0% found this document useful (0 votes)
319 views10 pages

Advanced Calculus Problems

The document contains 18 multiple choice questions about definite integration. The questions cover a range of integration techniques including substitution, evaluating integrals of trigonometric, exponential and logarithmic functions, and properties of definite integrals.

Uploaded by

harsh
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
319 views10 pages

Advanced Calculus Problems

The document contains 18 multiple choice questions about definite integration. The questions cover a range of integration techniques including substitution, evaluating integrals of trigonometric, exponential and logarithmic functions, and properties of definite integrals.

Uploaded by

harsh
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 10

DEFINITE INTEGRATION

SECTION - I : STRAIGHT OBJECTIVE TYPE


sin x cos 
12.1  1  cos 2 x dx =  1  sin2 
0

(A) for no value of  (B) for exactly two values of  in (0, )

   
(C) for at least one  in  ,   (D) for exactly one  in  0, 
 2   2

1/ n
 n 3 3

1
dx
 (n  r ) 
 r 1
 
12.2 Let  =  , p = nlim
 
, then np is equal to
1  x 3
n 3n 
0  
 

(A) n 2 – 1 +  (B) n 2 – 3 + 3 (C) 2 n 2 –  (D) n 4 – 3 + 3

2
e|sin x| cos x
12.3 0 1 e tan x
dx =

(A) e (B) 1 (C) e – 1 (D) 0

12.4 Consider the integrals


1 1 1 x2 1 x2
2  
I1 =  x
e cos2 x dx, I 2 =  e  x cos2 x dx, I3 =  e 2 cos 2 x dx , I 4 =  e 2 dx
0 0 0 0
Then
(A) I2 > I4 > I1 > I3 (B) I2 < I4 < I1 < I3 (C) I1 < I2 < I3 < I4 (D) I1 > I2 > I3 > I4

2
12.5 0
x  x  x  ... dx is equal to ( x > 0)

19 17 13
(A) (B) (C) (D) Can’t determine
6 6 6

1
x
12.6 A function f(x) which satisfies the relation f(x) = ex + e f (t )dt , then f (x) is
0

ex ex
(A) (B) (e – 2) ex (C) 2ex (D)
2e 2
0 2
| sin x | | sin x |
12.7 If m =  x 1
dx and n=  x 1
dx, where [.] represents greatest integer function, then
2
   2 0
  2
   

(A) m = n (B) m = –n (C) m = 2n (D) m = –2n

e
m
12.8 If Im =  ( n x )
1
dx , m  N, then I10 + 10I9 is equal to

e10
(A) e10 (B) (C) e (D) e – 1
10

1 1 1 1
12.9 If Sn =   + ........... + , n  N, then lim Sn is equal to
2n 2
4n  1 4n2  4 2
3n  2n  1 n

 
(A) (B) 2 (C) 1 (D)
2 6

1 1 2
et te t
12.10 Let A = 
0
dt
t  1 , then the value of t 2
1
dt
0

1 1 2
(A) A2 (B) A (C) 2A (D) A
2 2

x
1
12.11 The function f (x) =  t dt satisfies
1

x
(A) f (x + y) = f (x) + f (y) (B) f   = f (x) + f (y)
y
(C) f (xy) = f (x) + f (y) (D) None of these

a p

12.12 If f is a function with period P, then  f (x) dx is


a

(A) equal to f(a) (B) equal to f(p) (C) independent of a (D) None of these


2
12.13  (cos px  sin qx ) dx is equal to



(A) 0 (B) (C)  (D) 2
2

1
1 2x  1 
12.14  tan
0
 2
 1 x  x 
dx is equal to

(A) 0 (B) 1 (C) – 1 (D) None of these


b
3 4 (b – a)m
12.15 The value of  (x – a) (b – x)
a
dx is
n
. Then (m, n) is

(A) (6, 260) (B) (8, 280) (C) (4, 240) (D) none of these

19
sin x
12.16 The absolute value of  1 x
10
8
dx , is

–7
(A) less than 10 (B) more than 10–7 (C) less than 10–6 (D) more than 10–6

a
 
12.17 Evaluate  n (cot a  tan x )dx ; a   0, 2 
0

(A) a n (sin a) (B) – a n (sin a) (C) n (cos a) (D) – n (cos a)

