Tl15 Catalog
Tl15 Catalog
Military Aerospace
Times Microwave Systems coax cables
are qualified for service on virtually every
military aircraft platform for critical avion-
ics and electronic warfare systems.
Military Ground-Based
Communication
Systems
Crucial radar and RF systems rely
on high performance coax cables
from Times Microwave Systems.
Commercial Aircraft
From navigational systems to TCAS (Traffic and Colli-
sion Avoidance Systems) and essentially every air-
borne avionics system, commercial passenger aircraft
depend on coax cable from Times Microwave Systems.
Wireless Telecommunications
Times Microwave Systems is a leader in providing flex-
ible cabling solutions for the technological challenges
of the rapidly evolving wireless industry.
Shipboard
Safety aboard military vessels is
assured with Times Microwave
Systems LLSB and LSSB fire
retardant low-smoke generating
coax cable.
Military Aerospace
Times Microwave Systems coax cables
are qualified for service on virtually every
military aircraft platform for critical avion-
ics and electronic warfare systems.
Military Ground-Based
Communication
Systems
Crucial radar and RF systems rely
on high performance coax cables
from Times Microwave Systems.
Commercial Aircraft
From navigational systems to TCAS (Traffic and Colli-
sion Avoidance Systems) and essentially every air-
borne avionics system, commercial passenger aircraft
depend on coax cable from Times Microwave Systems.
Wireless Telecommunications
Times Microwave Systems is a leader in providing flex-
ible cabling solutions for the technological challenges
of the rapidly evolving wireless industry.
Shipboard
Safety aboard military vessels is
assured with Times Microwave
Systems LLSB and LSSB fire
retardant low-smoke generating
coax cable.
Frequency (MHz)
Attenuation (Loss) – again not the best by today’s M17/RG’s are traditional MIL Spec coax cables that were Frequency (MHz) 10 30 50 100 400 1,000 1,500 2,000 2,500 3,000 10,000 k1 k2
standards but is usually acceptable at HF frequencies. born 50-60 years ago. Originally created to support WWII M17/RG-316 2.5 4.3 5.6 8 16 26 32 38 42 47 - 0.787 0.00120
Attenuation Stability – silver plated outer conductor military applications, these cables quickly became the M17/RG-223 1.2 2.1 2.8 4 8 13 17 20 22 25 51 0.384 0.00126
prevents oxidation of the conductors thereby minimizing products of choice for commercial wireless applications M17/RG-142 1.2 2.1 2.7 4 8 13 16 19 21 24 49 0.368 0.00120
attenuation change vs time. Conversely, bare copper once they hit the surplus market, and continue to be M17/RG-214 0.7 1.2 1.6 2.2 4.7 7.9 10 11.9 13.7 15.3 37 0.210 0.00126
outer conductors may oxidize quite rapidly precipitating used today. M17/RG-393 0.6 1.1 1.4 2.0 4 7 9 11 13 14 31 0.191 0.00120
Attenuation at Any Frequency = [ k1 x SQRT (Fmhz)] + [ k2 x Fmhz ]; dB per 100 feet
loss increase which is only significant at frequencies > M17/RG’s have been widely adopted for commercial and
500 MHz. military applications. Their QPL stature insures a high
Power Handling – solid dielectric materials (high quality product made to the same spec regardless of
the manufacturer.
Power Handling vs. Frequency (Maximum)
thermal conductivity) provides excellent power handling 10,000
capability.
Temperature Range - broad operating temperature Some of the key characteristics
range. of M17/RG’s are:
Mechanical Properties – solid dielectric provides Shielding Effectiveness – in the 40 to 60 dB range and
superior crush resistance and therefore is well suited for is acceptable for many lower frequency applications. 1,000
Power (watts)
tactical applications. Phase Stable – not the best for phase stability by
today’s standards but can be optimized by appropriate
preconditioning over the temp range of interest.
“Select” M17 Coaxial Cables
100 M17/RG-393
M17 Conductor Dielectric Shields Jacket Weight Impedance Capacitance DC Resistance
Oper. Temp. M17
Number inches inches inches inches lbs/foot ohms pF/foot Voltage
ohms/1kft (/km) Range Freq. M17/RG-142
(mm) (mm) (mm) (mm) (kg/m) Vp(%) (pF/m) Cent. Cond Shield kvrms F (C) Range M17/RG-214
M17/113-RG316 SCCS 7/.0067” PTFE 1:SC FEP-IX 0.012 50 +/- 2 29.4 83.3 8.5 1.2 -67 +392 .05- M17/RG-316
0.0201 0.060 0.078 0.098 3 M17/RG-223
(0.51) (1.52) (1.98) (2.49) (0.018) 69.5 (96.5) (273.3) (27.9) (-55 +200) GHz
M17/84-RG223 SC PE 2:SC PVC-IIA 0.041 50 +/- 2 30.8 8.2 2.2 1.9 -40 +185 .04-
10
100 1,000 10,000
0.0355 0.116 0.162 0.212 12.4
(0.90) (2.95) (4.11) (5.38) (0.061) 65.9 (101.1) (26.9) ( 7.2) (-40 +85) GHz Frequency (MHz)
M17/60-RG142 SCCS PTFE 2:SC FEP-IX 0.043 50 +/- 2 29.4 19.1 2.2 1.9 -67 +392 .05-
0.037 0.116 0.162 0.195 8 Frequency (MHz) 10 30 50 100 400 1,000 1,500 2,000 2,500 3,000 10,000
(0.94) (2.95) (4.11) (4.95) (0.064) 69.5 (96.5) (62.7) (7.2) (-55 +200) GHz
M17/RG-393 15141 8612 6604 4584 2156 1275 1000 838 729 649 286
M17/75-RG214 SC 7/.0296” PE 2:SC PVC-IIA 0.130 50 +/- 2 30.8 1.7 1.3 5.0 -40 +185 .05-
M17/RG-142 5601 3206 2468 1726 831 504 401 340 298 267 125
0.0888 0.285 0.343 0.425 11
(2.26) (7.24) (8.71) (10.8) (0.194) 65.9 (101.1) (5.6) (4.3) (-40 +85) GHz
M17/RG-214 3181 1808 1386 961 451 266 209 175 152 135 59
M17/127-RG393 SC 7/.0312” PTFE 2:SC FEP-IX 0.175 50 +/- 2 29.4 1.5 1.3 5.0 -67 +392 .05- M17/RG-316 1869 1072 827 580 282 173 138 118 104 93 -
0.094 0.285 0.343 0.390 11 M17/RG-223 1081 619 476 333 161 97 78 66 58 52 24
(2.39) (7.24) (8.71) (9.91) (0.261) 69.5 (96.5) (4.9) (4.3) (-55 +200) GHz Watts; Sea Level; Ambient +40C; VSWR 1:1
8 (800)-TMS-COAX • www.timesmicrowave.com • (203)-949-8400 (800)-TMS-COAX • www.timesmicrowave.com • (203)-949-8400 9
M17/RG
• Low Loss HF-UHF Interconnect • Low Passive Intermod (silver plated types) • Tactical Field Antenna Feeders
• Wireless Base Station Interconnect • Where MIL Spec Pedigree is Required
Frequency (MHz)
Attenuation (Loss) – again not the best by today’s M17/RG’s are traditional MIL Spec coax cables that were Frequency (MHz) 10 30 50 100 400 1,000 1,500 2,000 2,500 3,000 10,000 k1 k2
standards but is usually acceptable at HF frequencies. born 50-60 years ago. Originally created to support WWII M17/RG-316 2.5 4.3 5.6 8 16 26 32 38 42 47 - 0.787 0.00120
Attenuation Stability – silver plated outer conductor military applications, these cables quickly became the M17/RG-223 1.2 2.1 2.8 4 8 13 17 20 22 25 51 0.384 0.00126
prevents oxidation of the conductors thereby minimizing products of choice for commercial wireless applications M17/RG-142 1.2 2.1 2.7 4 8 13 16 19 21 24 49 0.368 0.00120
attenuation change vs time. Conversely, bare copper once they hit the surplus market, and continue to be M17/RG-214 0.7 1.2 1.6 2.2 4.7 7.9 10 11.9 13.7 15.3 37 0.210 0.00126
outer conductors may oxidize quite rapidly precipitating used today. M17/RG-393 0.6 1.1 1.4 2.0 4 7 9 11 13 14 31 0.191 0.00120
Attenuation at Any Frequency = [ k1 x SQRT (Fmhz)] + [ k2 x Fmhz ]; dB per 100 feet
loss increase which is only significant at frequencies > M17/RG’s have been widely adopted for commercial and
500 MHz. military applications. Their QPL stature insures a high
Power Handling – solid dielectric materials (high quality product made to the same spec regardless of
the manufacturer.
Power Handling vs. Frequency (Maximum)
thermal conductivity) provides excellent power handling 10,000
capability.
Temperature Range - broad operating temperature Some of the key characteristics
range. of M17/RG’s are:
Mechanical Properties – solid dielectric provides Shielding Effectiveness – in the 40 to 60 dB range and
superior crush resistance and therefore is well suited for is acceptable for many lower frequency applications. 1,000
Power (watts)
tactical applications. Phase Stable – not the best for phase stability by
today’s standards but can be optimized by appropriate
preconditioning over the temp range of interest.
“Select” M17 Coaxial Cables
100 M17/RG-393
M17 Conductor Dielectric Shields Jacket Weight Impedance Capacitance DC Resistance
Oper. Temp. M17
Number inches inches inches inches lbs/foot ohms pF/foot Voltage
ohms/1kft (/km) Range Freq. M17/RG-142
(mm) (mm) (mm) (mm) (kg/m) Vp(%) (pF/m) Cent. Cond Shield kvrms F (C) Range M17/RG-214
M17/113-RG316 SCCS 7/.0067” PTFE 1:SC FEP-IX 0.012 50 +/- 2 29.4 83.3 8.5 1.2 -67 +392 .05- M17/RG-316
0.0201 0.060 0.078 0.098 3 M17/RG-223
(0.51) (1.52) (1.98) (2.49) (0.018) 69.5 (96.5) (273.3) (27.9) (-55 +200) GHz
M17/84-RG223 SC PE 2:SC PVC-IIA 0.041 50 +/- 2 30.8 8.2 2.2 1.9 -40 +185 .04-
10
100 1,000 10,000
0.0355 0.116 0.162 0.212 12.4
(0.90) (2.95) (4.11) (5.38) (0.061) 65.9 (101.1) (26.9) ( 7.2) (-40 +85) GHz Frequency (MHz)
M17/60-RG142 SCCS PTFE 2:SC FEP-IX 0.043 50 +/- 2 29.4 19.1 2.2 1.9 -67 +392 .05-
0.037 0.116 0.162 0.195 8 Frequency (MHz) 10 30 50 100 400 1,000 1,500 2,000 2,500 3,000 10,000
(0.94) (2.95) (4.11) (4.95) (0.064) 69.5 (96.5) (62.7) (7.2) (-55 +200) GHz
M17/RG-393 15141 8612 6604 4584 2156 1275 1000 838 729 649 286
M17/75-RG214 SC 7/.0296” PE 2:SC PVC-IIA 0.130 50 +/- 2 30.8 1.7 1.3 5.0 -40 +185 .05-
M17/RG-142 5601 3206 2468 1726 831 504 401 340 298 267 125
0.0888 0.285 0.343 0.425 11
(2.26) (7.24) (8.71) (10.8) (0.194) 65.9 (101.1) (5.6) (4.3) (-40 +85) GHz
M17/RG-214 3181 1808 1386 961 451 266 209 175 152 135 59
M17/127-RG393 SC 7/.0312” PTFE 2:SC FEP-IX 0.175 50 +/- 2 29.4 1.5 1.3 5.0 -67 +392 .05- M17/RG-316 1869 1072 827 580 282 173 138 118 104 93 -
0.094 0.285 0.343 0.390 11 M17/RG-223 1081 619 476 333 161 97 78 66 58 52 24
(2.39) (7.24) (8.71) (9.91) (0.261) 69.5 (96.5) (4.9) (4.3) (-55 +200) GHz Watts; Sea Level; Ambient +40C; VSWR 1:1
8 (800)-TMS-COAX • www.timesmicrowave.com • (203)-949-8400 (800)-TMS-COAX • www.timesmicrowave.com • (203)-949-8400 9
LSSB
Low Smoke - Non-Halogen
TM
• MIL-Spec Air Frame, Shipboard, Ground (Tacti-
cal)
Interconnect (M17/180 –/200, /210–/218)
• Fire Retardant / Low Smoke (non-halogen)
• Flexible For Easy Deployment / Routing
Military/Aerospace Coax
Attenuation vs. Frequency (Typical)
Features & Benefits 100
• Rugged Abrasion Resistant Jacket
• Excellent Shielding Effectiveness
• Fire Retardant (non-halogen)
1
100 1,000 10,000 100,000
Frequency (MHz)
Frequency (MHz) 10 30 50 100 400 1,000 1,500 2,000 2,500 3,000 11,000 k1 k2
LSSB-RG58 1.4 2.5 3.3 4.6 10.2 17 - - - - - 0.444971 0.003370
LSSB-RG223 1.2 2.2 2.8 4.1 8.6 14 18 22 25 28 65 0.383488 0.002232
• RF Shielding: High coverage (>95%) braids, result in LSSB-RG6 0.8 1.5 1.9 2.7 5.7 9.6 12 14 16 18 - 0.262144 0.001264
• Flexible: With very tight minimum bend radius, LSSB >40-60 dB RF shielding (>80 dB - 120 dB crosstalk) and LSSB-RG11 0.7 1.2 1.6 2.3 5.1 6.9 - - - - - 0.202970 0.002527
excellent interference immunity (ingress and egress). LSSB-RG214 0.6 1.1 1.4 2.1 4.6 7.9 10 12 14 16 41 0.191365 0.001895
cable can be easily routed into and through tight spaces.
Ideal for tactical deployment and retrieval. • Connectors and Assemblies: A full range of connector Attenuation at Any Frequency = [ k1 x SQRT (Fmhz)] + [ k2 x Fmhz ]; dB per 100 feet
• Excellent Loss: LSSB has lower loss than other cables interfaces is available in crimp or clamp styles. Custom
of the same size and and is significantly less than the pre-terminated and tested assemblies with phase match-
ing, insertion loss matching, and other special electrical
Power Handling vs. Frequency (Typical)
M17 spec requirement.
or marking requirements can also be provided. 10,000
• Fire Retardant: A black UV resistant non-halogen Low
Smoke - Fire Retardant cross-linked polyethylene jacket
makes the cable rugged and resistant to the full range
of military/defense environments. LSSB cables easily
achieve FAR 25, NES-711, NES-713 compliance. 1,000
Power (watts)
LSSB Shipboard Coaxial Cables LSSB-RG214
TMS & M17 Conductor Dielectric Shields Jacket Weight Impedance Capacitance Resistance
DC Oper. Temp. Test 100 LSSB-RG11
Number inches inches inches inches lbs/foot ohms pF/foot Voltage
ohms/1kft (/km) Range Freq. LSSB-RG6
(mm) (mm) (mm) (mm) (kg/m) Vp(%) (pF/m) Cent. Cond Shield (s) kvrms F (C)
LSSB-RG223
LSSB-RG6 CCS PE 34 SC: 34 BC XLPE 0.092 75 +/- 3 20.6 32.2 1.1 2.7 -22 +176 3
M17/180-00001 0.0285 0.185 0.243 0.332 GHz LSSB-RG58
(0.72) (4.70) (6.17) (8.43) (0.137) 65.9 (67.6) (105.6) (3.6) (-30+80)
LSSB-RG11 TC 7/.0159 PE 33 BC XLPE 0.142 75 +/-3 20.6 6.1 1.2 5.0 -22 +176 3 10
M17/181-00001 0.0477 0.285 0.318 0.405 GHz 100 1,000 10,000 100,000
(1.21) (7.24) (8.08) (10.29) (0.212) 65.9 (67.6) (20.0) (3.9) (30+80)
LSSB-RG58 TC 19/.0072 PE 36 BC XLPE 0.03 50 +/-2 30.8 10.9 4.1 1.9 -22 +176 0.05- Frequency (MHz)
M17/183-00001 0.0355 0.116 0.139 0.195 1
(0.900) (2.95) (3.53) (4.95) (0.045) 65.9 (101.1) (35.8) (13.5) (-30 +80) GHz Frequency (MHz) 10 30 50 100 400 1,000 1,500 2,000 2,500 3,000 11,000
LSSB-RG214 SC 7/.0296 PE 34 SC:34 SC XLPE 0.154 50 +/-2 30.8 1.7 1.3 5.0 -22 +176 0.05-
LSSB-RG214 3549 2003 1528 1051 481 276 213 177 152 134 51
M17/190-00001 0.089 0.285 0.343 0.425 11
(2.26) (7.24) (8.71) (10.80) (0.229) 65.9 (101.1) (5.6) (4.3) (-30 +80) GHz LSSB-RG11 2430 1364 1037 709 318 179 - - - - -
LSSB-RG223 SC PE 36 SC:36 SC XLPE 0.044 50 +/-2 30.8 8.2 2.2 1.9 -22 +176 0.05- LSSB-RG6 1678 957 736 513 244 146 116 97 85 76 -
M17/194-00001 0.035 0.116 0.162 0.212 2.5 LSSB-RG223 1558 887 680 472 223 132 103 87 75 67 27
(0.889) (2.95) (4.11) (5.38) (0.066) 65.9 (101.1) (26.9) (7.2) (-30 +80) GHz LSSB-RG58 1412 800 612 423 196 114 - - - - -
See M17 tables for additional sizes and armored versions Watts; Sea Level; Ambient +40C; VSWR 1:1
10 (800)-TMS-COAX • www.timesmicrowave.com • (203)-949-8400 (800)-TMS-COAX • www.timesmicrowave.com • (203)-949-8400 11
LSSB
Low Smoke - Non-Halogen
TM
• MIL-Spec Air Frame, Shipboard, Ground (Tacti-
cal)
Interconnect (M17/180 –/200, /210–/218)
• Fire Retardant / Low Smoke (non-halogen)
• Flexible For Easy Deployment / Routing
Military/Aerospace Coax
Attenuation vs. Frequency (Typical)
Features & Benefits 100
• Rugged Abrasion Resistant Jacket
• Excellent Shielding Effectiveness
• Fire Retardant (non-halogen)
1
100 1,000 10,000 100,000
Frequency (MHz)
Frequency (MHz) 10 30 50 100 400 1,000 1,500 2,000 2,500 3,000 11,000 k1 k2
LSSB-RG58 1.4 2.5 3.3 4.6 10.2 17 - - - - - 0.444971 0.003370
LSSB-RG223 1.2 2.2 2.8 4.1 8.6 14 18 22 25 28 65 0.383488 0.002232
• RF Shielding: High coverage (>95%) braids, result in LSSB-RG6 0.8 1.5 1.9 2.7 5.7 9.6 12 14 16 18 - 0.262144 0.001264
• Flexible: With very tight minimum bend radius, LSSB >40-60 dB RF shielding (>80 dB - 120 dB crosstalk) and LSSB-RG11 0.7 1.2 1.6 2.3 5.1 6.9 - - - - - 0.202970 0.002527
excellent interference immunity (ingress and egress). LSSB-RG214 0.6 1.1 1.4 2.1 4.6 7.9 10 12 14 16 41 0.191365 0.001895
cable can be easily routed into and through tight spaces.
Ideal for tactical deployment and retrieval. • Connectors and Assemblies: A full range of connector Attenuation at Any Frequency = [ k1 x SQRT (Fmhz)] + [ k2 x Fmhz ]; dB per 100 feet
• Excellent Loss: LSSB has lower loss than other cables interfaces is available in crimp or clamp styles. Custom
of the same size and and is significantly less than the pre-terminated and tested assemblies with phase match-
ing, insertion loss matching, and other special electrical
Power Handling vs. Frequency (Typical)
M17 spec requirement.
or marking requirements can also be provided. 10,000
• Fire Retardant: A black UV resistant non-halogen Low
Smoke - Fire Retardant cross-linked polyethylene jacket
makes the cable rugged and resistant to the full range
of military/defense environments. LSSB cables easily
achieve FAR 25, NES-711, NES-713 compliance. 1,000
Power (watts)
LSSB Shipboard Coaxial Cables LSSB-RG214
TMS & M17 Conductor Dielectric Shields Jacket Weight Impedance Capacitance Resistance
DC Oper. Temp. Test 100 LSSB-RG11
Number inches inches inches inches lbs/foot ohms pF/foot Voltage
ohms/1kft (/km) Range Freq. LSSB-RG6
(mm) (mm) (mm) (mm) (kg/m) Vp(%) (pF/m) Cent. Cond Shield (s) kvrms F (C)
LSSB-RG223
LSSB-RG6 CCS PE 34 SC: 34 BC XLPE 0.092 75 +/- 3 20.6 32.2 1.1 2.7 -22 +176 3
M17/180-00001 0.0285 0.185 0.243 0.332 GHz LSSB-RG58
(0.72) (4.70) (6.17) (8.43) (0.137) 65.9 (67.6) (105.6) (3.6) (-30+80)
LSSB-RG11 TC 7/.0159 PE 33 BC XLPE 0.142 75 +/-3 20.6 6.1 1.2 5.0 -22 +176 3 10
M17/181-00001 0.0477 0.285 0.318 0.405 GHz 100 1,000 10,000 100,000
(1.21) (7.24) (8.08) (10.29) (0.212) 65.9 (67.6) (20.0) (3.9) (30+80)
LSSB-RG58 TC 19/.0072 PE 36 BC XLPE 0.03 50 +/-2 30.8 10.9 4.1 1.9 -22 +176 0.05- Frequency (MHz)
M17/183-00001 0.0355 0.116 0.139 0.195 1
(0.900) (2.95) (3.53) (4.95) (0.045) 65.9 (101.1) (35.8) (13.5) (-30 +80) GHz Frequency (MHz) 10 30 50 100 400 1,000 1,500 2,000 2,500 3,000 11,000
LSSB-RG214 SC 7/.0296 PE 34 SC:34 SC XLPE 0.154 50 +/-2 30.8 1.7 1.3 5.0 -22 +176 0.05-
LSSB-RG214 3549 2003 1528 1051 481 276 213 177 152 134 51
M17/190-00001 0.089 0.285 0.343 0.425 11
(2.26) (7.24) (8.71) (10.80) (0.229) 65.9 (101.1) (5.6) (4.3) (-30 +80) GHz LSSB-RG11 2430 1364 1037 709 318 179 - - - - -
LSSB-RG223 SC PE 36 SC:36 SC XLPE 0.044 50 +/-2 30.8 8.2 2.2 1.9 -22 +176 0.05- LSSB-RG6 1678 957 736 513 244 146 116 97 85 76 -
M17/194-00001 0.035 0.116 0.162 0.212 2.5 LSSB-RG223 1558 887 680 472 223 132 103 87 75 67 27
(0.889) (2.95) (4.11) (5.38) (0.066) 65.9 (101.1) (26.9) (7.2) (-30 +80) GHz LSSB-RG58 1412 800 612 423 196 114 - - - - -
See M17 tables for additional sizes and armored versions Watts; Sea Level; Ambient +40C; VSWR 1:1
10 (800)-TMS-COAX • www.timesmicrowave.com • (203)-949-8400 (800)-TMS-COAX • www.timesmicrowave.com • (203)-949-8400 11
LLSB ®
Low Loss – Military/Aerospace Coax
• Low Loss Air Frame, Shipboard,
Ground (Tactical) Interconnect
• Fire Retardant / Low Smoke (non-halogen)
• Flexible For Easy Deployment / Routing
Attenuation
• Fire Retardant (non-halogen)
• Light Weight LLSB 200 (M17/220)
• Flexible for Ease of Deployment LLSB 240 (M17/221)
1.0
• Excellent Connector Selection LLSB 400 (M17/223)
LLSB 600 (M17/225)
LLSB 900 (M17/226)
LLSB 1200 (M17/227)
• Flexible:With very tight minimum bend radius, 713 compliance. 0.1
LLSB cable can be easily routed into and through 100 1,000 10,000
• RF Shielding: The bonded aluminum tape outer
tight spaces without kinking. The bonded-tape outer conductor is overlapped to provide 100% coverage, Frequency (MHz)
conductor provides superior flexibility and ease of resulting in >90 dB RF shielding (>180 dB crosstalk)
bending compared to previous generation M17/RG Frequency (MHz) 10 30 50 100 400 1,000 1,500 2,000 2,500 k1 k2
and excellent interference immunity (ingress and LLSB-200 (M17/220) 1.2 2.1 2.7 3.8 7.7 12 15 18 20 0.377530 0.000380
type, corrugated copper, or smooth wall copper egress). LLSB-240 (M17/221) 0.8 1.3 1.7 2.5 5.0 8 10 12 13 0.242084 0.000397
hard-line cables.
LLSB-400 (M17/223) 0.4 0.7 0.9 1.3 2.8 4.7 5.9 7.0 8.1 0.122289 0.000785
• Phase Stability: The intimately bonded structure
• Low Loss: LLSB has lower loss than other cables and foam dielectric of LLSB cables provide excellent
LLSB-600 (M17/225) 0.2 0.4 0.6 0.8 1.8 3.2 4.2 5.0 5.9 0.075546 0.000831
LLSB-900 (M17/226) 0.2 0.3 0.4 0.6 1.3 2.1 2.6 3.1 3.5 0.060910 0.000188
of the same size. This is achieved through the use phase stability over temperature and with bending. LLSB-1200 (M17/227) 0.1 0.2 0.3 0.5 1.0 1.6 2.0 2.3 2.7 0.043960 0.000188
of a high velocity dielectric and bonded aluminum The high velocity dielectric results in superior phase Attenuation at Any Frequency = [ k1 x SQRT (Fmhz)] + [ k2 x Fmhz ]; dB per 100 feet
tape outer conductor. The proprietary gas-injected stability as compared with solid and air-spaced
closed cell foam dielectric prevents water migra- dielectric cables.
tion through the cable and provides excellent crush Power Handling vs. Frequency (Typical)
resistance. • Connectors and Assemblies: A full range of
connector interfaces is available in crimp or clamp 10,000
• Fire Retardant: A black UV resistant non-halogen styles in addition to supporting installation tools.
Low Smoke - Fire Retardant cross-linked polyeth- Custom preterminated and tested assemblies with
ylene jacket makes the cable rugged and resistant phase matching, insertion loss matching, and other
to the full range of military/defense environments. special electrical or marking requirements can also
1000
Power (watts)
LLSB cables easily achieve FAR 25, NES-711, NES- be provided.
LLSB 1200 (M17/227)
LLSB Shipboard Coaxial Cables
LLSB 900 (M17/226)
TMS & M17 Conductor Dielectric Shields Jacket Weight Impedance Capacitance DC Resistance
Oper. Temp. Test
LLSB 600 (M17/225)
Number inches inches inches inches lbs/foot ohms pF/foot ohms/1kft(/km)
Voltage Range Freq. 100
(mm) (mm) (mm) (mm) (kg/m) Vp(%) (pF/m) Cent. Cond Shield (s) kvrms F (C) LLSB 400 (M17/223)
LLSB-200 BC Foam PE Alum Tape; XLPE 0.037 50 +/- 2 24.5 5.4 4.9 1.0 -22 +185 0.05- LLSB 240 (M17/221)
M17/220-00001 0.044 0.118 36 TC 0.195 2.5 LLSB 200 (M17/220)
(1.12) (2.95) 0.144 (3.66) (4.95) (0.055) 83 (80.4) (17.7) (16.1) (-30 +85) GHz 10
LLSB-240 BC Foam PE Alum. Tape; XLPE 0.051 50 +/-2 24.2 3.2 3.9 1.5 -22 +185 0.05-
M17/221-00001 0.056 0.150 36 TC 0.242 2.5
100 1,000 10,000
(1.42) (3.81) 0.178 (4.52) (6.15) (0.076) 84 (79.4) (10.5) (12.8) (-30+85) GHz
LLSB-400 BCCAI Foam PE Alum Tape; XLPE 0.114 50 +/-2 23.9 1.39 1.65 3.0 -22 +185 0.05-
M17/223-00001 0.108 0.285 34 TC 0.405 2.5 Frequency (MHz)
(2.74) (7.245) 0.320 (8.13) (10.29) (0.170) 85 (78.4) (4.6) (5.4) (-30 +85) GHz
LLSB-600 BCCAI Foam PE Alum Tape; XLPE 0.168 50 +/-2 23.4 0.53 1.20 5.0 -22 +185 0.05- Frequency (MHz) 10 30 50 100 400 1,000 1,500 2,000 2,500
M17/225-00001 0.0176 0.455 33 TC 0.590 2.5 LLSB-1200 (M17/227) 18953 10835 8337 5823 2795 1689 1342 1137 998
(4.47) (11.56) 0.490 (12.45) (14.99) (0.250) 87 (76.8) (1.74) (3.94) (-30 +85) GHz
LLSB-900 (M17/226) 13044 7477 5763 4038 1959 1197 958 815 718
LLSB-900 BC Tube Foam PE Alum Tape; XLPE 0.375 50 +/-2 23.4 0.54 0.55 7.0 -22 +185 0.05-
M17/226-00001 0.262 0.680 30 TC 0.870 2.5 LLSB-600 (M17/225) 9392 5291 4031 2767 1257 718 554 458 394
(6.65) (17.27) 0.732 (18.59) (22.108) (0.559) 87 (76.8) (1.78) (1.80) (-30 +85) GHz LLSB-400 (M17/223) 5720 3254 2495 1732 815 482 379 318 277
LLSB-1200 BC Tube Foam PE Alum Tape; XLPE 0.686 50 +/-2 23.1 0.32 0.37 8.0 -22+185 0.05- LLSB-240 (M17/221) 2592 1490 1150 809 397 245 198 169 150
M17/227-00001 0349 0.920 30 TC 1.200 2.5 LLSB-200 (M17/220) 1459 840 649 457 225 140 113 97 86
(8.86) (23.37) 0.972 (24.69) 30.48 (1.022) 88 (75.8) (1.06) (1.21) (-30 +85) GHz
Watts; Sea Level; Ambient +40C; VSWR 1:1
See page 39 for additional sizes and armored versions
12 (800)-TMS-COAX • www.timesmicrowave.com • (203)-949-8400 (800)-TMS-COAX • www.timesmicrowave.com • (203)-949-8400 13
LLSB ®
Low Loss – Military/Aerospace Coax
• Low Loss Air Frame, Shipboard,
Ground (Tactical) Interconnect
• Fire Retardant / Low Smoke (non-halogen)
• Flexible For Easy Deployment / Routing
Attenuation
• Fire Retardant (non-halogen)
• Light Weight LLSB 200 (M17/220)
• Flexible for Ease of Deployment LLSB 240 (M17/221)
1.0
• Excellent Connector Selection LLSB 400 (M17/223)
LLSB 600 (M17/225)
LLSB 900 (M17/226)
LLSB 1200 (M17/227)
• Flexible:With very tight minimum bend radius, 713 compliance. 0.1
LLSB cable can be easily routed into and through 100 1,000 10,000
• RF Shielding: The bonded aluminum tape outer
tight spaces without kinking. The bonded-tape outer conductor is overlapped to provide 100% coverage, Frequency (MHz)
conductor provides superior flexibility and ease of resulting in >90 dB RF shielding (>180 dB crosstalk)
bending compared to previous generation M17/RG Frequency (MHz) 10 30 50 100 400 1,000 1,500 2,000 2,500 k1 k2
and excellent interference immunity (ingress and LLSB-200 (M17/220) 1.2 2.1 2.7 3.8 7.7 12 15 18 20 0.377530 0.000380
type, corrugated copper, or smooth wall copper egress). LLSB-240 (M17/221) 0.8 1.3 1.7 2.5 5.0 8 10 12 13 0.242084 0.000397
hard-line cables.
LLSB-400 (M17/223) 0.4 0.7 0.9 1.3 2.8 4.7 5.9 7.0 8.1 0.122289 0.000785
• Phase Stability: The intimately bonded structure
• Low Loss: LLSB has lower loss than other cables and foam dielectric of LLSB cables provide excellent
LLSB-600 (M17/225) 0.2 0.4 0.6 0.8 1.8 3.2 4.2 5.0 5.9 0.075546 0.000831
LLSB-900 (M17/226) 0.2 0.3 0.4 0.6 1.3 2.1 2.6 3.1 3.5 0.060910 0.000188
of the same size. This is achieved through the use phase stability over temperature and with bending. LLSB-1200 (M17/227) 0.1 0.2 0.3 0.5 1.0 1.6 2.0 2.3 2.7 0.043960 0.000188
of a high velocity dielectric and bonded aluminum The high velocity dielectric results in superior phase Attenuation at Any Frequency = [ k1 x SQRT (Fmhz)] + [ k2 x Fmhz ]; dB per 100 feet
tape outer conductor. The proprietary gas-injected stability as compared with solid and air-spaced
closed cell foam dielectric prevents water migra- dielectric cables.
tion through the cable and provides excellent crush Power Handling vs. Frequency (Typical)
resistance. • Connectors and Assemblies: A full range of
connector interfaces is available in crimp or clamp 10,000
• Fire Retardant: A black UV resistant non-halogen styles in addition to supporting installation tools.
Low Smoke - Fire Retardant cross-linked polyeth- Custom preterminated and tested assemblies with
ylene jacket makes the cable rugged and resistant phase matching, insertion loss matching, and other
to the full range of military/defense environments. special electrical or marking requirements can also
1000
Power (watts)
LLSB cables easily achieve FAR 25, NES-711, NES- be provided.
LLSB 1200 (M17/227)
LLSB Shipboard Coaxial Cables
LLSB 900 (M17/226)
TMS & M17 Conductor Dielectric Shields Jacket Weight Impedance Capacitance DC Resistance
Oper. Temp. Test
LLSB 600 (M17/225)
Number inches inches inches inches lbs/foot ohms pF/foot ohms/1kft(/km)
Voltage Range Freq. 100
(mm) (mm) (mm) (mm) (kg/m) Vp(%) (pF/m) Cent. Cond Shield (s) kvrms F (C) LLSB 400 (M17/223)
LLSB-200 BC Foam PE Alum Tape; XLPE 0.037 50 +/- 2 24.5 5.4 4.9 1.0 -22 +185 0.05- LLSB 240 (M17/221)
M17/220-00001 0.044 0.118 36 TC 0.195 2.5 LLSB 200 (M17/220)
(1.12) (2.95) 0.144 (3.66) (4.95) (0.055) 83 (80.4) (17.7) (16.1) (-30 +85) GHz 10
LLSB-240 BC Foam PE Alum. Tape; XLPE 0.051 50 +/-2 24.2 3.2 3.9 1.5 -22 +185 0.05-
M17/221-00001 0.056 0.150 36 TC 0.242 2.5
100 1,000 10,000
(1.42) (3.81) 0.178 (4.52) (6.15) (0.076) 84 (79.4) (10.5) (12.8) (-30+85) GHz
LLSB-400 BCCAI Foam PE Alum Tape; XLPE 0.114 50 +/-2 23.9 1.39 1.65 3.0 -22 +185 0.05-
M17/223-00001 0.108 0.285 34 TC 0.405 2.5 Frequency (MHz)
(2.74) (7.245) 0.320 (8.13) (10.29) (0.170) 85 (78.4) (4.6) (5.4) (-30 +85) GHz
LLSB-600 BCCAI Foam PE Alum Tape; XLPE 0.168 50 +/-2 23.4 0.53 1.20 5.0 -22 +185 0.05- Frequency (MHz) 10 30 50 100 400 1,000 1,500 2,000 2,500
M17/225-00001 0.0176 0.455 33 TC 0.590 2.5 LLSB-1200 (M17/227) 18953 10835 8337 5823 2795 1689 1342 1137 998
(4.47) (11.56) 0.490 (12.45) (14.99) (0.250) 87 (76.8) (1.74) (3.94) (-30 +85) GHz
LLSB-900 (M17/226) 13044 7477 5763 4038 1959 1197 958 815 718
LLSB-900 BC Tube Foam PE Alum Tape; XLPE 0.375 50 +/-2 23.4 0.54 0.55 7.0 -22 +185 0.05-
M17/226-00001 0.262 0.680 30 TC 0.870 2.5 LLSB-600 (M17/225) 9392 5291 4031 2767 1257 718 554 458 394
(6.65) (17.27) 0.732 (18.59) (22.108) (0.559) 87 (76.8) (1.78) (1.80) (-30 +85) GHz LLSB-400 (M17/223) 5720 3254 2495 1732 815 482 379 318 277
LLSB-1200 BC Tube Foam PE Alum Tape; XLPE 0.686 50 +/-2 23.1 0.32 0.37 8.0 -22+185 0.05- LLSB-240 (M17/221) 2592 1490 1150 809 397 245 198 169 150
M17/227-00001 0349 0.920 30 TC 1.200 2.5 LLSB-200 (M17/220) 1459 840 649 457 225 140 113 97 86
(8.86) (23.37) 0.972 (24.69) 30.48 (1.022) 88 (75.8) (1.06) (1.21) (-30 +85) GHz
Watts; Sea Level; Ambient +40C; VSWR 1:1
See page 39 for additional sizes and armored versions
12 (800)-TMS-COAX • www.timesmicrowave.com • (203)-949-8400 (800)-TMS-COAX • www.timesmicrowave.com • (203)-949-8400 13
StripFlex®
Low Loss – High Performance Coax
• Low Loss Microwave Interconnect
• Wireless Base Station Interconnect
• Low Passive Intermod
• High Temperature /Low Temperature
• High Power
1
100 1,000 10,000 100,000
Frequency (MHz)
StripFlex cables are identical in materials and con- Frequency (MHz) 100 400 1,000 2,000 3,000 5,000 10,000 12,000 13,500 16,000 18,000 k1 k2
stable (loss & vswr) nor is the shielding adequate
struction to their M17/RG predecessors, with the for today’s sensitive wireless communications and SF-316 7.2 15 24 34 42 56 83 92 98 109 117 0.708 0.00120
exception of the outer conductor. SF-142 3.6 7.4 12 18 23 31 47 53 57 63 68 0.348 0.00120
microwave military/defense applications. SF-304 2.4 5.1 8.5 13 16 22 35 40 43 48 53 0.231 0.00120
The StripFlex shielding system, pioneered by VSWR is lower since the flat ribbons can be applied SF-214 1.8 3.9 6.7 10 13 18 30 34 37 - - 0.172 0.00126
Times Microwave Systems in the mid-sixties, over the dielectric much more uniformly than multi- SF-393 1.8 3.8 6.4 10 13 18 28 32 35 - - 0.164 0.00120
consists of an inner silver plated flat ribbon braid end round wire braids. The VSWR and attenuation Attenuation at Any Frequency = [ k1 x SQRT (Fmhz ] + [ k2 x Fmhz ]; dB per 100 feet
(FSC), a spirally applied and overlapped composite variation due to aging and flexure is substantially
aluminum tape interlayer (Intl), and an overall silver lower at all frequencies, and especially above 12
plated round wire braid (SC). The StripFlex shield GHz. StripFlex cables are also available from Times Power Handling vs. Frequency (Maximum)
affords approximately 15% lower loss and >95 dB that have been sweep tested for broadband VSWR
shielding compared with the typical M17/RG round and attenuation performance. Please contact the 10,000
wire braided shield (40 to 60 dB). factory with your specific requirements.
Standard M17/RG cables are shielded with high Standard inexpensive connectors (crimp or clamp
Power (watts)
coverage single or double round wire braids. While style) commonly used on the M17/RG counterparts 1,000
these shields provide 40 dB and 60 dB shielding can be used on StripFlex.
effectiveness respectively, they are not particularly
StripFlex Low Loss High Performance Coaxial Cables SF-393
1
100 1,000 10,000 100,000
Frequency (MHz)
StripFlex cables are identical in materials and con- Frequency (MHz) 100 400 1,000 2,000 3,000 5,000 10,000 12,000 13,500 16,000 18,000 k1 k2
stable (loss & vswr) nor is the shielding adequate
struction to their M17/RG predecessors, with the for today’s sensitive wireless communications and SF-316 7.2 15 24 34 42 56 83 92 98 109 117 0.708 0.00120
exception of the outer conductor. SF-142 3.6 7.4 12 18 23 31 47 53 57 63 68 0.348 0.00120
microwave military/defense applications. SF-304 2.4 5.1 8.5 13 16 22 35 40 43 48 53 0.231 0.00120
The StripFlex shielding system, pioneered by VSWR is lower since the flat ribbons can be applied SF-214 1.8 3.9 6.7 10 13 18 30 34 37 - - 0.172 0.00126
Times Microwave Systems in the mid-sixties, over the dielectric much more uniformly than multi- SF-393 1.8 3.8 6.4 10 13 18 28 32 35 - - 0.164 0.00120
consists of an inner silver plated flat ribbon braid end round wire braids. The VSWR and attenuation Attenuation at Any Frequency = [ k1 x SQRT (Fmhz ] + [ k2 x Fmhz ]; dB per 100 feet
(FSC), a spirally applied and overlapped composite variation due to aging and flexure is substantially
aluminum tape interlayer (Intl), and an overall silver lower at all frequencies, and especially above 12
plated round wire braid (SC). The StripFlex shield GHz. StripFlex cables are also available from Times Power Handling vs. Frequency (Maximum)
affords approximately 15% lower loss and >95 dB that have been sweep tested for broadband VSWR
shielding compared with the typical M17/RG round and attenuation performance. Please contact the 10,000
wire braided shield (40 to 60 dB). factory with your specific requirements.
Standard M17/RG cables are shielded with high Standard inexpensive connectors (crimp or clamp
Power (watts)
coverage single or double round wire braids. While style) commonly used on the M17/RG counterparts 1,000
these shields provide 40 dB and 60 dB shielding can be used on StripFlex.
effectiveness respectively, they are not particularly
StripFlex Low Loss High Performance Coaxial Cables SF-393
Power (watts)
DC Resistance
TMS Conductor Dielectric Shields Jacket Weight Impedance Capacitance ohms/1kft
(/km) Oper. Temp. Min. Bend Test SFT-600
Number inches inches inches inches lbs/foot ohms pF/foot Voltage Range Radius Freq. SFT-226
(mm) (mm) (mm) (mm) (kg/m) Vp(%) (pF/m) Cent. Cond Shield (s) kvrms F (C) in (mm)
100 SFT-393
SFT-316 SC LDPTFE FSC: Blue FEP 0.018 50 +/- 1 26.7 20.5 5.4 0.5 -67 +392 0.5 .05- SFT-304
0.0226 0.068 Intl: SC 0.120 18 SFT-205
(0.57) (1.73) 0.096 (2.44) (3.05) (0.027) 76 (87.6) (67.3) (17.7) (-55 +200) (12.7) GHz SFT-142
SFT-142 SC LDPTFE FSC: Blue FEP 0.036 50 +/- 1 26.7 6.5 3.3 1.0 -67 +392 1 .05- SFT-316
0.0403 0.121 Intl: SC 0.180 18
(1.02) (3.07) 0.160 (4.57) (4.57) (0.054) 76 (87.6) (21.3) (10.8) (-55 +200) (25.4) GHz 10
SFT-205 SC LDPTFE FSC: Blue FEP 0.042 50 +/-1 26.7 4.1 4.8 1.0 -67 +392 1.5 .05-
0.0508 0.154 Intl: SC 0.205 18 100 1,000 10,000 100,000
(1.29) (3.91) 0.187 (4.75) (5.21) (0.063) 76 (87.6) (13.5) (15.6) (-55 +200) (38.1) GHz
SFT-304 SC LDPTFE FSC: Blue FEP 0.067 50+/-1 26.7 2.7 2.1 2.0 -67+392 2 .05-
Frequency (MHz)
0.062 0.185 Intl: SC 0.250 18
(1.57) (4.70) 0.227 (5.77) (6.35) (0.100) 76 (88) (8.9) (7.0) (-55+200) (50.8) GHz Frequency (MHz) 100 400 1,000 2,000 3,000 8,000 10,500 12,000 13,500 16,000 18,000
SFT-393 SC LDPTFE FSC: Blue FEP 0.126 50 +/- 1 26.7 1.2 1.1 2.5 -67 +392 2 .05- SFT-600 9325 4576 2833 1956 1569 904 - - - - -
0.096 0.285 Intl: SC 0.390 12 SFT-226 7494 3685 2286 1582 1271 737 - - - -
(2.44) (7.24) 0.319 (8.10) (9.91) (0.188) 76 (87.8) (3.8) (3.5) (-55 +200) (50.8) GHz SFT-393 5986 2947 1831 1269 1021 594 523 471 - - -
SFT-226 SC 7/.048 LDPTFE FSC: Blue FEP 0.235 50 +/- 1 26.7 0.68 1.04 3.0 -67 +392 2 .05- SFT-304 3309 1635 1020 710 572 336 297 268 251 227 212
0.131 0.370 Intl: SC 0.485 10
SFT-205 2430 1201 750 523 422 248 220 198 186 168 157
(3.33) (9.40) 0.399 (10.13) (12.32) (0.350) 76 (87.6) (2.2) (3.4) (-55 +200) (50.8) GHz
SFT-600 SC 7/.0535 LDPTFE FSC: Blue FEP 0.240 50+/-1 26.7 0.53 1.32 3.5 -67 +392 3 .05- SFT-142 1843 912 569 397 320 189 167 151 141 128 120
0.160 0.455 Intl: SC 0.555 8 SFT-316 854 422 263 183 148 86 76 69 64 58 54
(4.08) (11.56) 0.500 (12.70) (14.10) (0.357) 76 (87.6) (1.73) (4.3) (-55 +200) (76.2) GHz Watts; Sea Level; Ambient +40C; VSWR 1:1
16 (800)-TMS-COAX • www.timesmicrowave.com • (203)-949-8400 (800)-TMS-COAX • www.timesmicrowave.com • (203)-949-8400 17
StripFlex®-II
• Lower Loss Microwave Interconnect • Low Passive Intermod • High Power
(SFT) • Wireless Base Station Interconnect • High Temperature
Low Loss – High Performance Coax
Power (watts)
DC Resistance
TMS Conductor Dielectric Shields Jacket Weight Impedance Capacitance ohms/1kft
(/km) Oper. Temp. Min. Bend Test SFT-600
Number inches inches inches inches lbs/foot ohms pF/foot Voltage Range Radius Freq. SFT-226
(mm) (mm) (mm) (mm) (kg/m) Vp(%) (pF/m) Cent. Cond Shield (s) kvrms F (C) in (mm)
100 SFT-393
SFT-316 SC LDPTFE FSC: Blue FEP 0.018 50 +/- 1 26.7 20.5 5.4 0.5 -67 +392 0.5 .05- SFT-304
0.0226 0.068 Intl: SC 0.120 18 SFT-205
(0.57) (1.73) 0.096 (2.44) (3.05) (0.027) 76 (87.6) (67.3) (17.7) (-55 +200) (12.7) GHz SFT-142
SFT-142 SC LDPTFE FSC: Blue FEP 0.036 50 +/- 1 26.7 6.5 3.3 1.0 -67 +392 1 .05- SFT-316
0.0403 0.121 Intl: SC 0.180 18
(1.02) (3.07) 0.160 (4.57) (4.57) (0.054) 76 (87.6) (21.3) (10.8) (-55 +200) (25.4) GHz 10
SFT-205 SC LDPTFE FSC: Blue FEP 0.042 50 +/-1 26.7 4.1 4.8 1.0 -67 +392 1.5 .05-
0.0508 0.154 Intl: SC 0.205 18 100 1,000 10,000 100,000
(1.29) (3.91) 0.187 (4.75) (5.21) (0.063) 76 (87.6) (13.5) (15.6) (-55 +200) (38.1) GHz
SFT-304 SC LDPTFE FSC: Blue FEP 0.067 50+/-1 26.7 2.7 2.1 2.0 -67+392 2 .05-
Frequency (MHz)
0.062 0.185 Intl: SC 0.250 18
(1.57) (4.70) 0.227 (5.77) (6.35) (0.100) 76 (88) (8.9) (7.0) (-55+200) (50.8) GHz Frequency (MHz) 100 400 1,000 2,000 3,000 8,000 10,500 12,000 13,500 16,000 18,000
SFT-393 SC LDPTFE FSC: Blue FEP 0.126 50 +/- 1 26.7 1.2 1.1 2.5 -67 +392 2 .05- SFT-600 9325 4576 2833 1956 1569 904 - - - - -
0.096 0.285 Intl: SC 0.390 12 SFT-226 7494 3685 2286 1582 1271 737 - - - -
(2.44) (7.24) 0.319 (8.10) (9.91) (0.188) 76 (87.8) (3.8) (3.5) (-55 +200) (50.8) GHz SFT-393 5986 2947 1831 1269 1021 594 523 471 - - -
SFT-226 SC 7/.048 LDPTFE FSC: Blue FEP 0.235 50 +/- 1 26.7 0.68 1.04 3.0 -67 +392 2 .05- SFT-304 3309 1635 1020 710 572 336 297 268 251 227 212
0.131 0.370 Intl: SC 0.485 10
SFT-205 2430 1201 750 523 422 248 220 198 186 168 157
(3.33) (9.40) 0.399 (10.13) (12.32) (0.350) 76 (87.6) (2.2) (3.4) (-55 +200) (50.8) GHz
SFT-600 SC 7/.0535 LDPTFE FSC: Blue FEP 0.240 50+/-1 26.7 0.53 1.32 3.5 -67 +392 3 .05- SFT-142 1843 912 569 397 320 189 167 151 141 128 120
0.160 0.455 Intl: SC 0.555 8 SFT-316 854 422 263 183 148 86 76 69 64 58 54
(4.08) (11.56) 0.500 (12.70) (14.10) (0.357) 76 (87.6) (1.73) (4.3) (-55 +200) (76.2) GHz Watts; Sea Level; Ambient +40C; VSWR 1:1
16 (800)-TMS-COAX • www.timesmicrowave.com • (203)-949-8400 (800)-TMS-COAX • www.timesmicrowave.com • (203)-949-8400 17
TCOM® • Low Loss UHF/Microwave Interconnect
• Wireless Base Station Interconnect
• Low Passive Intermod
• Flexible For Easy Routing
Attenuation
• Excellent Connector Selection 10 TCOM-200
TCOM-240
TCOM-300
TCOM cables provide the ultimate performance coverage single or double round wire braids. While TCOM-400
in a flexible cable. The high velocity gas injected these shields provide 40 dB and 60 dB shielding TCOM-500
foam polyethylene dielectric provides the lowest effectiveness respectively, they are not particularly TCOM-600
dielectric loss of any practical dielectric and silver 1
stable (loss & vswr) nor is the shielding adequate
plated flat ribbon braid make TCOM the ideal choice for today’s sensitive wireless communications and 100 1,000 10,000
for uhf/microwave applications and all other com- microwave military/defense applications. Frequency (MHz)
mercial and military interconnect systems.
VSWR is lower since the flat ribbons can be applied Frequency (MHz) 30 50 150 450 900 2,000 3,000 4,000 5,000 8,000 10,000 k1 k2
The TCOM design make them the ideal choice for over the dielectric much more uniformly than multi- TCOM-200 1.7 2.2 3.8 6.6 9 14 18 21 23 30 34 0.30367 0.00033
jumper cables in commercial wireless (PCS, Cellular, end round wire braids. The VSWR and attenuation TCOM-240 1.3 1.6 2.9 5.0 7.2 11 14 16 18 23 26 0.22915 0.00033
Paging, LMR) and military systems. variation due to aging and flexure is substantially TCOM-300 1.1 1.4 2.4 4.3 6.1 9.3 12 14 15 20 23 0.19434 0.00033
TCOM-400 0.7 0.9 1.5 2.9 4.2 6.4 7.9 9 11 14 16 0.13056 0.00026
The Shielding system, pioneered by Times Micro- lower at all frequencies, and especially above 12 TCOM-500 0.6 0.7 1.3 2.3 3.3 5.0 6 7 8 11 13 0.10097 0.00026
wave Systems in the mid-sixties, consists of an inner GHz. TCOM cables are also available from Times TCOM-600 0.4 0.6 1.0 1.8 2.6 4.1 5 6 7 9 11 0.08008 0.00026
silver plated flat ribbon braid (FSC), a spirally applied that have been sweep tested for broadband VSWR Attenuation at Any Frequency = [ k1 x SQRT [fMHZ] + [ k2 x Fmhz ]; dB per 100 feet
and overlapped composite aluminum tape interlayer and attenuation performance. Please contact the
(Intl), and an overall tin plated round wire braid (TC). factory with your specific requirements.
The flat ribbon shield affords approximately 15% A full range of standard interface connectors
lower loss and >95 dB shielding when compared (crimp or clamp style) are available. TCOM cables Power Handling vs. Frequency (Maximum)
with the typical M17/RG round wire braided shield can be purchased in bulk reels or as preterminated 10,000
(40 to 60 dB). and tested cable assemblies.
Standard M17/RG cables are shielded with high
TCOM Low Loss High Performance Coaxial Cables 1,000
Power (watts)
TMS Conductor Dielectric Shields Jacket Weight Impedance Capacitance
DC Resistance
Oper. Temp. Min, Bend Test
Number inches inches inches inches lbs/foot ohms pF/foot ohms/1kft
(/km) Voltage Range Radius Freq.
(mm) (mm) (mm) (mm) (kg/m) Vp(%) (pF/m) Cent. Cond Shield (s) kvrms F (C) in. (mm) TCOM-600
TCOM-500
100
TCOM-200 BC Foam PE FSC PE+lvs 0.040 50 +/- 1 24.5 5.4 3.54 1.0 -40 +185 0.5 .03- TCOM-400
0.044 0.116 Intl: TC 0.195 10 TCOM-300
(1.12) (2.95) 0.154 (3.91) (4.95) (0.060) 83 (80.4) (17.6) (10.7) (-40 +85) (12.7) GHz TCOM-240
TCOM-240 BC Foam PE FSC PE+lvs 0.045 50 +/- 1 24.2 3.2 1.91 1.5 -40 +185 1 .03- TCOM-200
0.058 0.150 Intl: TC 0.240 10 10
(1.42) (3.81) 0.188(4.78) (6.10) (0.067) 84 (79.4) (10.5) (6.26) (-40 +85) (25.4) GHz 100 1,000 10,000
TCOM-300 BC Foam PE FSC PE+ lvs 0.055 50+/-1 23.9 2.1 1.96 2.0 -40+185 1.5 .03-
0.070 0.190 Intl: TC 0.300 10 Frequency (MHz)
(1.78) (4.83) 0.225 (5.72) (7.62) (0.082) 85 (78.4) (7.0) (5.4) (_40+85) (38.1) GHz
TCOM-400 BCCAI Foam PE FSC PE+lvs 0.080 50+/-1 23.9 1.4 1.37 2.5 -40+185 2 .03- Frequency (MHz) 30 50 150 450 900 2,000 3,000 4,000 5,000 8,000 10,000
0.108 0.285 Intl: TC 0.405 10 TCOM-600 5201 4008 2276 1277 879 564 448 378 332 249 217
(2.74) (9.40) 0.330 (8.38) (10.29) (0.119) 85 (78) (4.6) (3.8) (-40+85) (50.8) GHz TCOM-500 4225 3259 1856 1046 723 467 372 316 278 210 183
TCOM-500 BCCAI Foam PE FSC PE+lvs 0.120 50+/-1 23.6 0.81 1.21 3.0 -40+185 2.5 03- TCOM-400 3121 2409 1375 779 541 352 282 240 211 161 141
0.142 0.370 Intl: TC 0.500 10 TCOM-300 2068 1597 913 518 360 235 188 161 142 108 95
(3.61) (9.40) 0.415 (10.54) (12.70) (0.179) 86 (77.4) (2.7) (4.3) (-40+85) (63.5) GHz TCOM-240 1575 1217 696 396 276 180 145 124 109 84 74
TCOM-600 BCCAI Foam PE FSC PE+lvs 0.160 50+/-1 23.4 0.524 1.02 4.0 -40+185 3 .03- TCOM-200 1080 835 478 272 190 125 100 86 75 58 51
0.176 0.455 Intl: TC 0.590 10
Watts; Sea Level; Ambient +40C; VSWR 1:1
(4.47) (11.56) 0.500 (12.70) (14.99) (0.238) 87 (76.8) (1.7) (3.7) (-40+85) (76.2) GHz
18 (800)-TMS-COAX • www.timesmicrowave.com • (203)-949-8400 (800)-TMS-COAX • www.timesmicrowave.com • (203)-949-8400 19
TCOM® • Low Loss UHF/Microwave Interconnect
• Wireless Base Station Interconnect
• Low Passive Intermod
• Flexible For Easy Routing
Attenuation
• Excellent Connector Selection 10 TCOM-200
TCOM-240
TCOM-300
TCOM cables provide the ultimate performance coverage single or double round wire braids. While TCOM-400
in a flexible cable. The high velocity gas injected these shields provide 40 dB and 60 dB shielding TCOM-500
foam polyethylene dielectric provides the lowest effectiveness respectively, they are not particularly TCOM-600
dielectric loss of any practical dielectric and silver 1
stable (loss & vswr) nor is the shielding adequate
plated flat ribbon braid make TCOM the ideal choice for today’s sensitive wireless communications and 100 1,000 10,000
for uhf/microwave applications and all other com- microwave military/defense applications. Frequency (MHz)
mercial and military interconnect systems.
VSWR is lower since the flat ribbons can be applied Frequency (MHz) 30 50 150 450 900 2,000 3,000 4,000 5,000 8,000 10,000 k1 k2
The TCOM design make them the ideal choice for over the dielectric much more uniformly than multi- TCOM-200 1.7 2.2 3.8 6.6 9 14 18 21 23 30 34 0.30367 0.00033
jumper cables in commercial wireless (PCS, Cellular, end round wire braids. The VSWR and attenuation TCOM-240 1.3 1.6 2.9 5.0 7.2 11 14 16 18 23 26 0.22915 0.00033
Paging, LMR) and military systems. variation due to aging and flexure is substantially TCOM-300 1.1 1.4 2.4 4.3 6.1 9.3 12 14 15 20 23 0.19434 0.00033
TCOM-400 0.7 0.9 1.5 2.9 4.2 6.4 7.9 9 11 14 16 0.13056 0.00026
The Shielding system, pioneered by Times Micro- lower at all frequencies, and especially above 12 TCOM-500 0.6 0.7 1.3 2.3 3.3 5.0 6 7 8 11 13 0.10097 0.00026
wave Systems in the mid-sixties, consists of an inner GHz. TCOM cables are also available from Times TCOM-600 0.4 0.6 1.0 1.8 2.6 4.1 5 6 7 9 11 0.08008 0.00026
silver plated flat ribbon braid (FSC), a spirally applied that have been sweep tested for broadband VSWR Attenuation at Any Frequency = [ k1 x SQRT [fMHZ] + [ k2 x Fmhz ]; dB per 100 feet
and overlapped composite aluminum tape interlayer and attenuation performance. Please contact the
(Intl), and an overall tin plated round wire braid (TC). factory with your specific requirements.
The flat ribbon shield affords approximately 15% A full range of standard interface connectors
lower loss and >95 dB shielding when compared (crimp or clamp style) are available. TCOM cables Power Handling vs. Frequency (Maximum)
with the typical M17/RG round wire braided shield can be purchased in bulk reels or as preterminated 10,000
(40 to 60 dB). and tested cable assemblies.
Standard M17/RG cables are shielded with high
TCOM Low Loss High Performance Coaxial Cables 1,000
Power (watts)
TMS Conductor Dielectric Shields Jacket Weight Impedance Capacitance
DC Resistance
Oper. Temp. Min, Bend Test
Number inches inches inches inches lbs/foot ohms pF/foot ohms/1kft
(/km) Voltage Range Radius Freq.
(mm) (mm) (mm) (mm) (kg/m) Vp(%) (pF/m) Cent. Cond Shield (s) kvrms F (C) in. (mm) TCOM-600
TCOM-500
100
TCOM-200 BC Foam PE FSC PE+lvs 0.040 50 +/- 1 24.5 5.4 3.54 1.0 -40 +185 0.5 .03- TCOM-400
0.044 0.116 Intl: TC 0.195 10 TCOM-300
(1.12) (2.95) 0.154 (3.91) (4.95) (0.060) 83 (80.4) (17.6) (10.7) (-40 +85) (12.7) GHz TCOM-240
TCOM-240 BC Foam PE FSC PE+lvs 0.045 50 +/- 1 24.2 3.2 1.91 1.5 -40 +185 1 .03- TCOM-200
0.058 0.150 Intl: TC 0.240 10 10
(1.42) (3.81) 0.188(4.78) (6.10) (0.067) 84 (79.4) (10.5) (6.26) (-40 +85) (25.4) GHz 100 1,000 10,000
TCOM-300 BC Foam PE FSC PE+ lvs 0.055 50+/-1 23.9 2.1 1.96 2.0 -40+185 1.5 .03-
0.070 0.190 Intl: TC 0.300 10 Frequency (MHz)
(1.78) (4.83) 0.225 (5.72) (7.62) (0.082) 85 (78.4) (7.0) (5.4) (_40+85) (38.1) GHz
TCOM-400 BCCAI Foam PE FSC PE+lvs 0.080 50+/-1 23.9 1.4 1.37 2.5 -40+185 2 .03- Frequency (MHz) 30 50 150 450 900 2,000 3,000 4,000 5,000 8,000 10,000
0.108 0.285 Intl: TC 0.405 10 TCOM-600 5201 4008 2276 1277 879 564 448 378 332 249 217
(2.74) (9.40) 0.330 (8.38) (10.29) (0.119) 85 (78) (4.6) (3.8) (-40+85) (50.8) GHz TCOM-500 4225 3259 1856 1046 723 467 372 316 278 210 183
TCOM-500 BCCAI Foam PE FSC PE+lvs 0.120 50+/-1 23.6 0.81 1.21 3.0 -40+185 2.5 03- TCOM-400 3121 2409 1375 779 541 352 282 240 211 161 141
0.142 0.370 Intl: TC 0.500 10 TCOM-300 2068 1597 913 518 360 235 188 161 142 108 95
(3.61) (9.40) 0.415 (10.54) (12.70) (0.179) 86 (77.4) (2.7) (4.3) (-40+85) (63.5) GHz TCOM-240 1575 1217 696 396 276 180 145 124 109 84 74
TCOM-600 BCCAI Foam PE FSC PE+lvs 0.160 50+/-1 23.4 0.524 1.02 4.0 -40+185 3 .03- TCOM-200 1080 835 478 272 190 125 100 86 75 58 51
0.176 0.455 Intl: TC 0.590 10
Watts; Sea Level; Ambient +40C; VSWR 1:1
(4.47) (11.56) 0.500 (12.70) (14.99) (0.238) 87 (76.8) (1.7) (3.7) (-40+85) (76.2) GHz
18 (800)-TMS-COAX • www.timesmicrowave.com • (203)-949-8400 (800)-TMS-COAX • www.timesmicrowave.com • (203)-949-8400 19
TFlex® • Low Loss Microwave Interconnect
• Wireless Base Station Interconnect
• Low Passive Intermod
• Phase Stable
• All Semirigid Coax Applications
10
TFlex-405
TFlex-402
TFlex-401
1
100 1,000 10,000 100,000
Frequency (MHz)
Frequency (MHz) 500 1,000 2,000 3,000 8,000 10,000 12,000 15,000 18,000 20,000 k1 k2
TFlex employs a thin helical wrap of silver plated size flexible cables.
TFlex-405 14.7 21.1 30.6 38 66 75 83 99 106 113 0.630 0.00120
copper tape and overall braid sized such that stan- Low Loss – can achieve loss comparable to stan- TFlex-402 8.0 11.6 17.2 22 39 45 51 61 66 71 0.330 0.00120
dard solder-on connectors can be used. dard CL semirigid coax. TFlex-401 5.3 7.8 11.8 15 28 33 37 46 50 54 0.210 0.00120
TFlex was developed 10 years ago and have been Attenuation Stability – silver plated outer conduc-
Attenuation at Any Frequency = [ k1 x SQRT (Fmhz ) + [ k2 x Fmhz ]; dB per 100 feet
widely adopted by the commercial and military tor prevents oxidation of the conductors thereby
OEM’s. minimizing attenuation change vs time.
Some of the key characteristics of TFlex are: Power Handling – comparable to standard CL Power Handling vs. Frequency (Maximum)
semirigid.
Passive Intermod – typically > -150dBc (2x 20 watt 1,000
carriers) Corrosion Resistance – jacketing of the cable with
FEP provides excellent protection when cable is
Shielding Effectiveness – comparable to standard deployed in a corrosive environment.
semirigid and like semirigid is beyond measurable
limits. Formability – the flexible nature of TFlex eliminates
Power (watts)
the need for hand or precision machine bending.
Small/Lightweight – same size but lighter weight TFlex is preterminated in it’s approximate desired
than standard CL semirigid coax. length and just ‘plugged in’ using the most conve- TFlex-401
Phase Stable – the helical tape outer conductor nient/desirable routing. 100
minimizes electrical length change with temperature Connectors (solder-on) – are available from a TFlex-402
to yield substantial improvement over equivalent variety of sources to fit standard semirigid coax
TFlex-405
and TFlex.
TFlex Flexible Alternative to Semirigid Coaxial Cables
DC Resistance 10 100 1,000 10,000 100,000
TMS Conductor Dielectric Shields Jacket Weight Impedance Capacitance Oper. Temp. Min, Bend Test
ohms/1kft (/km)
Number inches inches inches inches lbs/foot ohms pF/foot Voltage Range Radius Freq.
(mm) (mm) (mm) (mm) (kg/m) Vp(%) (pF/m) Cent. Cond Shield (s) kvrms F (C) in. (mm)
TFlex-405 SCCS PTFE SC Blue FEP 0.015 50+/-1 29.3 64.5 10.7 1.5 -85+267 0.250 0.5-
0.0201 0.064 tape&braid 0.104 20
(0.51) (1.63) 0.085 (2.16) (2.64) (0.022) 69.5 (96.1) (212.6) (35.0) (-65+125) (6.4) GHz Frequency (MHz)
TFlex-402 SC PTFE SC Blue FEP 0.033 50+/-1 29.3 8.0 7.63 1.9 -85+257 0.500 0.5-
0.036 0.118 tape&braid 0.160 20 Frequency (MHz) 500 1,000 2,000 3,000 8,000 10,000 12,000 15,000 18,000 20,000
(0.91) (3.00) 0.141 (3.58) (4.06) (0.049) 69.5 (96.1) (26.2) (25.0) (-65+125) (12.7) GHz TFlex-401 885 595 394 306 160 136 120 97 88 81
TFlex-401 SC PTFE SC Blue FEP 0.095 50+/-1 29.3 2.6 2.09 3.0 -85+257 1.25 0.5- TFlex-402 426 290 195 154 83 72 63 52 48 44
0.0641 0.208 tape&braid 0.270 20 TFlex-405 173 119 81 65 36 31 28 23 21 20
(1.63) (5.28) 0.249 (6.32) (6.9) (0.142) 69.5 (96.1) (8.4) (6.9) (-65+125) (31.8) GHz Watts; Sea Level; Ambient +40C; VSWR 1:1
10
TFlex-405
TFlex-402
TFlex-401
1
100 1,000 10,000 100,000
Frequency (MHz)
Frequency (MHz) 500 1,000 2,000 3,000 8,000 10,000 12,000 15,000 18,000 20,000 k1 k2
TFlex employs a thin helical wrap of silver plated size flexible cables.
TFlex-405 14.7 21.1 30.6 38 66 75 83 99 106 113 0.630 0.00120
copper tape and overall braid sized such that stan- Low Loss – can achieve loss comparable to stan- TFlex-402 8.0 11.6 17.2 22 39 45 51 61 66 71 0.330 0.00120
dard solder-on connectors can be used. dard CL semirigid coax. TFlex-401 5.3 7.8 11.8 15 28 33 37 46 50 54 0.210 0.00120
TFlex was developed 10 years ago and have been Attenuation Stability – silver plated outer conduc-
Attenuation at Any Frequency = [ k1 x SQRT (Fmhz ) + [ k2 x Fmhz ]; dB per 100 feet
widely adopted by the commercial and military tor prevents oxidation of the conductors thereby
OEM’s. minimizing attenuation change vs time.
Some of the key characteristics of TFlex are: Power Handling – comparable to standard CL Power Handling vs. Frequency (Maximum)
semirigid.
Passive Intermod – typically > -150dBc (2x 20 watt 1,000
carriers) Corrosion Resistance – jacketing of the cable with
FEP provides excellent protection when cable is
Shielding Effectiveness – comparable to standard deployed in a corrosive environment.
semirigid and like semirigid is beyond measurable
limits. Formability – the flexible nature of TFlex eliminates
Power (watts)
the need for hand or precision machine bending.
Small/Lightweight – same size but lighter weight TFlex is preterminated in it’s approximate desired
than standard CL semirigid coax. length and just ‘plugged in’ using the most conve- TFlex-401
Phase Stable – the helical tape outer conductor nient/desirable routing. 100
minimizes electrical length change with temperature Connectors (solder-on) – are available from a TFlex-402
to yield substantial improvement over equivalent variety of sources to fit standard semirigid coax
TFlex-405
and TFlex.
TFlex Flexible Alternative to Semirigid Coaxial Cables
DC Resistance 10 100 1,000 10,000 100,000
TMS Conductor Dielectric Shields Jacket Weight Impedance Capacitance Oper. Temp. Min, Bend Test
ohms/1kft (/km)
Number inches inches inches inches lbs/foot ohms pF/foot Voltage Range Radius Freq.
(mm) (mm) (mm) (mm) (kg/m) Vp(%) (pF/m) Cent. Cond Shield (s) kvrms F (C) in. (mm)
TFlex-405 SCCS PTFE SC Blue FEP 0.015 50+/-1 29.3 64.5 10.7 1.5 -85+267 0.250 0.5-
0.0201 0.064 tape&braid 0.104 20
(0.51) (1.63) 0.085 (2.16) (2.64) (0.022) 69.5 (96.1) (212.6) (35.0) (-65+125) (6.4) GHz Frequency (MHz)
TFlex-402 SC PTFE SC Blue FEP 0.033 50+/-1 29.3 8.0 7.63 1.9 -85+257 0.500 0.5-
0.036 0.118 tape&braid 0.160 20 Frequency (MHz) 500 1,000 2,000 3,000 8,000 10,000 12,000 15,000 18,000 20,000
(0.91) (3.00) 0.141 (3.58) (4.06) (0.049) 69.5 (96.1) (26.2) (25.0) (-65+125) (12.7) GHz TFlex-401 885 595 394 306 160 136 120 97 88 81
TFlex-401 SC PTFE SC Blue FEP 0.095 50+/-1 29.3 2.6 2.09 3.0 -85+257 1.25 0.5- TFlex-402 426 290 195 154 83 72 63 52 48 44
0.0641 0.208 tape&braid 0.270 20 TFlex-405 173 119 81 65 36 31 28 23 21 20
(1.63) (5.28) 0.249 (6.32) (6.9) (0.142) 69.5 (96.1) (8.4) (6.9) (-65+125) (31.8) GHz Watts; Sea Level; Ambient +40C; VSWR 1:1
Semirigid Coax
10
CL-50086
CL-50141
1 CL-50250
Power (watts)
lighter weight than flexible coax having similar
electrical performance. nectors are available from a variety of connector
sources. 100
Phase Stable – the solid outer conductor minimizes
electrical length change with temperature to sub-
stantially lower levels than flexible coax cables. CL-50250
10 CL-50141
Coppersol Semirigid Coaxial Cables
CL-50086
TMS Conductor Dielectric Shields Weight Impedance Capacitance DC Resistance
Oper. Temp. Min, Bend Test 1
Number inches inches inches lbs/foot ohms pF/foot
ohms/1kft Voltage Range
(/km) Radius Freq.
(mm) (mm) (mm) (kg/m) Vp(%) (pF/m) Cent. Cond Shield (s) kvrms F (C) in. (mm) 100 1,000 10,000 100,000
CL-50086 SCCS PTFE BC Tube 0.0153 50+/-1.5 29.4 64.8 2.68 1.5 -40+194 0.125 0.5- Frequency (MHz)
M17/133-RG405 0.0201 0.066 0.0865 20
(0.51) (1.68) (2.20) (0.023) 69.5 (96.5) (212.6) (8.86) (-40+125) (3.2) GHz Frequency (MHz) 500 1,000 2,000 3,000 8,000 10,000 12,000 16,000 18,000 20,000
CL-50141 SCCS PTFE BC Tube 0.0344 50+/-1 29.4 20.0 1.32 1.9 -40+194 0.250 0.5- CL-50250 1024 685 449 347 179 152 133 107 97 90
M17/130-RG402 0.0362 0.1175 0.141 20 CL-50141 592 403 271 213 115 99 87 71 65 60
(0.92) (2.98) (3.58) (0.051) 69.5 (96.5) (65.6) (4.3) (-40+125) (6.4) GHz CL-50086 174 120 82 65 36 31 28 23 21 20
CL-50250 SC PTFE BC Tube 0.105 50+/-0.5 29.4 2.6 0.45 3.0 -40+194 0.375 0.5-
M17/129-RG401 0.0641 0.209 0.250 20 Watts; Sea Level; Ambient +40C; VSWR 1:1; Outer Conductor +125C
(1.63) (5.31) (6.35) (0.156) 69.5 (96.5) (8.4) (1.5) (-40+125) (9.5) GHz
Semirigid Coax
10
CL-50086
CL-50141
1 CL-50250
Power (watts)
lighter weight than flexible coax having similar
electrical performance. nectors are available from a variety of connector
sources. 100
Phase Stable – the solid outer conductor minimizes
electrical length change with temperature to sub-
stantially lower levels than flexible coax cables. CL-50250
10 CL-50141
Coppersol Semirigid Coaxial Cables
CL-50086
TMS Conductor Dielectric Shields Weight Impedance Capacitance DC Resistance
Oper. Temp. Min, Bend Test 1
Number inches inches inches lbs/foot ohms pF/foot
ohms/1kft Voltage Range
(/km) Radius Freq.
(mm) (mm) (mm) (kg/m) Vp(%) (pF/m) Cent. Cond Shield (s) kvrms F (C) in. (mm) 100 1,000 10,000 100,000
CL-50086 SCCS PTFE BC Tube 0.0153 50+/-1.5 29.4 64.8 2.68 1.5 -40+194 0.125 0.5- Frequency (MHz)
M17/133-RG405 0.0201 0.066 0.0865 20
(0.51) (1.68) (2.20) (0.023) 69.5 (96.5) (212.6) (8.86) (-40+125) (3.2) GHz Frequency (MHz) 500 1,000 2,000 3,000 8,000 10,000 12,000 16,000 18,000 20,000
CL-50141 SCCS PTFE BC Tube 0.0344 50+/-1 29.4 20.0 1.32 1.9 -40+194 0.250 0.5- CL-50250 1024 685 449 347 179 152 133 107 97 90
M17/130-RG402 0.0362 0.1175 0.141 20 CL-50141 592 403 271 213 115 99 87 71 65 60
(0.92) (2.98) (3.58) (0.051) 69.5 (96.5) (65.6) (4.3) (-40+125) (6.4) GHz CL-50086 174 120 82 65 36 31 28 23 21 20
CL-50250 SC PTFE BC Tube 0.105 50+/-0.5 29.4 2.6 0.45 3.0 -40+194 0.375 0.5-
M17/129-RG401 0.0641 0.209 0.250 20 Watts; Sea Level; Ambient +40C; VSWR 1:1; Outer Conductor +125C
(1.63) (5.31) (6.35) (0.156) 69.5 (96.5) (8.4) (1.5) (-40+125) (9.5) GHz
CLL-50086
CLL-50141
CLL-50250
CLL-50375
1
100 1,000 10,000 100,000
Coppersol-CLL employs a thin tubular copper outer standard CL semirigid coax.
conductor and low-density PTFE dielectric which Low Loss – can achieve up to 30 % less loss than Frequency (MHz)
provide the lowest loss and highest shielding giving standard CL semirigid coax. Frequency (MHz) 500 1,000 2,000 3,000 8,000 10,000 12,000 16,000 18,000 20,000 k1 k2
it significant performance advantages over semirigid CLL-50086 11.8 16.8 23.9 29 48 54 60 69 74 78 0.525 0.00018
coax of similar size. Attenuation Stability – impervious outer conduc-
CLL-50141 6.7 9.5 13.5 16.6 28 31 34 40 43 45 0.293 0.00018
tor prevents oxidation of the conductors thereby CLL-50250 3.8 5.4 7.8 9.6 16 18 20 24 25 27 0.165 0.00018
Coppersol-CLL was developed 25 years ago and minimizing attenuation change vs time. CLL-50375 2.4 3.5 5.0 6.2 11 12 14 - - - 0.104 0.00018
have been widely adopted by the military OEM’s.
Power Handling – higher operating temperature Attenuation at Any Frequency = [ k1 x SQRT (Fmhz) ] + [ k2 x Fmhz ]; dB per 100 feet
Power (watts)
Phase Stable – the solid outer conductor and low
Connectors – are available from a variety of sources
density PTFE minimizes electrical length change
to fit Coppersol-CLL.
with temperature to yield 100 % improvement over
100 CLL-50375
Coppersol CLL Low Loss Semirigid Coaxial Cables
CLL-50250
TMS Conductor Dielectric Shields Weight Impedance Capacitance
DC Resistance Oper. Temp. Min, Bend Test
Number inches inches inches lbs/foot ohms pF/foot CLL-50141
ohms/1kft (/km) Voltage Range Radius Freq.
(mm) (mm) (mm) (kg/m) Vp(%) (pF/m) Cent. Cond Shield (s) kvrms F (C) in. (mm) CLL-50086
CLL-50086 SCCS LD PTFE BC Tube 0.0130 50+/-1.5 26.8 53.6 2.68 0.6 -85+482 0.25 0.5- 10
0.022 0.066 0.0860 20 100 1,000 10,000 100,000
(0.56) (1.68) (2.18) (0.019) 76 (87.9) (175.9) (8.8) (-65+250) (6.4) GHz
CLL-50141 SC LD PTFE BC Tube 0.0290 50+/-1 26.8 6.8 1.32 1.3 -85+482 0.50 0.5-
0.039 0.1180 0.141 20
Frequency (MHz)
(0.99) (3.00) (3.58) (0.0431) 76 (87.9) (22.4) (4.3) (-65+250) (12.7) GHz Frequency (MHz) 500 1,000 2,000 3,000 8,000 10,000 12,000 16,000 18,000 20,000
CLL-50250 SC LD PTFE BC Tube 0.091 50+/-1 26.8 2.1 0.45 2.2 -85+482 2.0 0.5-
CLL-50375 3633 2525 1743 1397 805 707 635 - - -
0.0700 0.210 0.250 20
CLL-50250 1908 1332 925 745 436 384 347 294 274 257
(1.78) (5.33) (6.35) (0.136) 76 (87.95) (7.0) (1.5) (-65+250) (50.8) GHz
CLL-50141 834 584 407 329 194 171 155 131 123 116
CLL-50375 SC LD PTFE BC Tube 0.187 50+/-1 26.8 0.83 0.365 3.0 -85+482 3.25 0.5-
CCL-50086 363 254 177 143 84 74 67 56 53 50
0.1120 0.335 0.375 12
Watts; Sea Level; Ambient +40C; VSWR 1:1; Outer Conductor +250C
(2.84) (8.51) (9.535) (0.279) 76 (87.9) (2.7) (1.2) (-65+250) (82.6) GHz
Tinned and Silver Plated Outer Conductors Available on Request
24 (800)-TMS-COAX • www.timesmicrowave.com • (203)-949-8400 (800)-TMS-COAX • www.timesmicrowave.com • (203)-949-8400 25
Coppersol® CLL • Low Loss Microwave Interconnect
• Wireless Base Station Interconnect
• Low Passive Intermod
• High Temperature
• High Power
CLL-50086
CLL-50141
CLL-50250
CLL-50375
1
100 1,000 10,000 100,000
Coppersol-CLL employs a thin tubular copper outer standard CL semirigid coax.
conductor and low-density PTFE dielectric which Low Loss – can achieve up to 30 % less loss than Frequency (MHz)
provide the lowest loss and highest shielding giving standard CL semirigid coax. Frequency (MHz) 500 1,000 2,000 3,000 8,000 10,000 12,000 16,000 18,000 20,000 k1 k2
it significant performance advantages over semirigid CLL-50086 11.8 16.8 23.9 29 48 54 60 69 74 78 0.525 0.00018
coax of similar size. Attenuation Stability – impervious outer conduc-
CLL-50141 6.7 9.5 13.5 16.6 28 31 34 40 43 45 0.293 0.00018
tor prevents oxidation of the conductors thereby CLL-50250 3.8 5.4 7.8 9.6 16 18 20 24 25 27 0.165 0.00018
Coppersol-CLL was developed 25 years ago and minimizing attenuation change vs time. CLL-50375 2.4 3.5 5.0 6.2 11 12 14 - - - 0.104 0.00018
have been widely adopted by the military OEM’s.
Power Handling – higher operating temperature Attenuation at Any Frequency = [ k1 x SQRT (Fmhz) ] + [ k2 x Fmhz ]; dB per 100 feet
Power (watts)
Phase Stable – the solid outer conductor and low
Connectors – are available from a variety of sources
density PTFE minimizes electrical length change
to fit Coppersol-CLL.
with temperature to yield 100 % improvement over
100 CLL-50375
Coppersol CLL Low Loss Semirigid Coaxial Cables
CLL-50250
TMS Conductor Dielectric Shields Weight Impedance Capacitance
DC Resistance Oper. Temp. Min, Bend Test
Number inches inches inches lbs/foot ohms pF/foot CLL-50141
ohms/1kft (/km) Voltage Range Radius Freq.
(mm) (mm) (mm) (kg/m) Vp(%) (pF/m) Cent. Cond Shield (s) kvrms F (C) in. (mm) CLL-50086
CLL-50086 SCCS LD PTFE BC Tube 0.0130 50+/-1.5 26.8 53.6 2.68 0.6 -85+482 0.25 0.5- 10
0.022 0.066 0.0860 20 100 1,000 10,000 100,000
(0.56) (1.68) (2.18) (0.019) 76 (87.9) (175.9) (8.8) (-65+250) (6.4) GHz
CLL-50141 SC LD PTFE BC Tube 0.0290 50+/-1 26.8 6.8 1.32 1.3 -85+482 0.50 0.5-
0.039 0.1180 0.141 20
Frequency (MHz)
(0.99) (3.00) (3.58) (0.0431) 76 (87.9) (22.4) (4.3) (-65+250) (12.7) GHz Frequency (MHz) 500 1,000 2,000 3,000 8,000 10,000 12,000 16,000 18,000 20,000
CLL-50250 SC LD PTFE BC Tube 0.091 50+/-1 26.8 2.1 0.45 2.2 -85+482 2.0 0.5-
CLL-50375 3633 2525 1743 1397 805 707 635 - - -
0.0700 0.210 0.250 20
CLL-50250 1908 1332 925 745 436 384 347 294 274 257
(1.78) (5.33) (6.35) (0.136) 76 (87.95) (7.0) (1.5) (-65+250) (50.8) GHz
CLL-50141 834 584 407 329 194 171 155 131 123 116
CLL-50375 SC LD PTFE BC Tube 0.187 50+/-1 26.8 0.83 0.365 3.0 -85+482 3.25 0.5-
CCL-50086 363 254 177 143 84 74 67 56 53 50
0.1120 0.335 0.375 12
Watts; Sea Level; Ambient +40C; VSWR 1:1; Outer Conductor +250C
(2.84) (8.51) (9.535) (0.279) 76 (87.9) (2.7) (1.2) (-65+250) (82.6) GHz
Tinned and Silver Plated Outer Conductors Available on Request
24 (800)-TMS-COAX • www.timesmicrowave.com • (203)-949-8400 (800)-TMS-COAX • www.timesmicrowave.com • (203)-949-8400 25
M17 and
RG Cables
MIL-C-17 and
RG Coaxial Cable
Reference Guide and
Technical Information
MIL-C-17 and
RG Coaxial Cable
Reference Guide and
Technical Information
The most recent and therefore applicable revision to MIL- ATTENUATION AND STRUCTURAL RETURN LOSS M 17/6-RG12 17-100-79 AA-3812 TC 7/.0159” PE 33BC PVC-IIA Alum.Braid 0.144 75 +/-3 20.6 5,000 -40+185 1 GHz Use M17/181-00002
0.0477 0.285 0.318 0.405 0.463 Unswept LS/LT Jacket
DTL-17 is Revision H. MIL-C-17 specifications require that attenuation and struc- (1.21) (7.24) (8.08) (10.29) (11.76) (0.200) 66 (67.6) (-40+85)
Pages 29 through 39 contain a complete listing of all tural return loss (VSWR) be completely tested by sweep-
M17/15-RG22 17-793-77 AA-3395 2-BC7/ .0152” PE 34TC:34TC PVC-IIA NA 0.134 95 +/- 5 16.0 1.000 -40+185 200 MHz Use M17/182-00001
current M17 cables. For engineering reference, pages 45 ing 22 different 50-ohm cables over the frequency band for 0.0456 0.285 0.343 0.420 Unswept LS/LT Jacket
through 61 contain the old RG tables. Attenuation and power which their use is recommended. Variance in materials or (1.16) (7.24) (8.71) (10.67) (0.200) 66 (52.5) (-40 +85)
handling characteristics tables are presented on pages 40 in the manufacturing process can cause periodic disconti- M17/15-RG111 17-793-77 AA-3396 2-BC 7/.0152” PE 34TC:34TC PVC-IIA Alum. Braid 0.161 95 +/- 5 16.0 1,000 -40 +185 200MHz Use M17/182-00002
through 44. nuities along a length of coaxial cable which can introduce 0.0456 0.285 0.343 0.420 0.478 Unswept LS/LT Jacket
(1.16) (7.24) (8.71) (10.67) (12.14) (0.240) 66 (52.5) (-40 +85)
BENEFITS IN USING MIL-C-17 COAXIAL CABLES resonance peaks (spikes). These spikes occur when the
Revision E to MIL-C-17 was released in 1976 to better discontinuities or changes in electrical characteristics are M17/16-RG23 No AA-5160 2-BC 7/.0285” PE: 2 cores 34BC:34BC PVC-IIA NA 0.530 125 +/- 5 12.0 7,000 -40 +185 400 MHz Inactive for new design
periodic and at half-wave distances. QPL’d 0.0855 0.380 .438 x .847 .650 x .945 Unswept
define the mechanical and electrical requirements for mili- Source (2.17) (9.65) (11.1 x 21.5) (16.5 x 24.0) (0.789) 66 (39.4) (-40 +85)
tary coaxial cables. For 50-ohm cables, the most important When impedance changes occur periodically, there are fre-
changes were the addition of swept frequency measure- quencies in which all of the reflections are in phase, resulting M17/16-RG24
No
QPL’d
AA-5161 2-BC 7/.0285” PE: 2 cores 34BC:34BC
0.0855 0.380 .438 x .847
PVC-IIA
.650 x .945
Alum. Braid 0.730
.708 x 1.003
125 +/-5
12.0
7,000
-40+185
400 MHz
Unswept
Inactive for new design
ments of both attenuation and structural return loss require- in a large reflected signal or VSWR that is out of proportion to Source (2.17) (9.65) (11.1 x 21.5) (16.5 x 24.0) (18.0 x 25.5) (1.087) 66 (39.4) (-40 +85)
ments (VSWR) to 22 different cables. Before this revision the normal VSWR of the cables and its connectors. Periodic
M17/19-RG25 No AA-5124 TC 19/.0117” Rubber-E 34TC-34TC Rubber-IV NA 0.225 48 +/-4 50.0 10,000 -67 +194 1 MHz Triaxial Pulse Cable
there were no VSWR requirements, and attenuation require- reflections can also cause substantial increase in attenua- QPL’d 0.0585 0.288 0.382 0.505 Unswept
ments were only given at two or three discrete frequencies. tion at the resonance peaks. In the past, it was very unusual Source (1.49) (7.32) (9.70) (12.83) (0.335) 42 (164.1) (-55 +90)
Other significant changes are described in the following to detect these narrow band, high attenuation spikes when M17/21-RG26 No AA-5125 TC 19/.0117” Rubber-E 34TC Rubber-IV Alum. Braid 0.210 48 +/-4 50.0 10,000 -40 +185 1 MHz Coaxial Pulse Cable
paragraphs. cables were tested for attenuation using the older MIL-C-17D QPL’d 0.0585 0.288 0.317 0.425 0.505 Unswept Armored
Source (1.49) (7.32) (8.05) (10.80) (12.83) (0.313) 42 (164.1) (-40 +85)
discrete frequency test procedure (generally at 400 MHz and
ADHESION REQUIREMENTS 3 GHz, and also at 10 GHz for RG-214). M17/22-RG27 No AA-5163 TC 19/.0185” Rubber-D 34TC Rubber-IV Alum. Braid 0.330 48 +/-4 50.0 15,000 -40 +185 1 MHz Coaxial Pulse Cable
MIL-C-17 specifications now contain the minimum and Now, however, M17/75-RG214 has continuous swept max-
QPL’d 0.0925 0.455 0.484 0.595 0.670 Unswept Armored
Source (2.35) (11.56) (12.29) (15.11) (17.02) (0.492) 42 (164.1) (-40 +85)
maximum adhesion requirements of the dielectric core to imum VSWR and attenuation requirements from 50 MHz to 11
the center conductor. Prior to revision E, it was possible for GHz. The maximum VSWR is 1.15:1 (23 dB SRL) at 100 MHz
M17/22-00001 No AA-5162 TC 19/.0185” Rubber-D 34TC Rubber-IV NA 0.330 48 +/-4 50.0 15,000 -40 +185 1 MHz Coaxial Pulse Cable
QPL’d 0.0925 0.455 0.484 0.595 Unswept
a cable to have so little adhesion that the center conductor increasing to a maximum of 1.33:1 (17 dB structural return Source (2.35) (11.56) (15.11) (15.11) (0.492) 42 (164.1) (-40 +85)
in shorter cables could be pulled out of the entire assembly loss) at 11 GHz. The maximum attenuation is 1.7 dB/100 feet M17/23-RG28 No AA-5164 TC 19/.0185” Rubber-D 34TC:34GS Rubber-IV NA 0.400 48 +/-4 50.0 15,000 -40 +185 1 MHz Triaxial Pulse Cable
during the stripping operation. Or there could be too much at 50 MHz increasing to 60 dB/100 feet at 11 GHz. QPL’d 0.0925 0.455 0.559 0.735 Unswept
adhesion between the core and the conductor, causing Coaxial cables that do not require “full band” swept fre-
Source (2.35) (11.58) (14.20) (18.67) (164.1) 42 (164.1) (-40 +85)
the conductor to break before the dielectric core could be quency performance can be procured under separate part M17/24-RG34 No AA-3813 TC 7/.0249” PE 33BC PVC-IIA NA 0.231 75 +/-3 22.0 6,500 -40+185 1 GHz
stripped off. With Revision E, a definite criterion has been numbers in an unswept version. The specifications sheets QPL’d 0.0747 0.460 0.493 0.630 Unswept
Source (1.90) (11.68) (12.52) (16.00) (0.344) 66 (72.2) (-40+85)
specified. for these unswept cables recommend that they not be used
DIMENSIONAL STABILITY above 400 MHz. The user must decide which cables will best M17/28-RG58
17-304-83 AA-3397 TC 19/.0072”
0.0355
PE
0.116
36TC
0.139
PVC-IIA
0.195
NA
0.026
50 +/-2
30.8
1,900
-40+185 .05 to 1 GHz Use: M17/183-00001
Swept LS/LT Jacket
Revision E required that all cables be manufactured and suit the situation based on cost, application and potential for (0.090) (2.95) (3.53) (4.95) (0.039) 66 (101.1) (-40+85)
tested to a specific maximum shrinkback allowance for the system growth and improvements. M17/29-RG59 17-102-79 AA-3797 CCS PE 34BC PVC-IIA NA 0.035 75 +/-3 20.6 2,300 -40+185 1 GHz Use: M17/184-00001
dielectric core and the jacket. Temperature extremes can CABLE DESIGNATIONS 0.0226 0.146 0.175 0.242 Unswept LS/LT Jacket
cause shrinkback of the cable jacket which can create a poor Cables that are manufactured to MIL-C-17 specifications
(0.57) (3.71) (4.45) (6.15) (0.052) 66 (67.6) (-40 +85)
termination. no longer carry the RG designation. For example, RG-214 M17/30-RG62 17-795-77 AA-3398 CCS Airspaced PE 34BC PVC-IIA NA 0.038 93 +/-5 13.5 1,000 -40 +176 1 GHz Use: M17/185-00001
0.0253 0.146 0.175 0.242 Unswept LS/LT Jacket
ECCENTRICITY has been replaced by M17/75-RG214. In the future, any new (0.64) (3.71) (4.45) (6.15) (0.057) 81 (44.3) (-40 +80)
Before Revision E was implemented, eccentricity require- cable design will be designated by an M17 part number only. M17/31-RG63 17-103-79 AA-3815 CCS Airspaced PE 33BC PVC-IIA NA 0.138 125 +/-6 11.0 750 -40 +176 1 GHz Use: M17/218-00001
ments applied only to polyethylene dielectrics. Now eccen- In addition to the M17 number, all cables are marked with the 0.0253 0.285 0.318 0.405 Unswept LS/LT Jacket
tricity requirements have been identified for other kinds of manufacturer’s name and government identification number, (0.64) (7.24) (8.08) (10.29) (0.206) 86 (36.1) (-40 +80)
dielectrics (e.g., PTFE). Cables that meet the eccentricity for example, “M17/75-RG214, MIL-C-17, Times Microwave M17/31-RG79 17-103-79 AA-3816 CCS Airspaced PE 33BC PVC-IIA Alum. Braid 0.088 125 +/-5 10.0 1,000 -40 +175 1GHz Use: M17/218-00002
requirement facilitate the reliable assembly of connector Systems, 68999 AA-3409” Cables that are not marked with 0.0253 0.285 0.318 0.405 0.475 Unswept LS/LT Jacket
(0.64) (7.24) (8.08) (10.29) (12.07) (0.131) 81 (32.8) (-40 +80)
parts and provide low VSWR ratios. this information are not qualified and there is no guarantee
STRESS-CRACK RESISTANCE of their performance. M17/33-RG64 No AA-5126 TC 19/.0117” Rubber-E 34TC:34TC Rubber-IV NA 0.220 48 +/-4 55.0 10,000 -40 +185 1 MHz Coaxial Pulse Cable
QLP’d 0.0585 0.288 0.346 0.450 Unswept
MIL-C-17 now requires a stress-crack resistance test on MIL-C-17 QPL LISTING
Source (1.49) (7.32) (8.79) (11.68) (0.328) 42 (180.5) (-40 +85)
all FEP (fluorinated ethylene propylene) and PFA (perfluo- Only qualified cables should be used for military contracts. M17/34-RG65 No AA-5165 .008” MW Helix PE 33BC PVC-IIA NA 0.110 950 +/-50 48.0 1,500 -40 +176 5 MHz Coaxial Delay Line
roalkoxy) jacketed cables. This test identifies cables with All manufacturers of MIL-C-17 cables must obtain qualifica- QLP’d 0.1280 0.285 0.318 0.405 Unswept 0.15 uSec/foot
previously undetected residual stress that could result in Source (3.25) (7.24) (8.08) (10.29) (0.164) 2 (157.5) (-40 +85)
tion approval for their cables. The qualified products are then
jacket cracking. listed in QPL-17 which is updated periodically throughout M17/45-RG108 17-796-77 AA-3399 2:TC 7/.0126” PE (2 cores) 36TC PVC-IIA NA 0.035 78 +/-7 19.6 1,000 -40 +185 10 MHz Use: M17/186-00001
0.0378 0.079 0.181 0.235 Unswept LS/LT Jacket
CONTAMINATION the year. Please note that all RG numbered cables have been (0.96) (2.01) (4.60) (5.97) (0.052) 68 (64.3) (-40 +85)
Although earlier MIL-C-17 specifications allowed the use cancelled from MIL-C-17 and only cables with part numbers
M17/47-RG114 Non- AA-3817 CCS Airspaced PE 34BC PVC-IIA NA 0.089 185 +/-10 6.5 1,000 -40 -176 1 GHz Use: M17/208-00001
of some Type I PVC (polyvinylchloride) for jackets, Revision starting “MIL/17” should be used for new military contracts. QPL’d 0.007 0.285 0.314 0.405 Unswept LS/LT Jacket
F has completely replaced it with Type II PVC, a non-con- Since there is no longer any control of “RG” specifications, (0.18) (7.24) (7.98) (10.29) (1.33) 85 (21.3) (-40 +80)
taminating compound. The plasticizers in Type I PVC can many cables on the market with RG designations may be
28 (800)-TMS-COAX • www.timesmicrowave.com • (203)-949-8400 (800)-TMS-COAX • www.timesmicrowave.com • (203)-949-8400 29
MIL-C-17 COAXIAL CABLES M17 M17 TMS Conductor
M17/MIL-C-17 Coaxial Cable Specifications
Dielectric Shields Jacket Armor Weight Impedance Capacitance Max Oper. Temp. M17
INTRODUCTION penetrate the braided shield and migrate into the polyethyl- Part QPL Part inches inches inches inches inches lb/ft ohms pF/ft Voltage Range Test Comments
No. No. (mm) (mm) (mm) (mm) (mm) (kg/m) Vp (%) (pF/m) vrms F (C) Frequency
MIL-C-17 is the government specification document used ene dielectric core, causing a large increase in the dielectric
to standardize coaxial cables; it has been in use since the loss portion of attenuation, especially at frequencies above M17/2-RG6 17-663-83 AA-3810 CCS PE 34SC-34BC PVC-IIA NA 0.082 75 +/-3 20.6 3,000 -40 +185 3 GHz Use M17/180-00001
0.0285 0.185 0.243 0.332 Unswept LS/LT Jacket
1940’s. In the many revisions made to MIL-C-17 over the 1 GHz. (0.724) (4.70) (6.17) (8.43) (0.122) 66 (67.6) (-40 +85)
years, the familiar RG part numbers were superseded by M17 It should be noted that a cable with a type I PVC jacket can
M17/6-RG11 17-100-79 AA-3811 TC 7/.0159” PE 33BC PVC-IIA NA 0.098 75 +/-3 20.8 5,000 -40 +185 1GHz Use M17/181-00001
part numbers during the 1970s. The benefits of these more affect other cables in close contact, even if the other cables 0.0477 0.285 0.318 0.405 Unswept LS/LT Jacket
recent revisions are discussed under the following headlines. all have Type IIa jackets. (1.21) (7.24) (8.08) (10.29) (0.146) 66 (67.6) (-40 +85)
The most recent and therefore applicable revision to MIL- ATTENUATION AND STRUCTURAL RETURN LOSS M 17/6-RG12 17-100-79 AA-3812 TC 7/.0159” PE 33BC PVC-IIA Alum.Braid 0.144 75 +/-3 20.6 5,000 -40+185 1 GHz Use M17/181-00002
0.0477 0.285 0.318 0.405 0.463 Unswept LS/LT Jacket
DTL-17 is Revision H. MIL-C-17 specifications require that attenuation and struc- (1.21) (7.24) (8.08) (10.29) (11.76) (0.200) 66 (67.6) (-40+85)
Pages 29 through 39 contain a complete listing of all tural return loss (VSWR) be completely tested by sweep-
M17/15-RG22 17-793-77 AA-3395 2-BC7/ .0152” PE 34TC:34TC PVC-IIA NA 0.134 95 +/- 5 16.0 1.000 -40+185 200 MHz Use M17/182-00001
current M17 cables. For engineering reference, pages 45 ing 22 different 50-ohm cables over the frequency band for 0.0456 0.285 0.343 0.420 Unswept LS/LT Jacket
through 61 contain the old RG tables. Attenuation and power which their use is recommended. Variance in materials or (1.16) (7.24) (8.71) (10.67) (0.200) 66 (52.5) (-40 +85)
handling characteristics tables are presented on pages 40 in the manufacturing process can cause periodic disconti- M17/15-RG111 17-793-77 AA-3396 2-BC 7/.0152” PE 34TC:34TC PVC-IIA Alum. Braid 0.161 95 +/- 5 16.0 1,000 -40 +185 200MHz Use M17/182-00002
through 44. nuities along a length of coaxial cable which can introduce 0.0456 0.285 0.343 0.420 0.478 Unswept LS/LT Jacket
(1.16) (7.24) (8.71) (10.67) (12.14) (0.240) 66 (52.5) (-40 +85)
BENEFITS IN USING MIL-C-17 COAXIAL CABLES resonance peaks (spikes). These spikes occur when the
Revision E to MIL-C-17 was released in 1976 to better discontinuities or changes in electrical characteristics are M17/16-RG23 No AA-5160 2-BC 7/.0285” PE: 2 cores 34BC:34BC PVC-IIA NA 0.530 125 +/- 5 12.0 7,000 -40 +185 400 MHz Inactive for new design
periodic and at half-wave distances. QPL’d 0.0855 0.380 .438 x .847 .650 x .945 Unswept
define the mechanical and electrical requirements for mili- Source (2.17) (9.65) (11.1 x 21.5) (16.5 x 24.0) (0.789) 66 (39.4) (-40 +85)
tary coaxial cables. For 50-ohm cables, the most important When impedance changes occur periodically, there are fre-
changes were the addition of swept frequency measure- quencies in which all of the reflections are in phase, resulting M17/16-RG24
No
QPL’d
AA-5161 2-BC 7/.0285” PE: 2 cores 34BC:34BC
0.0855 0.380 .438 x .847
PVC-IIA
.650 x .945
Alum. Braid 0.730
.708 x 1.003
125 +/-5
12.0
7,000
-40+185
400 MHz
Unswept
Inactive for new design
ments of both attenuation and structural return loss require- in a large reflected signal or VSWR that is out of proportion to Source (2.17) (9.65) (11.1 x 21.5) (16.5 x 24.0) (18.0 x 25.5) (1.087) 66 (39.4) (-40 +85)
ments (VSWR) to 22 different cables. Before this revision the normal VSWR of the cables and its connectors. Periodic
M17/19-RG25 No AA-5124 TC 19/.0117” Rubber-E 34TC-34TC Rubber-IV NA 0.225 48 +/-4 50.0 10,000 -67 +194 1 MHz Triaxial Pulse Cable
there were no VSWR requirements, and attenuation require- reflections can also cause substantial increase in attenua- QPL’d 0.0585 0.288 0.382 0.505 Unswept
ments were only given at two or three discrete frequencies. tion at the resonance peaks. In the past, it was very unusual Source (1.49) (7.32) (9.70) (12.83) (0.335) 42 (164.1) (-55 +90)
Other significant changes are described in the following to detect these narrow band, high attenuation spikes when M17/21-RG26 No AA-5125 TC 19/.0117” Rubber-E 34TC Rubber-IV Alum. Braid 0.210 48 +/-4 50.0 10,000 -40 +185 1 MHz Coaxial Pulse Cable
paragraphs. cables were tested for attenuation using the older MIL-C-17D QPL’d 0.0585 0.288 0.317 0.425 0.505 Unswept Armored
Source (1.49) (7.32) (8.05) (10.80) (12.83) (0.313) 42 (164.1) (-40 +85)
discrete frequency test procedure (generally at 400 MHz and
ADHESION REQUIREMENTS 3 GHz, and also at 10 GHz for RG-214). M17/22-RG27 No AA-5163 TC 19/.0185” Rubber-D 34TC Rubber-IV Alum. Braid 0.330 48 +/-4 50.0 15,000 -40 +185 1 MHz Coaxial Pulse Cable
MIL-C-17 specifications now contain the minimum and Now, however, M17/75-RG214 has continuous swept max-
QPL’d 0.0925 0.455 0.484 0.595 0.670 Unswept Armored
Source (2.35) (11.56) (12.29) (15.11) (17.02) (0.492) 42 (164.1) (-40 +85)
maximum adhesion requirements of the dielectric core to imum VSWR and attenuation requirements from 50 MHz to 11
the center conductor. Prior to revision E, it was possible for GHz. The maximum VSWR is 1.15:1 (23 dB SRL) at 100 MHz
M17/22-00001 No AA-5162 TC 19/.0185” Rubber-D 34TC Rubber-IV NA 0.330 48 +/-4 50.0 15,000 -40 +185 1 MHz Coaxial Pulse Cable
QPL’d 0.0925 0.455 0.484 0.595 Unswept
a cable to have so little adhesion that the center conductor increasing to a maximum of 1.33:1 (17 dB structural return Source (2.35) (11.56) (15.11) (15.11) (0.492) 42 (164.1) (-40 +85)
in shorter cables could be pulled out of the entire assembly loss) at 11 GHz. The maximum attenuation is 1.7 dB/100 feet M17/23-RG28 No AA-5164 TC 19/.0185” Rubber-D 34TC:34GS Rubber-IV NA 0.400 48 +/-4 50.0 15,000 -40 +185 1 MHz Triaxial Pulse Cable
during the stripping operation. Or there could be too much at 50 MHz increasing to 60 dB/100 feet at 11 GHz. QPL’d 0.0925 0.455 0.559 0.735 Unswept
adhesion between the core and the conductor, causing Coaxial cables that do not require “full band” swept fre-
Source (2.35) (11.58) (14.20) (18.67) (164.1) 42 (164.1) (-40 +85)
the conductor to break before the dielectric core could be quency performance can be procured under separate part M17/24-RG34 No AA-3813 TC 7/.0249” PE 33BC PVC-IIA NA 0.231 75 +/-3 22.0 6,500 -40+185 1 GHz
stripped off. With Revision E, a definite criterion has been numbers in an unswept version. The specifications sheets QPL’d 0.0747 0.460 0.493 0.630 Unswept
Source (1.90) (11.68) (12.52) (16.00) (0.344) 66 (72.2) (-40+85)
specified. for these unswept cables recommend that they not be used
DIMENSIONAL STABILITY above 400 MHz. The user must decide which cables will best M17/28-RG58
17-304-83 AA-3397 TC 19/.0072”
0.0355
PE
0.116
36TC
0.139
PVC-IIA
0.195
NA
0.026
50 +/-2
30.8
1,900
-40+185 .05 to 1 GHz Use: M17/183-00001
Swept LS/LT Jacket
Revision E required that all cables be manufactured and suit the situation based on cost, application and potential for (0.090) (2.95) (3.53) (4.95) (0.039) 66 (101.1) (-40+85)
tested to a specific maximum shrinkback allowance for the system growth and improvements. M17/29-RG59 17-102-79 AA-3797 CCS PE 34BC PVC-IIA NA 0.035 75 +/-3 20.6 2,300 -40+185 1 GHz Use: M17/184-00001
dielectric core and the jacket. Temperature extremes can CABLE DESIGNATIONS 0.0226 0.146 0.175 0.242 Unswept LS/LT Jacket
cause shrinkback of the cable jacket which can create a poor Cables that are manufactured to MIL-C-17 specifications
(0.57) (3.71) (4.45) (6.15) (0.052) 66 (67.6) (-40 +85)
termination. no longer carry the RG designation. For example, RG-214 M17/30-RG62 17-795-77 AA-3398 CCS Airspaced PE 34BC PVC-IIA NA 0.038 93 +/-5 13.5 1,000 -40 +176 1 GHz Use: M17/185-00001
0.0253 0.146 0.175 0.242 Unswept LS/LT Jacket
ECCENTRICITY has been replaced by M17/75-RG214. In the future, any new (0.64) (3.71) (4.45) (6.15) (0.057) 81 (44.3) (-40 +80)
Before Revision E was implemented, eccentricity require- cable design will be designated by an M17 part number only. M17/31-RG63 17-103-79 AA-3815 CCS Airspaced PE 33BC PVC-IIA NA 0.138 125 +/-6 11.0 750 -40 +176 1 GHz Use: M17/218-00001
ments applied only to polyethylene dielectrics. Now eccen- In addition to the M17 number, all cables are marked with the 0.0253 0.285 0.318 0.405 Unswept LS/LT Jacket
tricity requirements have been identified for other kinds of manufacturer’s name and government identification number, (0.64) (7.24) (8.08) (10.29) (0.206) 86 (36.1) (-40 +80)
dielectrics (e.g., PTFE). Cables that meet the eccentricity for example, “M17/75-RG214, MIL-C-17, Times Microwave M17/31-RG79 17-103-79 AA-3816 CCS Airspaced PE 33BC PVC-IIA Alum. Braid 0.088 125 +/-5 10.0 1,000 -40 +175 1GHz Use: M17/218-00002
requirement facilitate the reliable assembly of connector Systems, 68999 AA-3409” Cables that are not marked with 0.0253 0.285 0.318 0.405 0.475 Unswept LS/LT Jacket
(0.64) (7.24) (8.08) (10.29) (12.07) (0.131) 81 (32.8) (-40 +80)
parts and provide low VSWR ratios. this information are not qualified and there is no guarantee
STRESS-CRACK RESISTANCE of their performance. M17/33-RG64 No AA-5126 TC 19/.0117” Rubber-E 34TC:34TC Rubber-IV NA 0.220 48 +/-4 55.0 10,000 -40 +185 1 MHz Coaxial Pulse Cable
QLP’d 0.0585 0.288 0.346 0.450 Unswept
MIL-C-17 now requires a stress-crack resistance test on MIL-C-17 QPL LISTING
Source (1.49) (7.32) (8.79) (11.68) (0.328) 42 (180.5) (-40 +85)
all FEP (fluorinated ethylene propylene) and PFA (perfluo- Only qualified cables should be used for military contracts. M17/34-RG65 No AA-5165 .008” MW Helix PE 33BC PVC-IIA NA 0.110 950 +/-50 48.0 1,500 -40 +176 5 MHz Coaxial Delay Line
roalkoxy) jacketed cables. This test identifies cables with All manufacturers of MIL-C-17 cables must obtain qualifica- QLP’d 0.1280 0.285 0.318 0.405 Unswept 0.15 uSec/foot
previously undetected residual stress that could result in Source (3.25) (7.24) (8.08) (10.29) (0.164) 2 (157.5) (-40 +85)
tion approval for their cables. The qualified products are then
jacket cracking. listed in QPL-17 which is updated periodically throughout M17/45-RG108 17-796-77 AA-3399 2:TC 7/.0126” PE (2 cores) 36TC PVC-IIA NA 0.035 78 +/-7 19.6 1,000 -40 +185 10 MHz Use: M17/186-00001
0.0378 0.079 0.181 0.235 Unswept LS/LT Jacket
CONTAMINATION the year. Please note that all RG numbered cables have been (0.96) (2.01) (4.60) (5.97) (0.052) 68 (64.3) (-40 +85)
Although earlier MIL-C-17 specifications allowed the use cancelled from MIL-C-17 and only cables with part numbers
M17/47-RG114 Non- AA-3817 CCS Airspaced PE 34BC PVC-IIA NA 0.089 185 +/-10 6.5 1,000 -40 -176 1 GHz Use: M17/208-00001
of some Type I PVC (polyvinylchloride) for jackets, Revision starting “MIL/17” should be used for new military contracts. QPL’d 0.007 0.285 0.314 0.405 Unswept LS/LT Jacket
F has completely replaced it with Type II PVC, a non-con- Since there is no longer any control of “RG” specifications, (0.18) (7.24) (7.98) (10.29) (1.33) 85 (21.3) (-40 +80)
taminating compound. The plasticizers in Type I PVC can many cables on the market with RG designations may be
28 (800)-TMS-COAX • www.timesmicrowave.com • (203)-949-8400 (800)-TMS-COAX • www.timesmicrowave.com • (203)-949-8400 29
M17/MIL-C-17 Coaxial Cable Specifications M17/MIL-C-17 Coaxial Cable Specifications
M17 M17 TMS Conductor Dielectric Shields Jacket Armor Weight Impedance Capacitance Max Oper. Temp. M17 M17 M17 TMS Conductor Dielectric Shields Jacket Armor Weight Impedance Capacitance Max Oper. Temp. M17
Part QPL Part inches inches inches inches inches lb/ft ohms pF/ft Voltage Range Test Comments Part QPL Part inches inches inches inches inches lb/ft ohms pF/ft Voltage Range Test Comments
No. No. (mm) (mm) (mm) (mm) (mm) (kg/m) Vp (%) (pF/m) vrms F (C) Frequency No. No. (mm) (mm) (mm) (mm) (mm) (kg/m) Vp (%) (pF/m) vrms F (C) Frequency
M17/52-RG119 17-749-85 AA-3818 BC PTFE 33BC:34BC FG Braid-V NA 0.228 50 +/-2 29.4 6,000 -67 +392 .05 - 1 GHz High Power Coax M17/78-00001 17-1102-85 AA-8212 BC PE 33BC:33BC PVC-IIA NA 0.225 50 +/-2 30.8 7,000 -40 +176 0.05 - 3GHz Temperature-cycled
0.1019 0.332 0.394 0.465 Swept 0.106 0.370 0.436 0.545 Swept M17/78-RG217
(2.59) (8.43) (10.01) (11.81) (0.340) 69.5 (96.5) (-55 +200) (2.69) (9.40) (12.07) (13.84) (0.335) 66 (101.1) (-40 +85)
M17/52-RG120 17-749-85 AA-3819 BC PTFE 33BC:34BC FG Braid-V Alum Braid 0.286 50 +/-2 29.4 6,000 -67 +392 .05 - 1GHz Armored
M17/79-RG218 17-1102-85 AA-3411 BC PE 30BC PVC-IIA NA 0.510 50 +/-2 30.8 11,000 -40 +185 0.05 - 1GHz Use M17/193-00001
0.1019 0.332 0.394 0.465 0.525 Swept M17/52-RG119
0.195 0.680 0.726 0.870 Swept LS/LT Jacket
(2.59) (8.43) (10.01) (11.81) (13.34) (0.426) 69.5 (96.5) (-55 +200)
(4.95) (17.27) (18.44) (22.10) (0.760) 66 (101.1) (-40 +85)
M17/52-00001 No NA BC PTFE 33SC:33SC FG Braid-V NA 0.228 50 +/-2 29.4 6,000 -67 +392 .05 - 3GHz High Frequency
QPL’d 0.1019 0.332 0.394 0.465 Swept M17/52-RG119 M17/79-RG219 17-1102-85 AA-3412 BC PE 30BC PVC-IIA Alum.Braid 0.550 50 +/-2 30.8 11,000 -40 +185 0.05 - 1GHz Use M17/193-00002
Source (2.59) (8.43) (10.01) (11.81) (0.340) 69.5 (96.5) (-55 +200) 0.195 0.680 0.726 0.870 0.945 Swept LS/LT Jacket
(4.95) (17.27) (18.44) (22.10) (24.00) (0.819) 66 (101.1) (-40 +85)
M17/81-00001 17-354-88 AA-6002 BC PE 30BC PVC-IIA NA 0.820 50 +/-2 30.8 14,000 -40 +185 1 GHz
M17/54-RG122 17-305-83 AA-3400 TC 27/.005” PE 36TC PVC-IIA NA 0.021 50 +/-2 30.8 1,900 -40 +185 .05 - 1 GHz Use M17/187-00001 0.260 0.910 0.956 1.120 UnSwept
0.0308 0.096 0.119 0.160 Swept LS/LT Jacket (6.60) (23.11) (24.28) (28.45) (1.221) 66 (101.1) (-40 +85)
(0.78) (2.44) (3.02) (4.06) (0.031) 66 (101.1) (-40 +85)
M17/81-00002 17-354-88 AA-6003 BC PE 30BC PVC-IIA Alum.Braid 0.880 50 +/-2 30.8 14,000 -40 +185 1 GHz Armored
M17/56-RG130 No AA-5166 2: BC 7/.0285” PE 30TC PVC-IIA NA 0.300 95 +/-5 16.3 3,000 -40 +185 200 MHz Balanced 0.260 0.910 0.956 1.120 1.195 UnSwept M17/81-00001
QPL’d 0.0855 0.472 0.518 0.625 UnSwept Shielded Line (6.60) (23.11) (24.28) (28.45) (30.35) (1.311) 66 (101.1) (-40 +85)
Source (2.17) (11.99) (13.16) (15.88) (0.447) 66 (53.5) (-40 +85)
M17/84-RG223 17-303-83 AA-3413 SC PE 36SC:36SC PVC-IIA NA 0.041 50 +/-2 30.8 1,900 -40 +185 .04-12.4 GHz Use M17/194-00001
0.035 0.116 0.162 0.212 Swept LS/LT Jacket
M17/56-RG131 No AA-5187 2:BC 7/.0285” PE 30TC PVC-IIA Alum. Braid 0.400 95 +/5 16.3 3,000 -40 +185 200 MHz Armored (0.89) (2.95) (4.11) (5.38) (0.061) 66 (101.1) (-40 +85)
QPL’d 0.0855 0.472 0.518 0.625 0.710 UnSwept M17/56-RG130
Source (2.17) (11.99) (13.16) (15.88) (18.03) (0.596) 66 (53.5) (-40 +85)
M17/86-00001 17-598-81 AA-5077 SC 7/.0312” PTFE 34SC:34SC FG Braid-V NA 0.195 50 +/-2 29.4 5,000 -67 +392 400 MHz
0.0936 0.285 0.343 0.430 UnSwept
M17/60-RG142 17-664-83 AA-3401 SCCS PTFE 36SC: 36SC FEP-IX NA 0.043 50 +/-2 29.4 1,900 -67 +392 .05 - 8 GHz 50 ohm Low Loss
0.037 0.116 0.162 0.195 Swept High Temperature (2.38) (7.24) (8.71) (10.92) (0.290) 69.5 (96.5) (-55 +200)
(0.94) (2.95) (4.11) (4.95) (0.064) 69.5 (96.5) (-55 +200) Coax
M17/86-00002 17-598-81 AA-5078 SC 7/.0312” PTFE 34SC:34SC FG Braid-V Alum.Braid 0.222 50 +/-2 29.4 5,000 -67 +392 400 MHz Armored
M17/62-RG144 17-750-85 AA-3820 SCCS 7/.0175” PTFE 34SC FG Braided-V NA 0.140 75 +/-3 19.5 5,000 -67 +392 3 GHz 75 ohm Low Loss 0.0936 0.285 0.343 0.430 0.490 UnSwept M17/86-00001
0.0525 0.285 0.314 0.410 UnSwept High Temperature (2.38) (7.24) (8.71) (10.92) (12.45) (0.331) 69.5 (96.5) (-55 +200)
(1.33) (7.24) (7.98) (10.41) (0.209) 69.5 (64.0) (-55 +200) Coax M17/87-00001 17-355-88 AA-5168 SC 19/.0254” Taped PTFE 34BC:34SC FG Braid-V NA 0.448 50 +/-2 29.0 7,000 -67 +392 400 MHz
0.127 0.370 0.428 0.500 UnSwept
M17/64-RG35 No AA-3822 BC PE 30BC PVC-IIA Alum.Braid 0.545 75 +/- 3 20.6 10,000 -40 +185 1 GHz Armored (3.23) (9.40) (5.03) (12.70) (0.667) 71 (95.1) (-55 +200)
QPL’d 0.1045 0.680 0.726 0.870 0.945 UnSwept M17/209-00001
Source (2.65) (17.27) (18.44) (22.10) (24.00) (0.812) 66 (67.6) (-40 +85) M17/90-RG71 17-280-83 AA-4444 CCS Air-space PE 34BC:36TC PE-IIIA NA 0.050 93 +/-5 13.5 1,000 -67 +185 1GHz Use M17/195-00001
0.0253 0.146 0.198 0.245 UnSwept LS/LT Jacket
M17/64-RG164 No AA-3821 BC PE 30BC PVC-IIA NA 0.505 75 +/- 3 20.6 10,000 -40 +185 1 GHz Use: M17/209-0001 (0.54) (3.71) (5.03) (6.22) (0.074) 81 (44.3) (-55 +85)
QPL’d 0.1045 0.680 0.726 0.870 UnSwept LS/LT Jacket
Source (2.65) (17.27) (18.44) (22.10) (0.752) 66 (67.6) (-40 +185) M17/92-RG115 17-598-81 AA-3824 SC 7/.0280” Taped PTFE 34SC:34SC FG Braid-V NA 0.185 50 +/- 2 29.0 5,000 -67 +392 .05-12.4 GHz
0.084 0.255 0.313 0.415 Swept
M17/65-RG165 17-598-81 AA-3402 SC 7/.0315” PTFE 34SC FG Braid-V NA 0.142 50 +/- 2 29.4 2,500 -67 +482 0.05 - 3 GHz (2.13) (6.48) (7.95) (10.54) (0.276) 71 (95.1) (-55 +200)
0.094 0.285 0.314 0.410 Swept
(2.39) (7.24) (7.98) (10.41) (0.212) 69.5 (96.5) (-55 +250) M17/92-00001 17-598-81 AA-5308 SC 7/.0280” Taped PTFE 34SC:34SC FEP-IX NA 0.185 50 +/- 2 29.0 5,000 -67 +392 .05-12.4 GHz
0.084 0.255 0.313 0.344 Swept
M17/65-RG166 17-598-81 AA-3403 SC 7/.0315” PTFE 34SC FG Braid-V Alum.Braid 0.189 50 +/- 2 29.4 2,500 -67 +482 0.05 - 3 GHz Armored (2.13) (6.48) (7.95) (8.74) (0.276) 71 (95.1) (-55 +200)
0.094 0.285 0.314 0.410 0.470 Swept M17/65-RG165
(2.39) (7.24) (7.98) (10.41) (11.94) (0.282) 69.5 (96.5) (55 +250) M17/93-RG178 17-666-83 AA-3414 SCCS 7/.0040” PTFE 38SC FEP-IX NA 0.006 50 +/- 2 29.4 1,000 -67 +392 .05-3 GHz
0.012 0.033 0.051 0.071 Swept
M17/67-RG177 17-1102-85 AA-3404 BC PE 34SC: 34SC PVC-IIA NA 0.520 50 +/- 2 30.8 11,000 -40 +185 0.05 - 3 GHz Use: M17/210-00001 (0.30) (0.84) (1.30) (1.80) (0.009) 69.5 (96.5) (-55 +200)
0.195 0.680 0.738 0.895 Swept LS/LT Jacket
(4.95) (17.27) (18.75) (22.73) (0.775) 66 (101.1) (-40 +85) M17/93-00001 17-867-84 AA-4762 SCCS 7/.0040” PTFE 38SC PFA-XIII NA 0.006 50 +/- 2 29.4 1,000 -67 +446 .05-3 GHz
0.012 0.033 0.051 0.071 Swept
M17/72-RG211 No AA-3405 BC PTFE 32BC FG Braid-V NA 0.516 50 +/- 2 29.4 7,000 -67 +482 0.05 - 3 GHz (0.30) (0.84) (1.30) (1.80) (0.009) 69.5 (96.5) (-55 +230)
QPL’d 0.192 0.620 0.657 0.730 Swept
Source (4.88) (15.75) (16.69) (18.54) (0.769) 69.5 (96.5) (-55 +250) M17/94-RG179 17-809-77 AA-3415 SCCS 7/.0040” PTFE 38SC FEP-IX NA 0.010 75 +/- 3 19.5 1,200 -67 +392 3 GHz
0.012 0.063 0.081 0.100 UnSwept
M17/73-RG212 17-1104-85 AA-3406 SC PE 34SC:34SC PVC-IIA NA 0.089 50 +/- 2 30.8 3,000 -40 +185 0.05 - 3 GHz Use:M17/188-00001 (0.30) (1.60) (2.06) (2.54) (0.015) 69.5 (64.0) (-55 +200)
0.0556 0.185 0.243 0.332 Swept LS/LT Jacket
(1.41) (4.70) (6.17) (8.43) (0.133) 66 (101.1) (-40 +85) M17/95-RG180 17-810-77 AA-3416 SCCS 7/.0040” PTFE 38SC FEP-IX NA 0.0198 95 +/-5 15.4 1,500 -67 +392 3 GHz
0.012 0.102 0.120 0.141 UnSwept
M17/74-RG213 17-804-77 AA-3408 BC 7/.0296” PE 33BC PVC-IIA NA 0.111 50 +/- 2 30.8 5,000 -40 +185 0.05 - 1 GHz Use M/17189-00001 (0.30) (2.59) (3.05) (3.58) (0.029) 69.5 (50.5) (-55 +200)
0.0888 0.285 0.318 0.405 Swept LS/LT Jacket
(2.26) (7.24) (8.08) (10.29) (0.165) 66 (101.1) (-40 +85) M17/97-RG210 17-668-83 AA-4763 SCCS Air-space 34SC FG Braid-V NA 0.050 93 +/- 5 13.5 1,000 -67 +392 3 GHz
0.0253 PTFE 0.175 0.242 UnSwept
M17/74-RG215 17-804-77 AA-3407 BC 7/.0296” PE 33BC PVC-IIA Alum.Braid 0.138 50 +/- 2 30.8 5,000 -40 +185 0.05 - 11GHz Use M17/189-00002 (0.64) 0.146 (3.71) (4.45) (6.15) (0.074) 85 (44.3) (-55 +200)
0.0888 0.285 0.318 0.405 0.475 Swept LS/LT Jacket
(2.26) (7.24) (8.08) (10.29) (12.07) (0.206) 66 (101.1) (-40 +85) M17/100-RG133 No NA BC PE 33BC PVC-IIA NA 0.095 95 +/- 5 16.3 5,000 -40 +185 1 GHz
QPL’d 0.0253 0.285 0.318 0.405 UnSwept
M17/75-RG214 17-804-77 AA-3409 SC 7/.0296” PE 34SC:34SC PVC-IIA NA 0.130 50 +/- 2 30.8 5,000 -40 +185 0.05 - 11GHz Use M17/190-00001 Source (0.64) (7.24) (8.08) (10.29) (0.142) 66 (53.5) (-40 +85)
0.0888 0.285 0.343 0.425 Swept LS/LT Jacket
(2.26) (7.24) (8.71) (10.80) (0.194) 66 (101.1) (-40 +85) M17/109-RG301 No NA HR 7/.0203” PTFE 36HR FEP-IX NA 0.056 50 +/- 2 29.4 3,000 -67 +392 3 GHz
QPL’d 0.0609 0.185 0.208 0.245 UnSwept
M17/75-RG365 17-984-85 AA-4761 SC 7/.0296” PE 34SC:34SC TPE NA 0.130 50 +/-2 30.8 5,000 -67 +185 0.05 - 11GHz Source (1.55) (4.70) (5.28) (6.22) (0.083) 69.5 (96.5) (-55 +200)
0.0888 0.285 0.343 0.425 Swept
(2.26) (7.24) (8.71) (10.80) (0.194) 66 (101.1) (-55 +85) M17/110-RG302 17-425-84 AA-3826 SCCS PTFE 36SC FEP-IX NA 0.040 75 +/- 3 19.5 2,300 -67 +392 3 GHz
0.0253 0.146 0.169 0.202 UnSwept
M17/77-RG216 17-108-79 AA-3823 TC 7/.0159” PE 34BC:34BC PVC-IIA NA 0.124 75 +/-3 20.6 5,000 -40 +185 3 GHz Use M17/191-00001 (0.64) (3.71) (4.29) (5.13) (0.060) 69.5 (64.0) (-55 +200)
0.0477 0.285 0.343 0.425 UnSwept LS/LT Jacket
(1.21) (7.24) (8.71) (10.80) (0.185) 66 (67.6) (-40 +85) M17/111-RG303 17-811-77 AA-3417 SCCS PTFE 36SC FEP-IX NA 0.031 50 +/- 2 29.4 1,900 -67 +392 0.05-3 GHz
0.0370 0.116 0.139 0.170 Swept
M17/78-RG217 17-1102-85 AA-3410 BC PE 33BC:33BC PVC-IIA NA 0.225 50 +/-2 30.8 7,000 -40 +185 0.05 - 3GHz Use M17-192-00001 (0.94) (2.95) (3.53) (4.32) (0.046) 69.5 (96.5) (-55 +200)
0.106 0.370 0.436 0.545 Swept LS/LT Jacket
(2.69) (9.40) (11.07) (13.84) (0.335) 66 (101.1) (-40 +85)
M17/52-RG119 17-749-85 AA-3818 BC PTFE 33BC:34BC FG Braid-V NA 0.228 50 +/-2 29.4 6,000 -67 +392 .05 - 1 GHz High Power Coax M17/78-00001 17-1102-85 AA-8212 BC PE 33BC:33BC PVC-IIA NA 0.225 50 +/-2 30.8 7,000 -40 +176 0.05 - 3GHz Temperature-cycled
0.1019 0.332 0.394 0.465 Swept 0.106 0.370 0.436 0.545 Swept M17/78-RG217
(2.59) (8.43) (10.01) (11.81) (0.340) 69.5 (96.5) (-55 +200) (2.69) (9.40) (12.07) (13.84) (0.335) 66 (101.1) (-40 +85)
M17/52-RG120 17-749-85 AA-3819 BC PTFE 33BC:34BC FG Braid-V Alum Braid 0.286 50 +/-2 29.4 6,000 -67 +392 .05 - 1GHz Armored
M17/79-RG218 17-1102-85 AA-3411 BC PE 30BC PVC-IIA NA 0.510 50 +/-2 30.8 11,000 -40 +185 0.05 - 1GHz Use M17/193-00001
0.1019 0.332 0.394 0.465 0.525 Swept M17/52-RG119
0.195 0.680 0.726 0.870 Swept LS/LT Jacket
(2.59) (8.43) (10.01) (11.81) (13.34) (0.426) 69.5 (96.5) (-55 +200)
(4.95) (17.27) (18.44) (22.10) (0.760) 66 (101.1) (-40 +85)
M17/52-00001 No NA BC PTFE 33SC:33SC FG Braid-V NA 0.228 50 +/-2 29.4 6,000 -67 +392 .05 - 3GHz High Frequency
QPL’d 0.1019 0.332 0.394 0.465 Swept M17/52-RG119 M17/79-RG219 17-1102-85 AA-3412 BC PE 30BC PVC-IIA Alum.Braid 0.550 50 +/-2 30.8 11,000 -40 +185 0.05 - 1GHz Use M17/193-00002
Source (2.59) (8.43) (10.01) (11.81) (0.340) 69.5 (96.5) (-55 +200) 0.195 0.680 0.726 0.870 0.945 Swept LS/LT Jacket
(4.95) (17.27) (18.44) (22.10) (24.00) (0.819) 66 (101.1) (-40 +85)
M17/81-00001 17-354-88 AA-6002 BC PE 30BC PVC-IIA NA 0.820 50 +/-2 30.8 14,000 -40 +185 1 GHz
M17/54-RG122 17-305-83 AA-3400 TC 27/.005” PE 36TC PVC-IIA NA 0.021 50 +/-2 30.8 1,900 -40 +185 .05 - 1 GHz Use M17/187-00001 0.260 0.910 0.956 1.120 UnSwept
0.0308 0.096 0.119 0.160 Swept LS/LT Jacket (6.60) (23.11) (24.28) (28.45) (1.221) 66 (101.1) (-40 +85)
(0.78) (2.44) (3.02) (4.06) (0.031) 66 (101.1) (-40 +85)
M17/81-00002 17-354-88 AA-6003 BC PE 30BC PVC-IIA Alum.Braid 0.880 50 +/-2 30.8 14,000 -40 +185 1 GHz Armored
M17/56-RG130 No AA-5166 2: BC 7/.0285” PE 30TC PVC-IIA NA 0.300 95 +/-5 16.3 3,000 -40 +185 200 MHz Balanced 0.260 0.910 0.956 1.120 1.195 UnSwept M17/81-00001
QPL’d 0.0855 0.472 0.518 0.625 UnSwept Shielded Line (6.60) (23.11) (24.28) (28.45) (30.35) (1.311) 66 (101.1) (-40 +85)
Source (2.17) (11.99) (13.16) (15.88) (0.447) 66 (53.5) (-40 +85)
M17/84-RG223 17-303-83 AA-3413 SC PE 36SC:36SC PVC-IIA NA 0.041 50 +/-2 30.8 1,900 -40 +185 .04-12.4 GHz Use M17/194-00001
0.035 0.116 0.162 0.212 Swept LS/LT Jacket
M17/56-RG131 No AA-5187 2:BC 7/.0285” PE 30TC PVC-IIA Alum. Braid 0.400 95 +/5 16.3 3,000 -40 +185 200 MHz Armored (0.89) (2.95) (4.11) (5.38) (0.061) 66 (101.1) (-40 +85)
QPL’d 0.0855 0.472 0.518 0.625 0.710 UnSwept M17/56-RG130
Source (2.17) (11.99) (13.16) (15.88) (18.03) (0.596) 66 (53.5) (-40 +85)
M17/86-00001 17-598-81 AA-5077 SC 7/.0312” PTFE 34SC:34SC FG Braid-V NA 0.195 50 +/-2 29.4 5,000 -67 +392 400 MHz
0.0936 0.285 0.343 0.430 UnSwept
M17/60-RG142 17-664-83 AA-3401 SCCS PTFE 36SC: 36SC FEP-IX NA 0.043 50 +/-2 29.4 1,900 -67 +392 .05 - 8 GHz 50 ohm Low Loss
0.037 0.116 0.162 0.195 Swept High Temperature (2.38) (7.24) (8.71) (10.92) (0.290) 69.5 (96.5) (-55 +200)
(0.94) (2.95) (4.11) (4.95) (0.064) 69.5 (96.5) (-55 +200) Coax
M17/86-00002 17-598-81 AA-5078 SC 7/.0312” PTFE 34SC:34SC FG Braid-V Alum.Braid 0.222 50 +/-2 29.4 5,000 -67 +392 400 MHz Armored
M17/62-RG144 17-750-85 AA-3820 SCCS 7/.0175” PTFE 34SC FG Braided-V NA 0.140 75 +/-3 19.5 5,000 -67 +392 3 GHz 75 ohm Low Loss 0.0936 0.285 0.343 0.430 0.490 UnSwept M17/86-00001
0.0525 0.285 0.314 0.410 UnSwept High Temperature (2.38) (7.24) (8.71) (10.92) (12.45) (0.331) 69.5 (96.5) (-55 +200)
(1.33) (7.24) (7.98) (10.41) (0.209) 69.5 (64.0) (-55 +200) Coax M17/87-00001 17-355-88 AA-5168 SC 19/.0254” Taped PTFE 34BC:34SC FG Braid-V NA 0.448 50 +/-2 29.0 7,000 -67 +392 400 MHz
0.127 0.370 0.428 0.500 UnSwept
M17/64-RG35 No AA-3822 BC PE 30BC PVC-IIA Alum.Braid 0.545 75 +/- 3 20.6 10,000 -40 +185 1 GHz Armored (3.23) (9.40) (5.03) (12.70) (0.667) 71 (95.1) (-55 +200)
QPL’d 0.1045 0.680 0.726 0.870 0.945 UnSwept M17/209-00001
Source (2.65) (17.27) (18.44) (22.10) (24.00) (0.812) 66 (67.6) (-40 +85) M17/90-RG71 17-280-83 AA-4444 CCS Air-space PE 34BC:36TC PE-IIIA NA 0.050 93 +/-5 13.5 1,000 -67 +185 1GHz Use M17/195-00001
0.0253 0.146 0.198 0.245 UnSwept LS/LT Jacket
M17/64-RG164 No AA-3821 BC PE 30BC PVC-IIA NA 0.505 75 +/- 3 20.6 10,000 -40 +185 1 GHz Use: M17/209-0001 (0.54) (3.71) (5.03) (6.22) (0.074) 81 (44.3) (-55 +85)
QPL’d 0.1045 0.680 0.726 0.870 UnSwept LS/LT Jacket
Source (2.65) (17.27) (18.44) (22.10) (0.752) 66 (67.6) (-40 +185) M17/92-RG115 17-598-81 AA-3824 SC 7/.0280” Taped PTFE 34SC:34SC FG Braid-V NA 0.185 50 +/- 2 29.0 5,000 -67 +392 .05-12.4 GHz
0.084 0.255 0.313 0.415 Swept
M17/65-RG165 17-598-81 AA-3402 SC 7/.0315” PTFE 34SC FG Braid-V NA 0.142 50 +/- 2 29.4 2,500 -67 +482 0.05 - 3 GHz (2.13) (6.48) (7.95) (10.54) (0.276) 71 (95.1) (-55 +200)
0.094 0.285 0.314 0.410 Swept
(2.39) (7.24) (7.98) (10.41) (0.212) 69.5 (96.5) (-55 +250) M17/92-00001 17-598-81 AA-5308 SC 7/.0280” Taped PTFE 34SC:34SC FEP-IX NA 0.185 50 +/- 2 29.0 5,000 -67 +392 .05-12.4 GHz
0.084 0.255 0.313 0.344 Swept
M17/65-RG166 17-598-81 AA-3403 SC 7/.0315” PTFE 34SC FG Braid-V Alum.Braid 0.189 50 +/- 2 29.4 2,500 -67 +482 0.05 - 3 GHz Armored (2.13) (6.48) (7.95) (8.74) (0.276) 71 (95.1) (-55 +200)
0.094 0.285 0.314 0.410 0.470 Swept M17/65-RG165
(2.39) (7.24) (7.98) (10.41) (11.94) (0.282) 69.5 (96.5) (55 +250) M17/93-RG178 17-666-83 AA-3414 SCCS 7/.0040” PTFE 38SC FEP-IX NA 0.006 50 +/- 2 29.4 1,000 -67 +392 .05-3 GHz
0.012 0.033 0.051 0.071 Swept
M17/67-RG177 17-1102-85 AA-3404 BC PE 34SC: 34SC PVC-IIA NA 0.520 50 +/- 2 30.8 11,000 -40 +185 0.05 - 3 GHz Use: M17/210-00001 (0.30) (0.84) (1.30) (1.80) (0.009) 69.5 (96.5) (-55 +200)
0.195 0.680 0.738 0.895 Swept LS/LT Jacket
(4.95) (17.27) (18.75) (22.73) (0.775) 66 (101.1) (-40 +85) M17/93-00001 17-867-84 AA-4762 SCCS 7/.0040” PTFE 38SC PFA-XIII NA 0.006 50 +/- 2 29.4 1,000 -67 +446 .05-3 GHz
0.012 0.033 0.051 0.071 Swept
M17/72-RG211 No AA-3405 BC PTFE 32BC FG Braid-V NA 0.516 50 +/- 2 29.4 7,000 -67 +482 0.05 - 3 GHz (0.30) (0.84) (1.30) (1.80) (0.009) 69.5 (96.5) (-55 +230)
QPL’d 0.192 0.620 0.657 0.730 Swept
Source (4.88) (15.75) (16.69) (18.54) (0.769) 69.5 (96.5) (-55 +250) M17/94-RG179 17-809-77 AA-3415 SCCS 7/.0040” PTFE 38SC FEP-IX NA 0.010 75 +/- 3 19.5 1,200 -67 +392 3 GHz
0.012 0.063 0.081 0.100 UnSwept
M17/73-RG212 17-1104-85 AA-3406 SC PE 34SC:34SC PVC-IIA NA 0.089 50 +/- 2 30.8 3,000 -40 +185 0.05 - 3 GHz Use:M17/188-00001 (0.30) (1.60) (2.06) (2.54) (0.015) 69.5 (64.0) (-55 +200)
0.0556 0.185 0.243 0.332 Swept LS/LT Jacket
(1.41) (4.70) (6.17) (8.43) (0.133) 66 (101.1) (-40 +85) M17/95-RG180 17-810-77 AA-3416 SCCS 7/.0040” PTFE 38SC FEP-IX NA 0.0198 95 +/-5 15.4 1,500 -67 +392 3 GHz
0.012 0.102 0.120 0.141 UnSwept
M17/74-RG213 17-804-77 AA-3408 BC 7/.0296” PE 33BC PVC-IIA NA 0.111 50 +/- 2 30.8 5,000 -40 +185 0.05 - 1 GHz Use M/17189-00001 (0.30) (2.59) (3.05) (3.58) (0.029) 69.5 (50.5) (-55 +200)
0.0888 0.285 0.318 0.405 Swept LS/LT Jacket
(2.26) (7.24) (8.08) (10.29) (0.165) 66 (101.1) (-40 +85) M17/97-RG210 17-668-83 AA-4763 SCCS Air-space 34SC FG Braid-V NA 0.050 93 +/- 5 13.5 1,000 -67 +392 3 GHz
0.0253 PTFE 0.175 0.242 UnSwept
M17/74-RG215 17-804-77 AA-3407 BC 7/.0296” PE 33BC PVC-IIA Alum.Braid 0.138 50 +/- 2 30.8 5,000 -40 +185 0.05 - 11GHz Use M17/189-00002 (0.64) 0.146 (3.71) (4.45) (6.15) (0.074) 85 (44.3) (-55 +200)
0.0888 0.285 0.318 0.405 0.475 Swept LS/LT Jacket
(2.26) (7.24) (8.08) (10.29) (12.07) (0.206) 66 (101.1) (-40 +85) M17/100-RG133 No NA BC PE 33BC PVC-IIA NA 0.095 95 +/- 5 16.3 5,000 -40 +185 1 GHz
QPL’d 0.0253 0.285 0.318 0.405 UnSwept
M17/75-RG214 17-804-77 AA-3409 SC 7/.0296” PE 34SC:34SC PVC-IIA NA 0.130 50 +/- 2 30.8 5,000 -40 +185 0.05 - 11GHz Use M17/190-00001 Source (0.64) (7.24) (8.08) (10.29) (0.142) 66 (53.5) (-40 +85)
0.0888 0.285 0.343 0.425 Swept LS/LT Jacket
(2.26) (7.24) (8.71) (10.80) (0.194) 66 (101.1) (-40 +85) M17/109-RG301 No NA HR 7/.0203” PTFE 36HR FEP-IX NA 0.056 50 +/- 2 29.4 3,000 -67 +392 3 GHz
QPL’d 0.0609 0.185 0.208 0.245 UnSwept
M17/75-RG365 17-984-85 AA-4761 SC 7/.0296” PE 34SC:34SC TPE NA 0.130 50 +/-2 30.8 5,000 -67 +185 0.05 - 11GHz Source (1.55) (4.70) (5.28) (6.22) (0.083) 69.5 (96.5) (-55 +200)
0.0888 0.285 0.343 0.425 Swept
(2.26) (7.24) (8.71) (10.80) (0.194) 66 (101.1) (-55 +85) M17/110-RG302 17-425-84 AA-3826 SCCS PTFE 36SC FEP-IX NA 0.040 75 +/- 3 19.5 2,300 -67 +392 3 GHz
0.0253 0.146 0.169 0.202 UnSwept
M17/77-RG216 17-108-79 AA-3823 TC 7/.0159” PE 34BC:34BC PVC-IIA NA 0.124 75 +/-3 20.6 5,000 -40 +185 3 GHz Use M17/191-00001 (0.64) (3.71) (4.29) (5.13) (0.060) 69.5 (64.0) (-55 +200)
0.0477 0.285 0.343 0.425 UnSwept LS/LT Jacket
(1.21) (7.24) (8.71) (10.80) (0.185) 66 (67.6) (-40 +85) M17/111-RG303 17-811-77 AA-3417 SCCS PTFE 36SC FEP-IX NA 0.031 50 +/- 2 29.4 1,900 -67 +392 0.05-3 GHz
0.0370 0.116 0.139 0.170 Swept
M17/78-RG217 17-1102-85 AA-3410 BC PE 33BC:33BC PVC-IIA NA 0.225 50 +/-2 30.8 7,000 -40 +185 0.05 - 3GHz Use M17-192-00001 (0.94) (2.95) (3.53) (4.32) (0.046) 69.5 (96.5) (-55 +200)
0.106 0.370 0.436 0.545 Swept LS/LT Jacket
(2.69) (9.40) (11.07) (13.84) (0.335) 66 (101.1) (-40 +85)
M17/171-00001 17-474-86 AA-4653 SCCS PTFE 34SC:34SC FEP-IX NA 0.092 50 +/-2 29.4 3,000 -67 +392 400 MHz Unswept M17/189-00001 17-05-92 AA-7287 BC 7/.0296 PE 33BC XLPE NA 0.121 50 +/-2 30.8 5,000 -22 +176 0.05-1GHz Non-halogen
0.0590 0.185 0.243 0.280 UnSwept M17/112-RG304 0.0888 0.285 0.318 0.405 Swept Low smoke
(1.50) (4.70) (6.17) (7.11) (0.138) 69.5 (96.5) (-55 +200) (2.26) (7.24) (8.08) (10.29) (0.180) 66 (101.1) (-30 +80) M17/74-RG213
M17/172-00001 17-812-77 AA-4654 SCCS 7/.0067 PTFE 38SC FEP-IX NA 0.012 50 +/-2 29.4 1,200 -67 +392 400 MHz Unswept M17/189-00002 17-05-92 AA-7288 BC 7/.0296 PE 33BC XLPE Alum. Braid 0.146 50 +/-2 30.8 5,000 -22 +176 0.05-1 GHz Armored
0.0201 0.060 0.078 0.098 UnSwept M17/113-RG316 0.0888 0.285 0.318 0.405 0.475 Swept M17/189-00001
(0.51) (1.52) (1.98) (2.49) (0.017) 69.5 (96.5) (-55 +200) (2.26) (7.24) (8.08) (10.29) (12.07) (0.217) 66 (101.1) (-30 +80)
M17/173-00001 17-813-77 AA-4655 CCS 7/.0063 PE 38TC PVC-IIA NA 0.0095 50 +/-2 30.8 1,500 -40 +185 400 MHz Use M17/217-00001 M17/190-00001 17-05-92 AA-7289 SC 7/.0296 PE 34SC:34SC XLPE NA 0.154 50 +/-2 30.8 5,000 -22 +176 0.05-11 GHz Non-halogen
0.0189 0.060 0.078 0.110 UnSwept LS/LT Jacket 0.0888 0.285 0.343 0.425 Swept Low smoke
(0.48) (1.52) (1.98) (2.79) (0.014) 66 (101.1) (-40 +85) (2.26) (7.24) (8.71) (10.80) (0.229) 66 (101.1) (-30 +80) M17/75-RG214
M17/174-00001 17-429-84 AA-4656 SC 7/.0312 PTFE 34SC:34SC FEP-IX NA 0.175 50 +/-2 29.4 2,500 -67 +392 400 MHz Unswept M17/191-00001 17-05-92 AA-7290 TC 7/.0159 PE 34BC:34BC XLPE NA 0.139 75 +/-3 20.6 5,000 -22 +176 3 GHz Non-halogen
0.094 0.285 0.343 0.390 UnSwept M17/127-RG393 0.0477 0.285 0.343 0.425 UnSwept Low smoke
(2.39) (7.24) (8.71) (9.91) (0.261) 69.5 (96.5) (-55 +200) (1.21) (7.24) (8.71) (10.80) (0.207) 66 (67.6) (-30 +80) M17/77-RG216
M17/175-00001 17-671-83 AA-4657 SC 19/.008 PTFE 36SC:36SC FEP-IX NA 0.050 50 +/-2 29.4 1,900 -67 +392 400 MHz Unswept M17/192-00001 17-05-92 AA-7291 BC PE 33BC:33BC XLPE NA 0.248 50 +/-2 30.8 7,000 -22 +176 0.05-3 GHz Non-halogen
0.0384 0.116 0.162 0.195 UnSwept M17/128-RG400 0.106 0.370 0.436 0.545 Swept Low smoke
(0.98) (2.95) (4.11) (4.95) (0.074) 69.5 (96.5) (-55 +200) (2.69) (9.40) (11.07) (13.84) (0.369) 66 (101.1) (-30 +80) M17/78-RG217
M17/176-00002 Non- AA-5127 2C:SPA 19/.005 PTFE 38SCBeCu PFA-XIII NA 0.018 77 +/-3 24.0 1,000 -67 +392 10 MHz Use up to M17/192-00002 17-95-94 AA-8111 BC PE 33BC:33BC XLPE NA 0.248 50 +/-2 30.8 7,000 -22 +176 0.05-3 GHz M17/192-00001
QLP’d 0.0235 0.042 0.102 0.129 UnSwept 10 MHz maximum 0.106 0.370 0.436 0.545 Swept with temperature
(0.60) (1.07) (2.59) (3.28) (0.027) 71 (78.7) (-55 +200) (2.69) (9.40) (11.07) (13.84) (0.369) 66 (101.1) (-30 +80) cycling
M17/176-00003 No NA 2C:SPA 19/005 ETFE 38SCBeCu PFA,FEP, NA 0.016 77 +/-3 24.0 1,000 -67 +302 10 MHz Use up to M17/193-00001 17-05-92 AA-7292 BC PE 30BC XLPE NA 0.521 50 +/-2 30.8 11,000 -22 +176 0.05-1 GHz Non-halogen
QPL’d 0.0235 0.042 0.102 ETFE,ETCFE UnSwept 10 MHz maximum 0.195 0.680 0.726 0.870 Swept Low smoke
Source (0.60) (1.07) (2.59) 0.125 (3.18) (0.024) 78 (78.7) (-55 +150) (4.95) (17.27) (18.44) (22.10) (0.776) 66 (101.1) (-30 +80) M17/79-RG218
M17/177-00001 17-246-90 AA-6513 SCCS 7/.004 PTFE 38SC-FEP- FEP-IX NA 0.034 95 +/-3 15.4 1,500 -67 +392 3 GHz Use up to 3000 M17/193-00002 17-05-92 AA-7293 BC PE 30BC XLPE Alum. Braid 0.571 50 +/-2 30.8 11,000 -22 +176 0.05-1 GHz Armored
0.012 0.102 38SC 0.184 UnSwept MHz maximum 0.195 0.680 0.726 0.870 0.945 Swept M17/193-00001
(0.30) (2.59) 0.159 (4.04) (4.67) (0.051) 69.5 (50.5) (-55 +200) (4.95) (17.27) (18.44) (22.10) (24.00) (0.851) 66 (101.1) (-30 +80)
M17/178-00001 No NA SCCS 7/.004 PTFE 38SC:34NC Polyester Braid NA 0.060 95 +/-5 15.4 1,500 -67 +302 3 GHz Use up to 3000 M17/194-00001 17-05-92 AA-7294 SC PE 36SC:36SC XLPE NA 0.044 50 +/-2 30.8 1,900 -22 +176 0.04-12.4 GHz Non-halogen
QPL’d 0.012 0.102 Composite .170” 0.270 UnSwept MHz maximum 0.0350 0.116 0.160 0.212 Swept Low smoke
Source (0.30) (2.59) (4.32) (6.86) (0.089) 69.5 (50.5) (-55 +150) (0.89) (2.95) (4.11) (5.38) (0.066) 66 (101.1) (-30 +80) M17/84-RG223
M17/179-00001 No NA SCCS 7/.004 PTFE 38SC:34NC Polyester Braid NA 0.036 75 +/-3 19.5 1,200 -67 +302 3 GHz Use up to 3000 M17/195-00001 17-05-92 AA-7295 CCS Air Space 34BC:34TC XLPE NA 0.053 93 +/-5 13.5 750 -22 +176 1 GHz Non-halogen
QPL’d 0.012 0.063 Composite .123” 0.195 UnSwept MHz maximum 0.0253 PE 0.198 0.245 UnSwept Low smoke
Source (0.30) (1.60) (3.12) (4.95) (0.054) 69.5 (64.0) (-55 +150) (0.64) 0.146 (3.71) (5.03) (2.79) (0.079) 85 (44.3) (-30 +80) M17/90-RG71
M17/180-00001 17-05-92 AA-7276 CCS PE 34SC-34BC XLPE NA 0.092 75 +/-3 20.6 2,700 -22 +176 3 GHz Non-halogen M17/196-00001 17-05-92 AA7296 CCS 7/.0063 PE 38TC XLPE NA 0.009 50 +/-2 30.8 1,500 -22 +176 0.05-1 GHz Non-halogen
0.0285 0.185 0.243 0.332 UnSwept Low smoke 0.0189 0.060 0.078 0.110 Swept Low smoke
(0.72) (4.70) (6.17) (8.43) (0.137) 66 (67.6) (-30 +80) M17/2-RG6 (0.48) (1.52) (1.98) (2.79) (0.013) 66 (101.1) (-30 +80) M17/119-RG174
M17/181-00001 17-05-92 AA-7277 TC 7/.0159 PE 33BC XLPE NA 0.108 75 +/-3 20.6 5,000 -22 +176 1 GHz Non-halogen M17/197-00001 17-05-92 AA-7297 TC 19/.0072 PE 36TC XLPE NA 0.0310 50 +/-2 30.8 1,500 -22 +176 400 MHz Non-halogen
0.0477 0.285 0.318 0.405 UnSwept Low smoke 0.0355 0.116 0.139 0.195 UnSwept Low Smoke
(1.21) (7.24) (8.08) (10.29) (0.161) 66 (67.6) (-30 +80) M17/6-RG11 (0.90) (2.95) (3.53) (4.95) (0.046) 66 (101.1) (-30 +80) M17/155-00001
M17/181-00002 17-05-92 AA-7278 TC 7/.0159 PE 34BC XLPE Alum. Braid 0.132 75 +/-3 20.6 5,000 -22 +176 1 GHz Armored M17/198-00001 17-05-92 AA-7298 TC 27/.005 PE 36TC XLPE NA 0.024 50 +/-2 30.8 1,900 -22 +176 400 MHz Non-halogen
0.0477 0.285 0.318 0.405 0.475 UnSwept M17/181-00001 0.0308 0.096 0.119 0.160 UnSwept Low smoke
(1.21) (7.24) (8.08) (10.29) (12.07) (0.197) 66 (67.6) (-30 +80) (0.78) (2.44) (3.02) (4.06) (0.036) 66 (101.1) (-30 +80) M17/157-00001
M17/182-00001 17-05-92 AA-7279 2C:BC 7/.0152 PE 34TC:34TC XLPE NA 0.142 95 +/-5 16.3 1,000 -22 +176 200 MHz Non halogen M17/199-00001 17-05-92 AA-7299 SC PE 34SC:34SC XLPE NA 0.100 50 +/-2 30.8 3,000 -22 +176 400 MHz Non-halogen
0.0456 0.285 0.343 0.405 UnSwept Low smoke 0.0556 0.185 0.243 0.332 UnSwept Low smoke
(1.16) (7.24) (8.71) (10.67) (0.212) 66 (53.5) (-30 +80) M17/15-RG22 (1.41) (4.70) (6.17) (8.43) (0.149) 66 (101.1) (-30 +80) M17/162-00001
M17/182-00002 17-05-92 AA-7280 2C:BC 7/.0152 PE 34TC:34TC XLPE Alum. Braid 0.169 95 +/-5 16.3 1,000 -22 +176 200 MHz Armored M17/200-00001 17-05-92 AA-7300 SC PE 36SC:36SC XLPE NA 0.044 50 +/-2 30.8 1,900 -22 +176 400 MHz Non-halogen
0.0456 0.285 0.343 0.420 0.490 UnSwept M17/182-00001 0.0350 0.116 0.162 0.212 UnSwept Low smoke
(1.16) (7.24) (8.71) (10.67) (12.45) (0.252) 66 (53.5) (-30 +80) ((0.89) (2.95) (4.11) (5.38) (0.066) 66 (101.1) (-30 +80) M17/167-00001
M17/183-00001 17-05-92 AA-7281 TC 19/.0072 PE 36TC XLPE NA 0.030 50 +/-2 30.8 1,900 -22 +176 0.05-1 GHz Non-halogen M17/201-00001 No NA 2C:SPA 19/.005 XLETFE 38TC XLETFE NA 0.0142 77 +/-5 30.0 600 -85 +302 1 MHz Single Shield
0.0355 0.116 0.139 0.195 Swept Low smoke QPL’d (0.0248) 0.052 0.070 0.137 UnSwept Data Bus Cable
(0.90) (2.95) (3.53) (4.95) (0.045) 66 (101.1) (-30 +80) M17/28-RG58 Source (0.63) (1.32) (1.78) (3.48) (0.021) 66 (98.4) (-65 +150)
M17/171-00001 17-474-86 AA-4653 SCCS PTFE 34SC:34SC FEP-IX NA 0.092 50 +/-2 29.4 3,000 -67 +392 400 MHz Unswept M17/189-00001 17-05-92 AA-7287 BC 7/.0296 PE 33BC XLPE NA 0.121 50 +/-2 30.8 5,000 -22 +176 0.05-1GHz Non-halogen
0.0590 0.185 0.243 0.280 UnSwept M17/112-RG304 0.0888 0.285 0.318 0.405 Swept Low smoke
(1.50) (4.70) (6.17) (7.11) (0.138) 69.5 (96.5) (-55 +200) (2.26) (7.24) (8.08) (10.29) (0.180) 66 (101.1) (-30 +80) M17/74-RG213
M17/172-00001 17-812-77 AA-4654 SCCS 7/.0067 PTFE 38SC FEP-IX NA 0.012 50 +/-2 29.4 1,200 -67 +392 400 MHz Unswept M17/189-00002 17-05-92 AA-7288 BC 7/.0296 PE 33BC XLPE Alum. Braid 0.146 50 +/-2 30.8 5,000 -22 +176 0.05-1 GHz Armored
0.0201 0.060 0.078 0.098 UnSwept M17/113-RG316 0.0888 0.285 0.318 0.405 0.475 Swept M17/189-00001
(0.51) (1.52) (1.98) (2.49) (0.017) 69.5 (96.5) (-55 +200) (2.26) (7.24) (8.08) (10.29) (12.07) (0.217) 66 (101.1) (-30 +80)
M17/173-00001 17-813-77 AA-4655 CCS 7/.0063 PE 38TC PVC-IIA NA 0.0095 50 +/-2 30.8 1,500 -40 +185 400 MHz Use M17/217-00001 M17/190-00001 17-05-92 AA-7289 SC 7/.0296 PE 34SC:34SC XLPE NA 0.154 50 +/-2 30.8 5,000 -22 +176 0.05-11 GHz Non-halogen
0.0189 0.060 0.078 0.110 UnSwept LS/LT Jacket 0.0888 0.285 0.343 0.425 Swept Low smoke
(0.48) (1.52) (1.98) (2.79) (0.014) 66 (101.1) (-40 +85) (2.26) (7.24) (8.71) (10.80) (0.229) 66 (101.1) (-30 +80) M17/75-RG214
M17/174-00001 17-429-84 AA-4656 SC 7/.0312 PTFE 34SC:34SC FEP-IX NA 0.175 50 +/-2 29.4 2,500 -67 +392 400 MHz Unswept M17/191-00001 17-05-92 AA-7290 TC 7/.0159 PE 34BC:34BC XLPE NA 0.139 75 +/-3 20.6 5,000 -22 +176 3 GHz Non-halogen
0.094 0.285 0.343 0.390 UnSwept M17/127-RG393 0.0477 0.285 0.343 0.425 UnSwept Low smoke
(2.39) (7.24) (8.71) (9.91) (0.261) 69.5 (96.5) (-55 +200) (1.21) (7.24) (8.71) (10.80) (0.207) 66 (67.6) (-30 +80) M17/77-RG216
M17/175-00001 17-671-83 AA-4657 SC 19/.008 PTFE 36SC:36SC FEP-IX NA 0.050 50 +/-2 29.4 1,900 -67 +392 400 MHz Unswept M17/192-00001 17-05-92 AA-7291 BC PE 33BC:33BC XLPE NA 0.248 50 +/-2 30.8 7,000 -22 +176 0.05-3 GHz Non-halogen
0.0384 0.116 0.162 0.195 UnSwept M17/128-RG400 0.106 0.370 0.436 0.545 Swept Low smoke
(0.98) (2.95) (4.11) (4.95) (0.074) 69.5 (96.5) (-55 +200) (2.69) (9.40) (11.07) (13.84) (0.369) 66 (101.1) (-30 +80) M17/78-RG217
M17/176-00002 Non- AA-5127 2C:SPA 19/.005 PTFE 38SCBeCu PFA-XIII NA 0.018 77 +/-3 24.0 1,000 -67 +392 10 MHz Use up to M17/192-00002 17-95-94 AA-8111 BC PE 33BC:33BC XLPE NA 0.248 50 +/-2 30.8 7,000 -22 +176 0.05-3 GHz M17/192-00001
QLP’d 0.0235 0.042 0.102 0.129 UnSwept 10 MHz maximum 0.106 0.370 0.436 0.545 Swept with temperature
(0.60) (1.07) (2.59) (3.28) (0.027) 71 (78.7) (-55 +200) (2.69) (9.40) (11.07) (13.84) (0.369) 66 (101.1) (-30 +80) cycling
M17/176-00003 No NA 2C:SPA 19/005 ETFE 38SCBeCu PFA,FEP, NA 0.016 77 +/-3 24.0 1,000 -67 +302 10 MHz Use up to M17/193-00001 17-05-92 AA-7292 BC PE 30BC XLPE NA 0.521 50 +/-2 30.8 11,000 -22 +176 0.05-1 GHz Non-halogen
QPL’d 0.0235 0.042 0.102 ETFE,ETCFE UnSwept 10 MHz maximum 0.195 0.680 0.726 0.870 Swept Low smoke
Source (0.60) (1.07) (2.59) 0.125 (3.18) (0.024) 78 (78.7) (-55 +150) (4.95) (17.27) (18.44) (22.10) (0.776) 66 (101.1) (-30 +80) M17/79-RG218
M17/177-00001 17-246-90 AA-6513 SCCS 7/.004 PTFE 38SC-FEP- FEP-IX NA 0.034 95 +/-3 15.4 1,500 -67 +392 3 GHz Use up to 3000 M17/193-00002 17-05-92 AA-7293 BC PE 30BC XLPE Alum. Braid 0.571 50 +/-2 30.8 11,000 -22 +176 0.05-1 GHz Armored
0.012 0.102 38SC 0.184 UnSwept MHz maximum 0.195 0.680 0.726 0.870 0.945 Swept M17/193-00001
(0.30) (2.59) 0.159 (4.04) (4.67) (0.051) 69.5 (50.5) (-55 +200) (4.95) (17.27) (18.44) (22.10) (24.00) (0.851) 66 (101.1) (-30 +80)
M17/178-00001 No NA SCCS 7/.004 PTFE 38SC:34NC Polyester Braid NA 0.060 95 +/-5 15.4 1,500 -67 +302 3 GHz Use up to 3000 M17/194-00001 17-05-92 AA-7294 SC PE 36SC:36SC XLPE NA 0.044 50 +/-2 30.8 1,900 -22 +176 0.04-12.4 GHz Non-halogen
QPL’d 0.012 0.102 Composite .170” 0.270 UnSwept MHz maximum 0.0350 0.116 0.160 0.212 Swept Low smoke
Source (0.30) (2.59) (4.32) (6.86) (0.089) 69.5 (50.5) (-55 +150) (0.89) (2.95) (4.11) (5.38) (0.066) 66 (101.1) (-30 +80) M17/84-RG223
M17/179-00001 No NA SCCS 7/.004 PTFE 38SC:34NC Polyester Braid NA 0.036 75 +/-3 19.5 1,200 -67 +302 3 GHz Use up to 3000 M17/195-00001 17-05-92 AA-7295 CCS Air Space 34BC:34TC XLPE NA 0.053 93 +/-5 13.5 750 -22 +176 1 GHz Non-halogen
QPL’d 0.012 0.063 Composite .123” 0.195 UnSwept MHz maximum 0.0253 PE 0.198 0.245 UnSwept Low smoke
Source (0.30) (1.60) (3.12) (4.95) (0.054) 69.5 (64.0) (-55 +150) (0.64) 0.146 (3.71) (5.03) (2.79) (0.079) 85 (44.3) (-30 +80) M17/90-RG71
M17/180-00001 17-05-92 AA-7276 CCS PE 34SC-34BC XLPE NA 0.092 75 +/-3 20.6 2,700 -22 +176 3 GHz Non-halogen M17/196-00001 17-05-92 AA7296 CCS 7/.0063 PE 38TC XLPE NA 0.009 50 +/-2 30.8 1,500 -22 +176 0.05-1 GHz Non-halogen
0.0285 0.185 0.243 0.332 UnSwept Low smoke 0.0189 0.060 0.078 0.110 Swept Low smoke
(0.72) (4.70) (6.17) (8.43) (0.137) 66 (67.6) (-30 +80) M17/2-RG6 (0.48) (1.52) (1.98) (2.79) (0.013) 66 (101.1) (-30 +80) M17/119-RG174
M17/181-00001 17-05-92 AA-7277 TC 7/.0159 PE 33BC XLPE NA 0.108 75 +/-3 20.6 5,000 -22 +176 1 GHz Non-halogen M17/197-00001 17-05-92 AA-7297 TC 19/.0072 PE 36TC XLPE NA 0.0310 50 +/-2 30.8 1,500 -22 +176 400 MHz Non-halogen
0.0477 0.285 0.318 0.405 UnSwept Low smoke 0.0355 0.116 0.139 0.195 UnSwept Low Smoke
(1.21) (7.24) (8.08) (10.29) (0.161) 66 (67.6) (-30 +80) M17/6-RG11 (0.90) (2.95) (3.53) (4.95) (0.046) 66 (101.1) (-30 +80) M17/155-00001
M17/181-00002 17-05-92 AA-7278 TC 7/.0159 PE 34BC XLPE Alum. Braid 0.132 75 +/-3 20.6 5,000 -22 +176 1 GHz Armored M17/198-00001 17-05-92 AA-7298 TC 27/.005 PE 36TC XLPE NA 0.024 50 +/-2 30.8 1,900 -22 +176 400 MHz Non-halogen
0.0477 0.285 0.318 0.405 0.475 UnSwept M17/181-00001 0.0308 0.096 0.119 0.160 UnSwept Low smoke
(1.21) (7.24) (8.08) (10.29) (12.07) (0.197) 66 (67.6) (-30 +80) (0.78) (2.44) (3.02) (4.06) (0.036) 66 (101.1) (-30 +80) M17/157-00001
M17/182-00001 17-05-92 AA-7279 2C:BC 7/.0152 PE 34TC:34TC XLPE NA 0.142 95 +/-5 16.3 1,000 -22 +176 200 MHz Non halogen M17/199-00001 17-05-92 AA-7299 SC PE 34SC:34SC XLPE NA 0.100 50 +/-2 30.8 3,000 -22 +176 400 MHz Non-halogen
0.0456 0.285 0.343 0.405 UnSwept Low smoke 0.0556 0.185 0.243 0.332 UnSwept Low smoke
(1.16) (7.24) (8.71) (10.67) (0.212) 66 (53.5) (-30 +80) M17/15-RG22 (1.41) (4.70) (6.17) (8.43) (0.149) 66 (101.1) (-30 +80) M17/162-00001
M17/182-00002 17-05-92 AA-7280 2C:BC 7/.0152 PE 34TC:34TC XLPE Alum. Braid 0.169 95 +/-5 16.3 1,000 -22 +176 200 MHz Armored M17/200-00001 17-05-92 AA-7300 SC PE 36SC:36SC XLPE NA 0.044 50 +/-2 30.8 1,900 -22 +176 400 MHz Non-halogen
0.0456 0.285 0.343 0.420 0.490 UnSwept M17/182-00001 0.0350 0.116 0.162 0.212 UnSwept Low smoke
(1.16) (7.24) (8.71) (10.67) (12.45) (0.252) 66 (53.5) (-30 +80) ((0.89) (2.95) (4.11) (5.38) (0.066) 66 (101.1) (-30 +80) M17/167-00001
M17/183-00001 17-05-92 AA-7281 TC 19/.0072 PE 36TC XLPE NA 0.030 50 +/-2 30.8 1,900 -22 +176 0.05-1 GHz Non-halogen M17/201-00001 No NA 2C:SPA 19/.005 XLETFE 38TC XLETFE NA 0.0142 77 +/-5 30.0 600 -85 +302 1 MHz Single Shield
0.0355 0.116 0.139 0.195 Swept Low smoke QPL’d (0.0248) 0.052 0.070 0.137 UnSwept Data Bus Cable
(0.90) (2.95) (3.53) (4.95) (0.045) 66 (101.1) (-30 +80) M17/28-RG58 Source (0.63) (1.32) (1.78) (3.48) (0.021) 66 (98.4) (-65 +150)
M17/201-00002 No NA 2C:SPA 19/.0063 XLETFE 38TC XLETFE NA 0.0219 77 +/-5 30.0 600 -85 +302 1 MHz Single Shield M17/218-00002 17-05-92 AA-8072 BCCS Air Spaced PE 33BC XLPE Alum. Braid 0.138 125 +/-6 11.0 750 -40 +176 1 GHz Armored
QPL’d 0.0312 0.064 0.087 0.165 UnSwept Data Bus Cable 0.0253 0.285 0.318 0.405 0.475 UnSwept M17/218-00001
Source (0.79) (1.63) (2.21) (4.19) (0.033) 66 (98.4) (-65+150) (0.64) (7.24) (8.08) (10.29) (12.07) (.206) 86 (36.1) (-40 +80)
M17/201-00003 No NA 2C:SPA 19/.005 XLETFE 38TC XLETFE NA 0.0159 77 +/-5 30.0 600 -85 +302 1 MHz Single Shield M17/219-00001 Proposed NA SCCS PTFE BC Tube None NA 0.015 50 +/-1 32.0 1,700 -40 +257 0.50-50 GHz Proposed Spec
QPL’d 0.0248 0.048 0.066 0.130 UnSwept Data Bus Cable Spec 0.0232 0.076 0.096 Swept
Source (0.63) (1.22) (1.68) (3.30) (0.024) 66 (98.4) (-65+150) (0.59) (1.93) (2.44) (0.022) 59.5 -105 (-40 +125)
M17/202-00001 No NA 2C:SPA 19/.005 XLETFE 38TC: 38TC XLETFE NA 0.0262 77 +/-5 30.0 600 -85 +302 1 MHz Single Shield M17/220-00001 17-041-99 AA-8469 BC Foam PE 36TC: Al Tape XLPE NA 0.037 50 +/-2 24.5 1,000 -22 +185 0.05-2.5 GHz Non-halogen
QPL’d 0.0248 0.048 0.084 0.147 UnSwept Data Bus Cable 0.044 0.116 0.144 0.195 Swept Low smoke
Source (0.63) (1.22) (2.13) (3.73) (0.039) 66 (98.4) (-65+150) (1.12) (2.95) (3.66) (4.95) (0.055) 83 (80.4) (-30 +85) Low loss
M17/203-00001 No NA 2C:SPA 19/.005 XLETFE 38TC:38TC XLETFE NA 0.0291 77 +/-5 30.0 600 -85 +302 1 MHz Single Shield M17/220-00002 17-041-99 AA-8897 BC Foam PE 36TC: Al Tape XLPE Alum. Braid 0.051 50 +/-2 24.5 1,000 -22 +185 0.05-2.5 GHz Armored
QPL’d 0.0248 0.048 Mu Metal Interlayer 0.161 UnSwept Data Bus Cable 0.044 0.116 0.144 0.195 0.265 Swept M17/220-00001
Source (0.63) (1.22) .140” (3.56) (4.09) (0.043) 66 (98.4) (-65+150) (1.12) (2.95) (3.66) (4.95) (6.73) (0.076) 83 (80.4) (-30 +85)
M17/205-00018 No NA SC LDTFE Helical SPC Tape PFA-XIII NA 0.015 50 +/-2 27.0 1,900 -67 +392 0.05-18 GHz Consider: M17/221-00001 17-041-99 AA-8470 BC Foam PE 36TC: Al Tape XLPE NA 0.051 50 +/-2 24.2 1,500 -22 +185 0.05-2.5 GHz Non-halogen
QPL’d 0.0298 0.083 38SC: .109” 0.120 Swept TFlex 405 or 0.056 0.150 0.178 0.242 Swept Low smoke
Source (0.76) (2.11) (2.77) (3.05) (0.022) 82 (88.6) (-55 +200) TFlex 402 (1.42) (3.81) (4.52) (6.15) (0.076) 84 (79.4) (-30 +85) Low loss
M17/205-00050 No NA SC LDTFE Helical SPC Tape PFA-XIII NA 0.015 50 +/-2 27.0 1,900 -67 +392 0.05-50 GHz Consider M17/221-00002 17-041-99 AA-8898 BC Foam PE 36TC: Al Tape XLPE Alum. Braid 0.066 50 +/-2 24.2 1,500 -22 +185 0.05-2.5 GHz Armored
QPL’d 0.0298 Tape 38SC: .109” 0.120 Swept TFlex 405 or 0.056 0.150 0.178 0.242 0.312 Swept M17/221-00001
Source (0.76) 0.083 (2.11) (2.77) (3.05) (0.022) 82 (88.6) (-55 +200) TFlex 402 (1.42) (3.81) (4.52) (6.15) (7.92) (0.098) 84 (79.4) (-30 +85)
M17/206-00018 No NA SC PTFE SC Strip-Al Kptn FEP-IX NA 0.040 50 +/-2 32.0 1,900 -67 +392 0.05-18 GHz Consider: M17/222-00001 17-041-99 AA-8681 BC Foam PE 34TC: Al Tape XLPE NA 0.087 50 +/-2 24.1 2,000 -22 +185 0.05-2.5 GHz Non-halogen
QPL’d 0.0365 0.117 38SC: .154” 0.169 Swept SF-142 0.070 0.190 0.225 0.300 Swept Low smoke
Source (0.93) (2.97) (3.91) (4.29) (0.060) 69.5 (105.0) (-55 +200) (1.78) (4.83) (5.72) (7.62) (0.130) 85 (79.1) (-30 +85) Low loss
M17/206-00030 No NA SC PTFE SC Strip-Al Kptn FEP-IX NA 0.040 50 +/-2 32.0 1,900 -67 +392 0.05-30 GHz Consider: M17/222-00002 17-041-99 AA-8899 BC Foam PE 34TC: Al Tape XLPE Alum. Braid 0.105 50 +/-2 24.1 2,000 -22 +185 0.05-2.5 GHz Armored
QPL’d 0.0365 0.117 38SC: .154” 0.169 Swept SF-142 0.070 0.190 0.225 0.300 0.370 Swept M17/222-00001
Source (0.93) (2.97) (3.91) (4.29) (0.060) 69.5 (105.0) (-55 +200) (1.78) (4.83) (5.72) (7.62) (9.40) (0.158) 85 (79.1) (-30 +85)
M17/208-00001 No NA BCCS Air Space 34BC XLPE NA 0.089 185 +/-10 7.2 1,000 -40 +176 1GHz Non halogen M17/223-00001 17-041-99 AA-8471 BCCAI Foam PE 34TC: Al Tape XLPE NA 0.114 50 +/-2 23.9 3,000 -22 +185 0.05-2.5 GHz Non-halogen
QPL’d 0.007 PE 0.314 0.405 UnSwept Low smoke 0.108 0.285 0.320 0.405 Swept Low smoke
Source (0.18) 0.285 (7.24) (7.98) (10.29) (0.133) 83 (23.6) (-40 +80) M17/47-RG114 (2.74) (7.24) (8.13) (10.29) (0.170) 85 (78.4) (-30 +85) Low loss
M17/209-00001 No NA BCCS PE 30BC XLPE NA 0.505 75 +/-3 22.0 10,000 -40 +176 1GHz Non halogen M17/223-00002 17-041-99 AA-8900 BCCAI Foam PE 34TC: Al Tape XLPE Alum. Braid 0.140 50 +/-2 23.9 3,000 -22 +185 0.05-2.5 GHz Armored
QPL’d 0.1054 0.680 0.726 0.670 UnSwept Low smoke 0.108 0.285 0.320 0.405 0.475 Swept M17/223-00001
Source (2.68) (17.27) (18.44) (22.10) (0.752) 66 (72.2) (-40 +80) M17/64-RG164 (2.74) (7.24) (8.13) (10.29) (12.07) (0.209) 85 (78.4) (-30 +85)
M17/210-00001 17-05-92 AA-3404 BC PE 34SC:34SC XLPE NA 0.572 50 +/-2 32.2 11,000 -40 +176 1GHz Non halogen M17/224-00001 17-041-99 AA-8472 BCCAI Foam PE 30TC: Al Tape XLPE NA 0.132 50 +/-2 23.6 4,000 -22 +185 0.05-2.5 GHz Non-halogen
0.195 0.680 0.738 0.895 UnSwept Low smoke 0.142 0.370 0.409 0.500 Swept Low smoke
(4.95) (17.27) (18.75) (22.73) (0.852) 66 (105.6) (-40 +80) M17/67-RG177 (3.61) (9.40) (10.39) (12.70) (0.197) 86 (77.4) (-30 +85) Low loss
M17/211-00001 17-05-92 AA-8063 TC 7/.0159 CPE & PE 34TC XLPE NA 0.110 72 +/-3 24.0 5,000 -40 +176 1 GHz Non halogen M17/224-00002 17-041-99 AA-8901 BCCAI Foam PE 34TC: Al Tape XLPE Alum. Braid 0.163 50 +/-2 23.6 4,000 -22 +185 0.05-2.5 GHz Armored
0.0477 0.295 0.324 0.405 UnSwept Low smoke 0.142 0.370 0.409 0.500 0.570 Swept M17/224-00001
(1.21) (7.49) (8.23) (10.29) (0.164) 63 (78.7) (-40 +80) M17/126-RG391 (3.61) (9.40) (10.39) (12.70) (14.48) (0.243) 86 (77.4) (-30 +85)
M17/211-00002 17-05-92 AA-8064 BC 7/.0159 CPE & PE 34 TC XLPE Alum. Braid 0.135 72 +/-3 24.0 5,000 -40 +176 1 GHz Armored M17/225-00001 17-041-99 AA-8473 BCCAI Foam PE 34TC: Al Tape XLPE NA 0.168 50 +/-2 23.4 5,000 -22 +185 0.05-2.5 GHz Non-halogen
0.0477 0.295 0.324 0.405 0.475 UnSwept M17/211-00001 0.176 0.455 0.490 0.590 Swept Low smoke
(1.21) (7.49) (8.23) (10.29) (12.07) (0.201) 63 (78.7) (-40 +80) (4.47) (11.56) (12.45) (14.99) (0.250) 87 (76.8) (-30 +85) Low loss
M17/211-00003 QPL AA-9422 BC 7/.0159 CPE&PE 34TC XLPE 0.110 72 +/-3 24.0 5,000 -40 +176 1GHz M17/225-00002 17-041-99 AA-8902 BCCAI Foam PE 34TC: Al Tape XLPE Alum. Braid 0.204 50 +/-2 23.4 5,000 -22 +185 0.05-2.5 GHz Armored
Pending 0.0477 0.295 0.324 0.405 NA Unswept M17/211-00001 0.176 0.455 0.490 0.590 0.665 Swept M17/225-00001
(1.21) (17.27) (8.23) (10.29) (0.201) 63 (78.7) (-40 +80) +IR Spec. (4.47) (11.56) (12.45) (14.99) (16.89) (0.304) 87 (76.8) (-30 +85)
M17/212-00001 17-05-92 AA-8065 BC PE 34SC:34SC XLPE NA 0.572 50 +/-2 32.2 11,000 -40 +176 400 MHz Non halogen M17/226-00001 17-041-99 AA-8474 BC Tube Foam PE 30TC: Al Tape XLPE NA 0.375 50 +/-2 23.4 7,000 -22 +185 0.05-2.5 GHz Non-halogen
0.195 0.680 0.738 0.895 UnSwept Low smoke 0.262 0.680 0.732 0.870 Swept Low smoke
(4.95) (17.27) (18.75) (22.73) (0.852) 66 (105.6) (-40 +80) M17/160-00001 (6.65) (17.27) (18.59) (22.10) (0.559) 87 (76.8) (-30 +85) Low loss
M17/213-00001 17-05-92 AA-8066 BC 7/.0296 PE 33BC XLPE NA 0.121 50 +/-2 32.2 5,000 -40 +176 400 MHz Non halogen M17/226-00002 17-041-99 AA-8903 BC Tube Foam PE 30TC: Al Tape XLPE Alum. Braid 0.427 50 +/-2 23.4 7,000 -22 +185 0.05-2.5 GHz Armored
0.0888 0.285 0.318 0.405 UnSwept Low smoke 0.262 0.680 0.732 0.870 0.945 Swept M17/226-00001
(2.26) (7.24) (8.08) (10.29) (0.180) 66 (105.6) (-40 +80) M17/163-00001 (6.65) (17.27) (18.59) (22.10) (24.00) (0.636) 87 (76.8) (-30 +85)
M17/214-00001 17-05-92 AA-8067 SC 7/.0296 PE 34SC:34SC XLPE NA 0.154 50 +/-2 32.2 7,000 -40 +176 400 MHz Non halogen M17/227-00001 17-041-99 AA-8475 BC Tube Foam PE 30TC: Al Tape XLPE NA 0.686 50 +/-2 23.1 8,000 -22 +185 0.05-2.5 GHz Non-halogen
0.888 0.285 0.343 0.425 UnSwept Low smoke 0.349 0.920 0.972 1.200 Swept Low smoke
(2.26) (7.24) (8.71) (10.80) (0.229) 66 (105.6) (-40 +80) M17/164-00001 (8.86) (23.37) (24.69) (30.48) (1.022) 88 (75.8) (-30 +85) Low loss
M17/215-00001 17-05-92 AA-8068 BC PE 33BC:33BC XLPE NA 0.248 50 +/-2 32.2 7,000 -40 +176 400 MHz Non halogen M17/227-00002 17-041-99 AA-8904 BC Tube Foam PE 30TC: Al Tape XLPE Alum. Braid 0.758 50 +/-2 23.1 8,000 -22 +185 0.05-2.5 GHz Armored
0.1060 0.370 0.403 0.545 UnSwept Low smoke 0.349 0.920 0.972 1.200 1.300 Swept M17/227-00001
(2.69) (9.40) (10.24) (13.84) (0.369) 66 (105.6) (-40 +80) M17/165-00001 (8.86) (23.37) (24.69) (30.48) (33.02) (1.129) 88 (75.8) (-30 +85)
M17/216-00001 17-05-92 AA-8069 BC PE 30BC XLPE NA 0.521 50 +/-2 32.2 11,000 -40 +176 400 MHz Non halogen M17/228-00001 17-041-99 AA-8476 BC Tube Foam PE 30TC: Al Tape XLPE NA 1.05 50 +/-2 22.8 10,000 -22 +185 0.05-2.5 GHz Non-halogen
0.195 0.680 0.726 0.870 UnSwept Low smoke 0.527 1.350 1.401 1.670 Swept Low smoke
(4.95) (17.27) (18.44) (22.10) (0.776) 66 (105.6) (-40 +80) M17/166-00001 (13.39) (34.29) (35.59) (42.42) (1.564) 89 (74.8) (-30 +85) Low loss
M17/217-00001 17-05-92 AA-8070 BCCS 7/.0063 PE 38TC XLPE NA 0.010 50 +/-2 32.2 1,500 -40 +176 400 MHz Non halogen M17/228-00002 17-041-99 AA-8905 BC Tube Foam PE 30TC: Al Tape XLPE Alum. Braid 1.13 50 +/-2 22.8 10,000 -22 +185 0.05-2.5 GHz Armored
0.0189 0.060 0.078 0.110 UnSwept Low smoke 0.527 1.350 1.401 1.670 1.300 Swept M17/228-00001
(0.48) (1.52) (1.98) (2.79) (0.015) 66 (105.6) (-40 +80) M17/173-00001 (13.39) (34.29) (35.59) (42.42) (33.02) (1.683) 89 (74.8) (-30 +85)
M17/218-00001 17-05-92 AA-8071 BCCS Air Spaced PE 33BC XLPE NA 0.095 125 +/-6 11.0 750 -40 +176 1 GHz Non halogen M17/233-0001 QPL AA-9600 BC 7/.0159 CPE & PE 34 TC XLPE Magnetic 0.235 72 +/-3 24.0 5,000 -40 +176 1 GHz Magnetic Shielded
0.0253 0.285 0.318 0.405 UnSwept Low smoke Pending 0.0477 0.295 0.324 0.405 Shield +XLPE UnSwept M17/211-00003
(0.64) (7.24) (8.08) (10.29) (0.142) 86 (36.1) (-40 +80) M17/31-RG63 (1.21) (7.49) (8.23) (10.29) .560 (14.22) (0.350) 63 (78.7) (-40 +80)
M17/201-00002 No NA 2C:SPA 19/.0063 XLETFE 38TC XLETFE NA 0.0219 77 +/-5 30.0 600 -85 +302 1 MHz Single Shield M17/218-00002 17-05-92 AA-8072 BCCS Air Spaced PE 33BC XLPE Alum. Braid 0.138 125 +/-6 11.0 750 -40 +176 1 GHz Armored
QPL’d 0.0312 0.064 0.087 0.165 UnSwept Data Bus Cable 0.0253 0.285 0.318 0.405 0.475 UnSwept M17/218-00001
Source (0.79) (1.63) (2.21) (4.19) (0.033) 66 (98.4) (-65+150) (0.64) (7.24) (8.08) (10.29) (12.07) (.206) 86 (36.1) (-40 +80)
M17/201-00003 No NA 2C:SPA 19/.005 XLETFE 38TC XLETFE NA 0.0159 77 +/-5 30.0 600 -85 +302 1 MHz Single Shield M17/219-00001 Proposed NA SCCS PTFE BC Tube None NA 0.015 50 +/-1 32.0 1,700 -40 +257 0.50-50 GHz Proposed Spec
QPL’d 0.0248 0.048 0.066 0.130 UnSwept Data Bus Cable Spec 0.0232 0.076 0.096 Swept
Source (0.63) (1.22) (1.68) (3.30) (0.024) 66 (98.4) (-65+150) (0.59) (1.93) (2.44) (0.022) 59.5 -105 (-40 +125)
M17/202-00001 No NA 2C:SPA 19/.005 XLETFE 38TC: 38TC XLETFE NA 0.0262 77 +/-5 30.0 600 -85 +302 1 MHz Single Shield M17/220-00001 17-041-99 AA-8469 BC Foam PE 36TC: Al Tape XLPE NA 0.037 50 +/-2 24.5 1,000 -22 +185 0.05-2.5 GHz Non-halogen
QPL’d 0.0248 0.048 0.084 0.147 UnSwept Data Bus Cable 0.044 0.116 0.144 0.195 Swept Low smoke
Source (0.63) (1.22) (2.13) (3.73) (0.039) 66 (98.4) (-65+150) (1.12) (2.95) (3.66) (4.95) (0.055) 83 (80.4) (-30 +85) Low loss
M17/203-00001 No NA 2C:SPA 19/.005 XLETFE 38TC:38TC XLETFE NA 0.0291 77 +/-5 30.0 600 -85 +302 1 MHz Single Shield M17/220-00002 17-041-99 AA-8897 BC Foam PE 36TC: Al Tape XLPE Alum. Braid 0.051 50 +/-2 24.5 1,000 -22 +185 0.05-2.5 GHz Armored
QPL’d 0.0248 0.048 Mu Metal Interlayer 0.161 UnSwept Data Bus Cable 0.044 0.116 0.144 0.195 0.265 Swept M17/220-00001
Source (0.63) (1.22) .140” (3.56) (4.09) (0.043) 66 (98.4) (-65+150) (1.12) (2.95) (3.66) (4.95) (6.73) (0.076) 83 (80.4) (-30 +85)
M17/205-00018 No NA SC LDTFE Helical SPC Tape PFA-XIII NA 0.015 50 +/-2 27.0 1,900 -67 +392 0.05-18 GHz Consider: M17/221-00001 17-041-99 AA-8470 BC Foam PE 36TC: Al Tape XLPE NA 0.051 50 +/-2 24.2 1,500 -22 +185 0.05-2.5 GHz Non-halogen
QPL’d 0.0298 0.083 38SC: .109” 0.120 Swept TFlex 405 or 0.056 0.150 0.178 0.242 Swept Low smoke
Source (0.76) (2.11) (2.77) (3.05) (0.022) 82 (88.6) (-55 +200) TFlex 402 (1.42) (3.81) (4.52) (6.15) (0.076) 84 (79.4) (-30 +85) Low loss
M17/205-00050 No NA SC LDTFE Helical SPC Tape PFA-XIII NA 0.015 50 +/-2 27.0 1,900 -67 +392 0.05-50 GHz Consider M17/221-00002 17-041-99 AA-8898 BC Foam PE 36TC: Al Tape XLPE Alum. Braid 0.066 50 +/-2 24.2 1,500 -22 +185 0.05-2.5 GHz Armored
QPL’d 0.0298 Tape 38SC: .109” 0.120 Swept TFlex 405 or 0.056 0.150 0.178 0.242 0.312 Swept M17/221-00001
Source (0.76) 0.083 (2.11) (2.77) (3.05) (0.022) 82 (88.6) (-55 +200) TFlex 402 (1.42) (3.81) (4.52) (6.15) (7.92) (0.098) 84 (79.4) (-30 +85)
M17/206-00018 No NA SC PTFE SC Strip-Al Kptn FEP-IX NA 0.040 50 +/-2 32.0 1,900 -67 +392 0.05-18 GHz Consider: M17/222-00001 17-041-99 AA-8681 BC Foam PE 34TC: Al Tape XLPE NA 0.087 50 +/-2 24.1 2,000 -22 +185 0.05-2.5 GHz Non-halogen
QPL’d 0.0365 0.117 38SC: .154” 0.169 Swept SF-142 0.070 0.190 0.225 0.300 Swept Low smoke
Source (0.93) (2.97) (3.91) (4.29) (0.060) 69.5 (105.0) (-55 +200) (1.78) (4.83) (5.72) (7.62) (0.130) 85 (79.1) (-30 +85) Low loss
M17/206-00030 No NA SC PTFE SC Strip-Al Kptn FEP-IX NA 0.040 50 +/-2 32.0 1,900 -67 +392 0.05-30 GHz Consider: M17/222-00002 17-041-99 AA-8899 BC Foam PE 34TC: Al Tape XLPE Alum. Braid 0.105 50 +/-2 24.1 2,000 -22 +185 0.05-2.5 GHz Armored
QPL’d 0.0365 0.117 38SC: .154” 0.169 Swept SF-142 0.070 0.190 0.225 0.300 0.370 Swept M17/222-00001
Source (0.93) (2.97) (3.91) (4.29) (0.060) 69.5 (105.0) (-55 +200) (1.78) (4.83) (5.72) (7.62) (9.40) (0.158) 85 (79.1) (-30 +85)
M17/208-00001 No NA BCCS Air Space 34BC XLPE NA 0.089 185 +/-10 7.2 1,000 -40 +176 1GHz Non halogen M17/223-00001 17-041-99 AA-8471 BCCAI Foam PE 34TC: Al Tape XLPE NA 0.114 50 +/-2 23.9 3,000 -22 +185 0.05-2.5 GHz Non-halogen
QPL’d 0.007 PE 0.314 0.405 UnSwept Low smoke 0.108 0.285 0.320 0.405 Swept Low smoke
Source (0.18) 0.285 (7.24) (7.98) (10.29) (0.133) 83 (23.6) (-40 +80) M17/47-RG114 (2.74) (7.24) (8.13) (10.29) (0.170) 85 (78.4) (-30 +85) Low loss
M17/209-00001 No NA BCCS PE 30BC XLPE NA 0.505 75 +/-3 22.0 10,000 -40 +176 1GHz Non halogen M17/223-00002 17-041-99 AA-8900 BCCAI Foam PE 34TC: Al Tape XLPE Alum. Braid 0.140 50 +/-2 23.9 3,000 -22 +185 0.05-2.5 GHz Armored
QPL’d 0.1054 0.680 0.726 0.670 UnSwept Low smoke 0.108 0.285 0.320 0.405 0.475 Swept M17/223-00001
Source (2.68) (17.27) (18.44) (22.10) (0.752) 66 (72.2) (-40 +80) M17/64-RG164 (2.74) (7.24) (8.13) (10.29) (12.07) (0.209) 85 (78.4) (-30 +85)
M17/210-00001 17-05-92 AA-3404 BC PE 34SC:34SC XLPE NA 0.572 50 +/-2 32.2 11,000 -40 +176 1GHz Non halogen M17/224-00001 17-041-99 AA-8472 BCCAI Foam PE 30TC: Al Tape XLPE NA 0.132 50 +/-2 23.6 4,000 -22 +185 0.05-2.5 GHz Non-halogen
0.195 0.680 0.738 0.895 UnSwept Low smoke 0.142 0.370 0.409 0.500 Swept Low smoke
(4.95) (17.27) (18.75) (22.73) (0.852) 66 (105.6) (-40 +80) M17/67-RG177 (3.61) (9.40) (10.39) (12.70) (0.197) 86 (77.4) (-30 +85) Low loss
M17/211-00001 17-05-92 AA-8063 TC 7/.0159 CPE & PE 34TC XLPE NA 0.110 72 +/-3 24.0 5,000 -40 +176 1 GHz Non halogen M17/224-00002 17-041-99 AA-8901 BCCAI Foam PE 34TC: Al Tape XLPE Alum. Braid 0.163 50 +/-2 23.6 4,000 -22 +185 0.05-2.5 GHz Armored
0.0477 0.295 0.324 0.405 UnSwept Low smoke 0.142 0.370 0.409 0.500 0.570 Swept M17/224-00001
(1.21) (7.49) (8.23) (10.29) (0.164) 63 (78.7) (-40 +80) M17/126-RG391 (3.61) (9.40) (10.39) (12.70) (14.48) (0.243) 86 (77.4) (-30 +85)
M17/211-00002 17-05-92 AA-8064 BC 7/.0159 CPE & PE 34 TC XLPE Alum. Braid 0.135 72 +/-3 24.0 5,000 -40 +176 1 GHz Armored M17/225-00001 17-041-99 AA-8473 BCCAI Foam PE 34TC: Al Tape XLPE NA 0.168 50 +/-2 23.4 5,000 -22 +185 0.05-2.5 GHz Non-halogen
0.0477 0.295 0.324 0.405 0.475 UnSwept M17/211-00001 0.176 0.455 0.490 0.590 Swept Low smoke
(1.21) (7.49) (8.23) (10.29) (12.07) (0.201) 63 (78.7) (-40 +80) (4.47) (11.56) (12.45) (14.99) (0.250) 87 (76.8) (-30 +85) Low loss
M17/211-00003 QPL AA-9422 BC 7/.0159 CPE&PE 34TC XLPE 0.110 72 +/-3 24.0 5,000 -40 +176 1GHz M17/225-00002 17-041-99 AA-8902 BCCAI Foam PE 34TC: Al Tape XLPE Alum. Braid 0.204 50 +/-2 23.4 5,000 -22 +185 0.05-2.5 GHz Armored
Pending 0.0477 0.295 0.324 0.405 NA Unswept M17/211-00001 0.176 0.455 0.490 0.590 0.665 Swept M17/225-00001
(1.21) (17.27) (8.23) (10.29) (0.201) 63 (78.7) (-40 +80) +IR Spec. (4.47) (11.56) (12.45) (14.99) (16.89) (0.304) 87 (76.8) (-30 +85)
M17/212-00001 17-05-92 AA-8065 BC PE 34SC:34SC XLPE NA 0.572 50 +/-2 32.2 11,000 -40 +176 400 MHz Non halogen M17/226-00001 17-041-99 AA-8474 BC Tube Foam PE 30TC: Al Tape XLPE NA 0.375 50 +/-2 23.4 7,000 -22 +185 0.05-2.5 GHz Non-halogen
0.195 0.680 0.738 0.895 UnSwept Low smoke 0.262 0.680 0.732 0.870 Swept Low smoke
(4.95) (17.27) (18.75) (22.73) (0.852) 66 (105.6) (-40 +80) M17/160-00001 (6.65) (17.27) (18.59) (22.10) (0.559) 87 (76.8) (-30 +85) