la;Dq r la[;k,Wa (Composite Number) : -
                                                       ,slh izkd`r la[;k,Wa ¼1 dks NksMd
                                                                                       + j ½ tks vHkkT; ugha gS] la;Dq r la[;k,Wa
                                                       dgykrh gSAa
                                             uksV %
                                               (a) ‘1’ u rks vHkkT; la[;k gS u gh la;Dq r la[;k gSA
                                               (b)      ‘2’ gh dsoy ,slh le la[;k gS tks vHkkT; gSA
                                               (c)      ‘4’ gh lcls NksVh la;Dq r la[;k gSA
(viii)   lg&vHkkT; la[;k,Wa (Co-prime Numbers) : -
         nks izkd`r la[;k,Wa ¼;g t:jh ugha gS fd og vHkkT; gh gksa½ lg&vHkkT; dgkykrh gS] ;fn mudk e-l-i- bdkbZ gksA
         mnkgj.k % ¼4] 9½] ¼3] 4½] ¼3] 10½] ¼3] 8½] ¼5] 6½] ¼7] 8½ vkfnA
uksV %   (a)       nks fHkUu &fHkUu vHkkT; la[;k,Wa ges’k gh lg&vHkkT; gksrh gS ysfdu bldk foifjr lR; ugha gSA
         (b)       nks dzekxr izkd`r la[;k,Wa ges’kk lg&vHkkT; gksrh gSA
uksV %& (a) lHkh iw.kkZd ifjes; la[;k gksrh gS ijUrq bldk foifjr lR; ugha gSA
                                                                                                           2
                                                                                                                               Page 2
Download FREE Study Package from www.TekoClasses.com & Learn on Video
www.MathsBySuhag.com Phone : 0 903 903 7779, 98930 58881
          (b)   vifjes; la[;k dk _.kkRed Hkh vifjes; la[;k gksrh gSA
                  (c)           ,d ifjes; vkSj ,d vifjes; la[;k dk ;ksx ;k O;odyu lnSo ,d vifjes; la[;k gksrh gSA
                                mnkgj.k % 2 + 3 ,3 − 5
                  (d)           ,d v’kwU; ifjes; la[;k vkSj ,d vifjes; la[;k dk xq.kuQy ;k HkkxQy lnSo ,d vifjes; la[;k
                                gksrh gSA
(e) ;fn a∈Q ,oa b∈Q gks] rks xq.kk ab ,d ifjes; la[;k gksxk dsoy ;fn a=0
                  (f)           nks vifjes; la[;kvksa dk ;ksx] O;odyu] xq.kuQy vkSj HkkxQy ,d ifjes; ;k vifjes; la[;k gks
                                ldrh gSA
(xiii)   lfEeJ la[;k,Wa (Complex Numbers) : -
         os lHkh la[;kvksa tks a+ib ds :Ik esa fu:fir dh tk ldrh gS] lfEeJ la[;k,Wa dgykrh gSAa tgkWa a vkSj b okLrfod
         la[;k,Wa ,oa i = − 1 gSA lfEeJ la[;k dks lkekU;r% z ls iznf’kZr fd;k tkrk gS vkSj lfEeJ la[;kvksa ds leqPp; dks C
         ls fu:fir djrs gSA
         uksV % N ⊂ W ⊂ Ι ⊂ Q ⊂ R ⊂ C .