1 /4
12.18 S1 : In
 f (cot 1 x )dx putting cot –1 x = t may change the limits to  .......
1 3 / 4

S2 : If f(x) has removable discontinuities at finite number of points in (a, b) then if  f ( x )dx  F( x ) ,
b

 f ( x )dx = F(b) – F(a).


a

b
S3 : If f(x) has an infinite discontinuity in (a, b), then we can always write  f ( x )dx = F(b) – F(a)
a

where  f ( x )dx = F(x)


1
S4 : If f(x) : [0, 1]  R has single point continuity in (0, 1) then
 f ( x )dx can be evaluated.
0

(A) FTTF (B) TFFT (C) FFFF (D) TTFF


d  1   1
12.19 S1 :   x sin  dx = 2sin2   
dx  x 4 2
1

10 
2 5
S2 :  sin x cos 4 x dx =
8
0

x
S3 : If f(x) is even then f ( x )dx will always be odd.

0

S4 : If f(x) is even and  f ( x )dx is odd where f(x) is a continuous function then f(x) = 0 must have
0

exactly three roots in (– 1, 1).

(A) FTTF (B) TFFT (C) TTTF (D) FFFT



log(1  x 2 )
12.20 S1 : 
0
1 x2
dx =  log 2


sin2 x
S2 : e cos 3 ( 2n  1) x dx = 0
0

4
S3 :  | x  1 |dx = 5
0

2
2 4
S4 :  (1  x ) dx =
3
2

(A) FTTF (B) TFFT (C) TTTF (D) FFFT

SECTION - II : MULTIPLE CORRECT ANSWER TYPE

2
12.21 If f(x) is integrable over [1, 2], then
 f ( x ) dx is equal to
1

n 2n n 2n
1 r  1 r  r n r 
 f   f   (C) lim 1 1
(A) nlim
 n
r 1 n
(B) nlim
 n
r n1 n n  n 
r 1
f
 n 
 (D) nlim
  n
 f  n 
r 1

1
dx
12.22 If n =  n , n  N, then which of the following statements hold good?
0 1  x  2

 1
(A) 2n n + 1 = 2 n + (2n  1) n (B) 2 = 
8 4

 1  5
(C) 2 =  (D) 3 = 
8 4 16 48

2 50
12.23 If f(2 – x) = f(2 + x) and f(4 – x) = f(4 + x) and f(x) is a function for which f ( x )dx = 5, then   f ( x )dx is equal
0 0

to
46 51 52
(A) 125 (B)  f ( x )dx (C)  f ( x )dx (D)
4 1
 f ( x )dx
2

1 x
2
12.24 If F(x) =
x 2  ( 4t
4
 2F( t )) dt, then F(4) equals –

32 64 F(8) 11F( 8)
(A) (B) (C) (D)
9 9 28 28
/2
12.25 If I =  e  sin x dx, where   (0, ), then
0

  –  
(A) I < (B) I > (e + 1) (C) I > e (D) I > 0
2 2 2

SECTION - III : ASSERTION AND REASON TYPE

/ 4 1  sin x
12.26 Statement-1 :  0
sec x
1  sin x
dx = 2 – 2

/4 sec x
1 
Statement-2 :  0 2
log( 2 – 1) +
1  2 sin 2 x
dx =
6 2
(A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
(B) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1
(C) Statement-1 is True, Statement-2 is False
(D) Statement-1 is False, Statement-2 is True

1 2 4 2
12.27 Statement-1 :
 2 X x2 dx = – +
0  n2 (n2)2 (n2)3

1
Statement-2 :  e X (x – 1)ndx = 16 – 6e, then value of n is 3
0

(A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
(B) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1
(C) Statement-1 is True, Statement-2 is False
(D) Statement-1 is False, Statement-2 is True

3
d e sin x 4 3e sin x
12.28 Statement-1 : If
dx
F(x) =
x
, x > 0 and 1 x
dx = F(k) – F(1) then one possible value of K is 64.

