0% found this document useful (0 votes)
201 views12 pages

Ch. 9 Exam Practice Key

This document appears to be a practice exam for an Algebra 2 Honors chapter 9 exam. It contains 25 multiple choice and short answer questions assessing skills with rational functions, including simplifying, adding/subtracting/multiplying/dividing rational expressions, finding asymptotes, graphing functions, and solving rational equations. The questions progress from simpler skills like identifying discontinuities in rational functions to more complex tasks like graphing functions and solving higher order rational equations.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
201 views12 pages

Ch. 9 Exam Practice Key

This document appears to be a practice exam for an Algebra 2 Honors chapter 9 exam. It contains 25 multiple choice and short answer questions assessing skills with rational functions, including simplifying, adding/subtracting/multiplying/dividing rational expressions, finding asymptotes, graphing functions, and solving rational equations. The questions progress from simpler skills like identifying discontinuities in rational functions to more complex tasks like graphing functions and solving higher order rational equations.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 12

Name: ____________________________________ Period: ______ Date: _____________Table #: _____PRACTICE

ALGEBRA 2 HONORS: CHAPTER 9 EXAM

Multiple Choice
Identify the choice that best completes the statement or answers the question.

____ 1. Find any points of discontinuity for the rational function.


x1
y  2
x  2x  8

A x = –4, x = 2 C x = 4, x = 2
B x = 4, x = –2 D x=1
(x  2)(x  5)
____ 2. Describe the vertical asymptote(s) and hole(s) for the graph of y  .
(x  5)(x  3)

A asymptote: x = –3 and hole: x = –5


B asymptotes: x = –3 and x = –5
C asymptote: x = –2 and hole: x = –3
D asymptote: x = 3 and hole: x = 5
3x 2  6x  6
____ 3. Find the horizontal asymptote of the graph of y  .
7x 2  x  6

3
A y= C no horizontal asymptote
7
B y=0 D y=1

____ 4. Simplify the rational expression. State any restrictions on the variable.
y 2  9y  14
y7

A y  2; y  7 C y  2; y  7
B y  2; y  7 D y  2; y  7

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

____ 5. Simplify the rational expression. State any restrictions on the variable.
x 4  3x 2  10
x 4  7x 2  10

x2  5 (x 2  5)
A ; x  2, x  5 C ; x   2, x   5
x2  5 x2  5
x2  5 x2  5
B ;x   2, x   5 D ; x  2, x  5
x2  5 x2  5

____ 6. Sketch the asymptotes and graph the function.


2x  5
y 
x2
A C

B D

2
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

____ 7. Multiply or divide. State any restrictions on the variables.


2c 4 9d 2

7d 3 5c 3

18c 18c 7
A , c  0, d  0 C , c  0, d  0
35d 35d 5
18 7 5 35d
B c d , c  0, d  0 D , c  0, d  0
35 18c
____ 8. Sketch the asymptotes and graph the function.
x 2  8x  15
y 
x 2  16
A C

B D

3
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

____ 9. Multiply or divide. State any restrictions on the variables.


d2 d 2  8d  12

d6 d 2  2d

d2 d 2  2d
A , d  6, 0,  2 C , d  6,  2
d2 d2
d2 d 2  2d
B , d  6,  2 D , d  6, 0,  2
d2 d2
____ 10. Multiply or divide. State any restrictions on the variables.
a6 a2
 2
a  3 a  8a  15

(a  6)(a  2) (a  6)(a  2)
A , a  3, 5,  2 C , a  3, 5
(a  3) 2 (a  5) (a  3) 2 (a  5)
(a  6)(a  5) (a  6)(a  5)
B , a  5,  2 D , a  3,  2
a2 a2
____ 11. Add or subtract. Simplify if possible.
6 1
 2
t  7 t  49

7 6t  41
A C
(t  7)(t  7) (t  7)(t  7)
6t  43 7
B D
(t  7)(t  7) t 2  t  56

4
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

____ 12. Add or subtract. Simplify if possible.


p 2  11p  28 6

p 2  4p  21 p3

p4
A C p  10
p3
p  10 p 2  11p  22
B D
p3 p 2  4p  21
____ 13. Add or subtract. Simplify if possible.
x 2  7x  10 x 2  4x  5
 2
x2  x  2 x  9x  20