         (a)       la;Xq eh lfEeJ la[;k
                                      ;k % ;fn z=a+ib, tgkWa a,b∈R, ,d lfEeJ la[;k gks] rks z dh la;Xq eh lfEeJ la[;k dks
                   z ls iznf’kZr djrs gSa rFkk z = a − ib
(ii) dksbZ la[;k 3 ls HkkT; dgykrh gS ;fn vkSj dsoy ;fn mlds lHkh vadks dk ;ksx 3 ls foHkkftr gksA
         (iii)    dksbZ la[;k 4 ls HkkT; dgykrh gS ;fn vkSj dsoy ;fn mlds vfUre nks vad 4 ;s foHkkftr gksA
                                                                                                 3
                                                                                                                        Page 3
Download FREE Study Package from www.TekoClasses.com & Learn on Video
www.MathsBySuhag.com Phone : 0 903 903 7779, 98930 58881
(iv) dksbZ la[;k 5 ls HkkT; dgykrh gS ;fn vkSj dsoy ;fn mldk bdkbZ dk vad 0 ;k 5 gksA
(v) dksbZ la[;k 6 ls HkkT; dgykrh gS ;fn vkSj dsoy ;fn og la[;k 2 vkSj 3 nksuksa ls HkkT; gksA
(vi) dksbZ la[;k 8 ls HkkT; dgykrh gS ;fn vkSj dsoy ;fn mlds vfUre 3 vad 8 ls foHkkftr gksA
      (vii)    dksbZ la[;k 9 ls HkkT; dgykrh g ;fn vkSj dsoy ;fn mlds lHkh vadks dk ;ksx 9 ls foHkkftr gksA
      (viii)   dksbZ la[;k 10 ls HkkT; dgykrh gS ;fn vkSj dsoy ;fn mldk bdkbZ dk vad 0 gksA
      (ix)     dksbZ la[;k 11 ls HkkT; dgykrh gS ;fn vkSj dsoy ;fn le LFkkuksa ij vkus okys vad ks ds ;ksx vkSj fo"ke LFkkuksa
               ij vkus okys vadks ds ;ksx dk vUrj 11 dk xq.kt gksA
               mnkgj.kr%        1298] 1221] 123321] 12344321] 1234554321] 123456654321
D.    ?kkrkad (Indices) : -
      ;fn a dksbZ v’kwU; okLrfod ;k dkYifud la[;k gks vkSj m ?kukRed iw.kkZd gS] rks am=a.a.a. ……a(m ckj)
      ;gkWa ‘a’ dks vk/kkj vkSj ‘m’ dks ?kkr dgrs gSA
(1)   ?kkrkad fu;r (Law of indices) :
      (i)      a0=1                   ,         (a≠0)
                          1
      (ii)     a −m =                 ,         (a≠0)
                         am
                   m+n   m     n
      (iii)    a     =a .a            ]         tgkWa m ,oa n okLrfod la[;k,Wa gSA
                             am
      (iv)     a m −n =               ]         tgkWa m ,oa n okLrfod la[;k,Wa gS] (a≠0)
                             an
                   m n    mn
      (v)      (a ) =a
                          q
      (vi)     ap / q = ap
F. cgqin (Polynomial) : -
G.       vUrjky (Intervals) :
         vUrjky ewyr% R ds mileqPp; gksrs gS vkSj lkekU;r;k budk mi;ksx vlfedkvksa dks gy djus ;k izkUr Kkr djus esa
         fd;k tkrk gSA ;fn a vkSj b nks okLrfod la[;k,Wa bl izdkj gS fd a<b gS rks ge rhu izdkj ds vUrjky fuEukuqlkj
         ifjHkkf"kr dj ldrs gS%
                                                                                              iz;Dq r izr hd
         (i)       [kqyk ¼foo`Ÿk½ vUrjky           : (a,b)={x:a<x<b}                          () ;k ] [
         (ii)      cUn ¼laoŸ` k½ vUrjky            :[a,b]={x:a≤x≤b}                                        []
         (iii)     v)Z&[kqyk ;k v)Z&cUn vUrjky :(a,b]={x:a<x≤b}                               ( ] ;k ] ]
                                                   ;k [a,b)={x:a≤x<b}                         [ ) ;k [ [
         vuUr vUrjky fuEukuqlkj ifjHkkf"kr fd;s tkrs gS %
(i) (a,∞)={x:x>a}
(ii) [a,∞)={x:x≥a}
(iii) (-∞,b)={x:x<b}
(iv) (-∞,b]={x:x≤b}
         (v)     (-∞,∞)={x:x∈R}
uksV %   (a)     x ds dqN fo’ks"k ekuksa ds fy, ge {} fpUg dk mi;ksx djrs gSA mnkgj.kFkZ% ;fn x=1, 2 gks] rks bls x∈{1,2} }kjk
                 fy[kk tkrk gSA
         (b)     ;fn x dk dksbz eku ugha gks] rks djrs gSa fd x∈φ ¼’kwU; leqPp;½
                                                                                                     5
                                                                                                                        Page 5
Download FREE Study Package from www.TekoClasses.com & Learn on Video
www.MathsBySuhag.com Phone : 0 903 903 7779, 98930 58881
                               g( x )
                 y = f (x) =          ] :Ik dk Qyu ifjes; gksrk gs] tgkWa g(x) ,oa h(x) cgqin Qyu gSA
                               h( x )
     (ii)        fujsi{s k eku Qyu@ekikad Qyu (Absolute Value Function / Modulus Function) :
                                                                        x        if       x≥0
                 Ekikad Qyu dk izrhd f(x)=x gS rFkk bls y = x =                                }kjk ifjHkkf"kr djrs gSA
                                                                        − x      if       x<0
y=x
Ι.   Yk?kqx.kd
     (i)     la[;kvksa dk y?kqx.kd %
     fdlh la[;k N dk vk/kkj a ij y?kqx.kd] ml ?kkrkad dks fu:fir djrk gS] ftldks a ij yxkus ls la[;k N izkIr gksr h
     gS] bl la[;k dks logaN ls iznf’kZr djrs gSA
                                           ⇔ax=N, a>0, a≠
                                    LogaN=x⇔            ≠1 & N>0
     ;kn j[ksa %
     log102≈0.3010                  ;                 log103≈0.4771