 1 cos ec
Statement-2 : If f(x) is a function satisfying f   + x2f(x) = 0  x  R0 then
x  sin 
f ( x ) dx = sin– cosec

(A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
(B) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1
(C) Statement-1 is True, Statement-2 is False
(D) Statement-1 is False, Statement-2 is True

 2 x(1  sin 2 x )
12.29 Statement-1 :  1  cos 2 x
dx = 0

2
4
Statement-2 :  sin
2
x cos 2 xsin x  cos x  dx 
15
0

(A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
(B) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1
(C) Statement-1 is True, Statement-2 is False
(D) Statement-1 is False, Statement-2 is True
n
n
12.30 Statement-1 :
 xdx = 2 , where {.} represents fractional part function and n  N.
0

n
n(n  1)
Statement-2 :  xdx =
0
2
, where [.] represents greatest integer function and n  N.

(A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
(B) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1
(C) Statement-1 is True, Statement-2 is False
(D) Statement-1 is False, Statement-2 is True
 

12.31 Statement-1 :  x sin x cos 2 x dx   sin x cos
2
x dx
2
0 0

b b
ab
Statement-2 : 
a
x f ( x ) dx 
2  f ( x ) dx
a

(A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
(B) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1
(C) Statement-1 is True, Statement-2 is False
(D) Statement-1 is False, Statement-2 is True


3
dx 
12.32 Statement-1 :  8 cos
0
2
x 1

18

2
3
dx 
Statement-2 :  8 cos
0
2
x 1

18

(A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
(B) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1
(C) Statement-1 is True, Statement-2 is False
(D) Statement-1 is False, Statement-2 is True

f(x)
4t 3
12.33 Statement-1 : Let f be real valued function such that f(2) = 2 and f(2) = 1, then xlim
2  dt = 12
x2
2

v( x )
Statement-2 : Let f(x) =  g(t ) dt , then f(x) = g(v(x)) v (x) – g(u(x)) u(x)
u( x )

(A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
(B) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1
(C) Statement-1 is True, Statement-2 is False
(D) Statement-1 is False, Statement-2 is True
/2
sin x 
12.34 Statement -1 : 1  
0
x  2

Statement-2 : If f(x) is continuous in [a, b] and m and  are greatest and least value of f(x) in [a, b], then
b
(b–a) 
 f ( x) dx  m(b – a)
a

(A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
(B) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1
(C) Statement-1 is True, Statement-2 is False
(D) Statement-1 is False, Statement-2 is True

SECTION - IV : COMPREHENSION TYPE


Read the following comprehensions carefully and answer the questions.
Comprehension # 1

Definite integral of any discontinuous or non-differentiable function is normally solved by the property
b c b
 a
f ( x ) dx =  a
f ( x ) dx +  c
f ( x ) dx, where c  (a, b) is the point of discontinuity or non-differentiability..


12.35 The value of A =  [cos ec 1x ] dx, {where [ . ] denotes greatest integer function} ,is equal to
1

(A) cosec1 – 1 (B) 1 (C) 1 – sin 1 (D) none of these

100
12.36 The value of B =
 [sec 1 x ] dx, {where [ . ] denotes greatest integer function} ,is equal to
1

(A) sec 1 (B) 100 – sec 1 (C) 99 – sec 1 (D) none of these
B
12.37 The value of integral  [tan 1 x ] dx , {where [ . ] denotes greatest integer function} ,is equal to
A

(A) tan 1 (B) 100 – tan 1 – sec1 (C) 99 – sec1 (D) none of these

Comprehension # 2

/2 / 2 
Using integral  n(sin x ) dx = –  n(secx) dx = – n 2,
0 0 2
/2 /4 
n(tan x ) dx = 0 and n(1  tan x ) dx = n2 .
 0  0 8