2x 2  11x  5 x 2  7x  21
A C
2x 2  10x  18 (x  1)(x  4)
2x 2  7x  21 2x 2  11x  5
B D
(x  1)(x  4) (x  1)(x  4)
____ 14. Simplify the complex fraction.
4 3

2a 3a
1 1

4a a

4 1 5
A B 2 C D
5 2 4
d3
d 2  d  20
____ 15.
d7
d4
d3 (d  3)(d  7)
A C
(d  7)(d  5) (d  4) 2 (d  5)
(d  3)(d  7) (d  3)(d  5)
B D
(d  4)(d  5) (d  7)(d  5)

5
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

____ 16. Solve the equation. Check the solution.


1 5

x1 x2

1 5 7
A  B 7 C  D 
2 6 6
____ 17. Solve the equation. Check the solution.
a 2 1
 
a 2  36 a  6 a6

A –9 B –6 C –9 and –6 D 6
____ 18. Solve the equation. Check the solution.
6 1
2
  1
x 9 x3

1  73
A 4 B 2 C D 3 or –4
2
____ 19. Solve the equation. Check the solution.
1 5
  5
6y 2y

4 8 8 3
A  B C  D 
15 3 15 20

Short Answer

20. Simplify the expression.


(t 4  1)(t 2  9)(t  9) 2
(t 4  81)(t 2  1)(t  1) 2

6
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

21. Simplify
7m2  28n 2
28n 2  7m2
22. Simplify.
x 2  x  xy  y x 2  2xy  y 2

x 2  6x  7 4x  4y

23. Graph the function. Label any aystmptotes, holes, or discontinuities.


x3
f  x  2
x  5x  6

24. Graph the function. Label any aystmptotes, holes, or discontinuities.


9x 2  4
f x   2
3x  10x  8

7
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

25. Graph the function. Label any aystmptotes, holes, or discontinuities.


x2  4
f  x 
x2

p(x)
26. Given f(x)  where q(x)  0. How do you determine if the function has a horizontal asymptote? a
q(x)
vertical asymptote? a hole?

27. Simplify.
1 xy  ay  1  2
 

ay  3a  2xy  6x a 2  4x 2  y  3 
 

8
ID: A

ALGEBRA 2 HONORS: CHAPTER 9 EXAM


Answer Section

MULTIPLE CHOICE

1. ANS: B PTS: 1 DIF: L2


REF: 9-3 Rational Functions and Their Graphs
OBJ: 9-3.1 Properties of Rational Functions TOP: 9-3 Example 1
KEY: rational function | point of discontinuity
2. ANS: A PTS: 1 DIF: L2
REF: 9-3 Rational Functions and Their Graphs
OBJ: 9-3.1 Properties of Rational Functions TOP: 9-3 Example 2
KEY: asymptote | vertical asympotote | rational function | graphing | hole in the graph of a function
3. ANS: A PTS: 1 DIF: L2
REF: 9-3 Rational Functions and Their Graphs
OBJ: 9-3.1 Properties of Rational Functions TOP: 9-3 Example 3
KEY: asymptote | graphing | rational function | horizontal asymptote
4. ANS: A PTS: 1 DIF: L2 REF: 9-4 Rational Expressions
OBJ: 9-4.1 Simplifying Rational Expressions STA: CA A2 7.0
TOP: 9-4 Example 1
KEY: rational expression | simplifying a rational expression | restrictions on a variable
5. ANS: B PTS: 1 DIF: L3 REF: 9-4 Rational Expressions
OBJ: 9-4.1 Simplifying Rational Expressions STA: CA A2 7.0
TOP: 9-4 Example 1
KEY: rational expression | simplifying a rational expression | restrictions on a variable
6. ANS: C PTS: 1 DIF: L2
REF: 9-3 Rational Functions and Their Graphs OBJ: 9-3.2 Graphing Rational Functions
TOP: 9-3 Example 4 KEY: graphing | rational function
7. ANS: A PTS: 1 DIF: L2 REF: 9-4 Rational Expressions
OBJ: 9-4.2 Multiplying and Dividing Rational Expressions STA: CA A2 7.0
TOP: 9-4 Example 3
KEY: simplifying a rational expression | restrictions on a variable | multiplying rational expressions
8. ANS: A PTS: 1 DIF: L3
REF: 9-3 Rational Functions and Their Graphs OBJ: 9-3.2 Graphing Rational Functions
TOP: 9-3 Example 4 KEY: graphing | rational function
9. ANS: D PTS: 1 DIF: L2 REF: 9-4 Rational Expressions
OBJ: 9-4.2 Multiplying and Dividing Rational Expressions STA: CA A2 7.0
TOP: 9-4 Example 3
KEY: simplifying a rational expression | restrictions on a variable | multiplying rational expressions
10. ANS: D PTS: 1 DIF: L2 REF: 9-4 Rational Expressions
OBJ: 9-4.2 Multiplying and Dividing Rational Expressions STA: CA A2 7.0
TOP: 9-4 Example 4 KEY: restrictions on a variable | dividing rational expressions