     n2≈0.693                      ;                 n10≈2.303
(ii) izkUr :
     La[;k LogaN ds vfLrRo ,oa vf}rh;rk dks izfrcU/kksa a>0, a≠1 ,oa N>0 dh lgk;rk ls Kkr fd;k tk ldrk gSA
     Yk?kqx.kd dk vk/kkj ‘a’, bdkbZ ds cjkcj ugha gksuk pkfg, vU;kFk bdkbZ ds vykok vU; la[;kvksa ds y?kqx.kd ugha gksxas
     rFkk izR;sd la[;k bdkbZ dk y?kqx.kd gksxhA
     (iii)     vk/kkjHkwr y?kqx.kdh; loZlfedk %
(ii) loga(M/N)=logaM-logaN
                          1
         (iv) logaβ M =     loga M
                          β
                          loga M
         (v) logb M =             ¼vk/kkj ifjorZu ize;
                                                     s ½
                           loga b
uksV %
                           Loga1=0                                   logaa=1
                                                                                    1
                           Log1/aa=-1                                logb a =
                                                                                  loga b
                 
                             x
                            a =e
                                   xna
                                                                      alogc b = blogc a
K.       y?kqx.krh; Qyuksa ds xzkQ (y=logax) :
                  LFkfr-ΙΙ                                             LFkfr -ΙΙΙ
                  a>1ds fy,fy,                                          0<a<1 ds fy,
uksV %   (i)     ;fn la[;k vkSj vk/kkj bdkbZ ds ,d gh vksj fLFkr gks] rks y?kqx.kd dk eku /kukRed gksrk gSA
         (ii)    ;fn la[;k vkSj vk/kkj bdkbZ ds foijhr vksj fLFkr gks] rks y?kqx.kd dk eku _.kkRed gksr k gSA
L.       y?kqx.kdh; lehdj.k
                    lehdj.k
                            ⇔x=y
                 logax=logay⇔
lnSo nh xbZ lehdj.k dh oS/krk Kkr djuh pkfg, vFkkZr x>0, y>0, a>0, a≠1 gksus pkfg,A
1.       ;fn A o B nks ifjes; la[;k,Wa gS rFkk AB, A+B,A-B ifjes; la[;k,Wa gks] rks A/B
         (A) lnso ifjes;                                    (B) dHkh Hkh ifjes; ugha
         (C) ifjes; tc B≠0                                  (D) ifjes; tc A≠0
2.       lHkh vifjes; la[;kvksa dks la[;k js[kk ij O;Dr fd;k tk ldrk gSA ;g dFku gS &
                                                                                                    7
                                                                                                                Page 7
Download FREE Study Package from www.TekoClasses.com & Learn on Video
www.MathsBySuhag.com Phone : 0 903 903 7779, 98930 58881
     (A) lnSo lR;                      (B) vlR;
     (C) dqN ifjfLFkfr;ksa esa lR;     (D) buesa ls dksbZ ugha
                1       1       1                    1
5.    Js.kh         +       +        + ...... +             dk ;ksxQy cjkcj gS &
              (1× 2) (2 × 3) (3 × 4)            (100 × 101)
      (A) 99/100                          (B) 1/100                       (C) 100/101               (D) 101/102
                    1                    1
6.    ;fn x +         = 2 gks] rks x 2 + 2 dk eku gS &
                    x                   x
      (A) 0                               (B) 1                           (C) 2                     (D) 3
8.    ;fn a,b,c okLrfod gks] rks a(a-b)+b(b-c)+c(c-a)=0 gksxk dsoy ;fn &
      (A) a+b+c=0                                                         (B) a=b=c
      (C) a=b or b=c or c=a                                               (D) a-b-c=0
                                                                       (a − b)3 + (b − c )3 + (c − a)3
9.    ;fn a,b,c fHkUu&fHkUu o okLrfod la[;k,Wa gks] rks                                                dk eku gS &
                                                                           (a − b)(b − c )(c − a)
      (A) 1                               (B) abc                         (C) 2                     (D) 3
10.   ;fn x-a O;atd x3-a2x+x+2 dk ,d xq.ku[k.M gks] rks a dk eku gS &
      (A) 0                               (B) 2                           (C) -2                    (D) 1
11.   ;fn P(x)=kx3+3x2-3 ,oa Q(x)=2x3-5x+k dks (x-4) ls foHkkftr djus ij leku 'ks"kQy cprk gS] rks k dk eku gS &
      (A) 2                               (B) 1                           (C) 0                     (D) -1
              1                    1                    1
16.                      +                    +                    dk eku gS &
      log     bc
                   abc       log   ca
                                        abc       log   ab
                                                             abc
                                                                                                                  8
                                                                                                                       Page 8
Download FREE Study Package from www.TekoClasses.com & Learn on Video
www.MathsBySuhag.com Phone : 0 903 903 7779, 98930 58881
       (A) 1/2                                        (B) 1                            (C) 2                     (D) 4
                                                                 1
18.    ;fn log x log18 ( 2 + 8 ) =                                 gks] rks 1000 x dk eku gS &
                                                                 3
                     log        a                     2
                                                          +1)3
                 2     21 / 4
                                     − 3log27 ( a                − 2a
19.    vuqikr                                                           ds ljyhdj.k ls izkIr gksrk gS &
                            7   4 log49 a
                                               − a −1
                 1                   1                   1
20.                        +                   +                    dk eku gS &
        1 + logb a + logb c 1 + logc a + logc b 1 + loga b + loga c
                                                                  1
       (A) abc                                        (B)                              (C) 0                     (D) 1
                                                                 abc
21.    ;fn 3 2 l0g3 x − 2x − 3 = 0 gks] rks x ds fdrus eku lehdj.k dks lUrq"V djrs gS &
       (A) 'kwU;                  (B) 1                     (C) 2                     (D) 2 ls vf/kd
                                    3 x 2 −10 x + 3
23.    lehdj.k x − 3                                  = 1 ds okLrfod gyksa dh la[;k gS &
       (A) dsoy pkj                                   (B) dsoy rhu                     (C) dsoy nks              (D) dsoy ,d
                                                                                               2
28.    lehdj.k fudk; log3x+log3y=2+log32 ,oa log27 ( x + y ) =                                   ds gyksa dk leqPp; gS &
                                                                                               3
       (A) (6,3)                                      (B) (3,6)                        (C) (6,12)                (D) (12,6)
                                                                                                                              9
                                                                                                                                       Page 9
Download FREE Study Package from www.TekoClasses.com & Learn on Video
www.MathsBySuhag.com Phone : 0 903 903 7779, 98930 58881
29.  lehdj.k log x 2 16 + log2 x 64 = 3 j[krh gS &
     (A) ,d vifjes; gy         (B) dksbZ vHkkT; gy ugha (C) nks okLrfod gy (D) ,d iw.kkZd
                                                                                        a gy
                                                    
                           (log3 x ) − 2 log3 x + 5 
                                     2 9
30.    lehdj.k x                                    
                                                         = 3 3 j[krh gS &
       (A) Bhd rhu okLrfod gy                                                (B) de ls de ,d okLrfod gy
       (C) ,d ,d vifjes; gy                                                  (D) lfEeJ ewy
             7 6                                                                                                 9        6
       (i)    ,                                               (ii)   13 − 12 , 14 − 13              (iii)             ,
             8 7                                                                                            11 − 2 3 3
3. fl) dhft, fd nks fHkUu fo"ke izkd`r la[;kvksa ds oxksZ dk vUrj ges’kk 8 dk xq.kt gksrk gSA
                  2 −1                                                                      1
       (i)                                                                   (ii)
                  2 +1                                                              1+ 2 + 3
              a c e         2a 4b 4 + 3a 2c 2 − 5e 4 f
7.     ;fn     = = gks] rks                            dk eku a o b ds inksa esa Kkr dhft,A
              b d f          2b 6 + 3b 2d2 − 5f 5
9.     ;fn ;g Kkr gS fd a1 + a2 + a3 + ……+an=0 rks la[;kvksa a1,a2,…..,an ds ckjs esa D;k dgk tk ldrk gS
       \
10.    fuEufyf[kr lehdj.kksa dks gy dhft, &
       (i)   x+2=3                                                         (ii) x-2x+5=0
                                                                                                                     10
                                                                                                                              Page 10
Download FREE Study Package from www.TekoClasses.com & Learn on Video
www.MathsBySuhag.com Phone : 0 903 903 7779, 98930 58881
        (v) x 2-x+4=2x2-3x+1
(vi) x-3+2x+1=4
(vii) x-1-2=x-3
13. ;fn 4A+9B=10C, tgkWa A=log164, B=log39 & C=logx83 gks] rks x dk eku Kkr dhft,A
14.     ;fn logba. logca+logab. logcb+logac. logbc=3 (tgkWa a, b, c fHkUu&fHkUu /kukRed okLrfod la[;k,a ≠1gS) , gks rks] abc
        dk eku Kkr dhft, A
15. ;fn a=log1218 ,oa b=log2454 gks] rks iznf’kZr dhft, fd ab+5(a-b) dk eku Kkr dhft,A
                      1      
20.     log3  log9 x + + 9 x  = 2x                                     21. 2log4(4-x)=4-log2(-2-x)
                      2      
                                                                                 log x + 5
22.        2
        log10 x + log10 x 2 = log10
                                 2
                                    2 −1                                 23. x      3        = 10 5 +log x
                         5
24.     log52 x + log5 x   = 1                                         25. log4(log2x)+log2(log4x)=2
                         x
26.   log   3
                x − 2 − log3 x − 2 = 2                                   27. 5 x.x 8 x −1 500
28.     ;fn log102=0.3010 ,oa log103=0.4771 gks] rks Kkr dhft, &
                          15
        (a)           6 esa vdksa dh la[;k
                          -100
        (b)           3          esa n’keyo ds Bhd ckn vkus okys 'kwU;ksa dh la[;k
                                                                                                             11
                                                                                                                     Page 11
Download FREE Study Package from www.TekoClasses.com & Learn on Video
www.MathsBySuhag.com Phone : 0 903 903 7779, 98930 58881
Answers
EXERCISE – 1
1. C 2. A 3. D 4. B 5. C 6. C 7. A
                 47      103       1673
1.        (i)       (ii)     (iii)                                        (iv) not possible
                 20       90        495                                                       9. a1=a2=a3=………=an=0
                 7                                                             9
2.        (i)                (ii)       13 − 12                   (iii)
                                                                                              10.
                 8                                                         11 − 2
                                                                                                       (i) x=±1                     (ii) x=5
                                                                   2+ 2 − 6
4.        (i)        2 −1                                  (ii)
                                                                      4                                (iii) x=2                    (iv) x=-2, 0, 2, 4
                                    2       2
5.        (i) (x-2y) (x +y -xy)                                                                        (v) x=-3, 3                  (vi) x=-1
                             1  2 1           1                                                    (vii) x∈[1, ∞)
          (ii)  a −            + 1 a + 2 − a + + 2 
                             a        a       a                                           11.       x=2,y=1      12. 0     13. x=10     14. abc=1
                                                                                              15.      1       17. (a) log23 (b) log711
          (iii) (x-1) (x-2) (x-3)                                                             18.       x=16 or x=-4     19. 8        20. {1/3}
                                                                                                                          1 1                   -5   3
          (iv) (x+2) (x2-2x-5)                                                                21.      {-4}        22.     ,           23. {10 , 10 }
                                                                                                                         20 5
          (v) –(a-b) (b-c) (c-a)                                                                           1
                                                                                              24.      1,5,            25. x=16           26. 1/9,9
                 4       2              2              2                                                25 
6.        (i) (x -x +1) (x +x+1) (x -x+1)
                     2                      2                                                 27.      x=3      28. (a) 12 (b) 47
          (ii) (x -2x+2) (x +2x+2)                                                            29.       x=10/3,y=20/3 & x=-10,y=20
                                                                                              30.       x=2 or 81    31. x=8      32. x=3 or -3
                                                                                                                                       12
                                                                                                                                                         Page 12