/4  sin x  cos x 


12.38 Evaluate  n  dx =
 / 4  cos x  sin x 

n2
(A) n 2 (B) (C) 0 (D) –n 2
2
/4
12.39 Evalute  n (sinx + cosx)dx =
 / 4

n2 n2
(A) (B) (C) n 2 (D) 0
2 4
/4
12.40 Evalute  n (sin2x) dx =
0

 n2 n2 n2


(A) (B) n 2 (C) (D) –
2 4 4

Comprehension # 3

b nb  c
b 1 r
Integral  f ( x ) dx can be represented as a limit of a sum of infinite series
 f ( x ) dx = nlim
  f 
a a
r  na  c
n n

where na +c  r  nb + c, r, n  N, c  R and any limit of sum of series of same form can be changed to
definite integral by replacing

1 r
(1) lim
n    (2)
n
 dx (3)
n
x

r  na  c 
(4) Lower limit = lim   = lim  =a
n   n 
min
n   n 

r  nb  c 
(5) Upper limit = lim   = nlim

 =b
n n
 max  n 

 n n n 1 
12.41 Find the value of lim     ..... 
n  (n  1) 2n  1 (n  2) 2(2n  2) (n  3 ) 3(2n  3) 2n 3 

  
(A) (B) (C) (D) none of these
3 2 4

1
12.42 The nth term of the corresponding series of  tan 1x dx is
0

 1 
(A) (B) tan–1(n – 1) (C) (D) tan–1n
4n n 2n

2n1
1 r
12.43 lim
n  n sec  n 
r 0
2
is

(A) sec 2 (B) tan 2 (C) sec2 (D) not defined


SECTION - V : MATRIX - MATCH TYPE

12.44 Match the following :

Column –  Column – 

1 6
cos x cos( x / 3)
(A) If  1 x
dx = k and  6  3  x
dx = mk , (p) 4
0 6  3

then m is

1
 1  3 
(B)   sin x    dx = , then k is (q) 1
1   4 k

{where [ . ] denotes greatest integer function}

3
3
(C) If f(x) = max (x – | x |, x + [x]) and  f ( x ) dx = – , (r) 0
k
3

then k is {where [ . ] denotes greatest integer function}

20

(D) If  1  cos x dx = 10k 2 , then k is (s) 2


0 

(t) 3

12.45 Match the following :

Column –  Column – 

10 [ x 2 ]dx 1
(A)  4 [ x 2  28 x  196 ]  [ x 2 ]
= (p)
101
{where [ . ] denotes greatest integer function}

2 x
(B)  1 x
dx= (q) 3

99 99 99
(C) lim 1  2  ...  n = (r)
1
n 
n100 3

1 1
(D) 5050  x 200 dx = , then  = (s) 1
1 

1
(t)
100
12.46 Column – I Column – II
1
3x 2
(A) 
1
1  4 tan x
dx = (p) 7

8
sin x 2 dx 1
(B) 
6
sin x 2  sin ( x  14 )2
= (q)
2
13
1
(C)
156  [x] dx =
1
(r) 1

0
1
(D)
  n2
/2
 n sin 2x dx = (s) 2

(t) 0

12.47 Column –  Column – 


n1 2 2
n r 
(A) Lim
n  r 1 n2
= (p)
4

4 
 
(B) (q)
tan x  cot x dx  2
0

1
3 
(C)  sin x cos 2 x dx  (r) –
4
1

2
sin3 x dx 
(D)  3
sin x  cos x 3
= (s)
2
0
(t) 0

SECTION - VI : INTEGER TYPE


1  2p  2p 2  2p 3  2p     2p  1 . 2p  3 . .......... . . 1 ,  
12.48 Limit cos 2n  cos 2n  cos 2n ......  cos 2  =  , p  N ,
n n     2p 2p  2 2 2
then find 

2
dx 
12.49 
0
a  bcosx  csinx
=
a b 2 c 2
2
2 2
where a > b  c > 0, then find 

12.50 A function f: R  R satisfies the equation f(x +y) = f(x) + f(y)  x, y R and is continuous throughout the
n

domain. If 1 + 2 + 3 + 4 + 5 = 450 where n = n  f ( x ) dx and f(x) = x, then find 


0

1
1 1 11  1
12.51  (5  2 x – 2 x
0
2
) (1  e( 2 – 4 x ) )
dx =

log
10
, then find 

You might also like