1
ID: A

11. ANS: B PTS: 1 DIF: L2


REF: 9-5 Adding and Subtracting Rational Expressions
OBJ: 9-5.1 Adding and Subtracting Rational Expressions STA: CA A2 7.0
TOP: 9-5 Example 3
KEY: simplifying a rational expression | adding rational expressions
12. ANS: B PTS: 1 DIF: L2
REF: 9-5 Adding and Subtracting Rational Expressions
OBJ: 9-5.1 Adding and Subtracting Rational Expressions STA: CA A2 7.0
TOP: 9-5 Example 4
KEY: simplifying a rational expression | subtracting rational expressions
13. ANS: B PTS: 1 DIF: L3
REF: 9-5 Adding and Subtracting Rational Expressions
OBJ: 9-5.1 Adding and Subtracting Rational Expressions STA: CA A2 7.0
TOP: 9-5 Example 3
KEY: simplifying a rational expression | adding rational expressions
14. ANS: A PTS: 1 DIF: L2
REF: 9-5 Adding and Subtracting Rational Expressions
OBJ: 9-5.2 Simplifying Complex Fractions STA: CA A2 7.0
TOP: 9-5 Example 5
KEY: complex fraction | simplifying a rational expression | simplifying a complex fraction
15. ANS: A PTS: 1 DIF: L2
REF: 9-5 Adding and Subtracting Rational Expressions
OBJ: 9-5.2 Simplifying Complex Fractions STA: CA A2 7.0
TOP: 9-5 Example 5
KEY: dividing rational expressions | simplifying a complex fraction
16. ANS: D PTS: 1 DIF: L2 REF: 9-6 Solving Rational Equations
OBJ: 9-6.1 Solving Rational Equations STA: CA A2 7.0 TOP: 9-6 Example 1
KEY: rational equation
17. ANS: A PTS: 1 DIF: L2 REF: 9-6 Solving Rational Equations
OBJ: 9-6.1 Solving Rational Equations STA: CA A2 7.0 TOP: 9-6 Example 2
KEY: rational equation | no solutions
18. ANS: A PTS: 1 DIF: L2 REF: 9-6 Solving Rational Equations
OBJ: 9-6.1 Solving Rational Equations STA: CA A2 7.0 TOP: 9-6 Example 2
KEY: rational equation | no solutions
19. ANS: C PTS: 1 DIF: L2 REF: 9-6 Solving Rational Equations
OBJ: 9-6.1 Solving Rational Equations STA: CA A2 7.0 TOP: 9-6 Example 2
KEY: rational equation

SHORT ANSWER

20. ANS:
(t  1)(t  9) 2
(t 2  9)(t  1)

PTS: 1

2
ID: A

21. ANS:
-1

PTS: 1
22. ANS:
4
xy

PTS: 1
23. ANS:

PTS: 1 DIF: Level B REF: MAL21191


TOP: Lesson 8.3 Graph General Rational Functions KEY: graph | rational function
MSC: Comprehension NOT: 978-0-618-65615-8
24. ANS:

PTS: 1 DIF: Level B REF: MAL21191


TOP: Lesson 8.3 Graph General Rational Functions KEY: graph | rational function
MSC: Comprehension NOT: 978-0-618-65615-8

3
ID: A

25. ANS:

PTS: 1 DIF: Level B REF: MAL21191


TOP: Lesson 8.3 Graph General Rational Functions KEY: graph | rational function
MSC: Comprehension NOT: 978-0-618-65615-8
26. ANS:
see notes

PTS: 1
27. ANS:
3(a  xy  2x)
(y  3) 2 (a  2x)(a  2x)

PTS: 1

You might also like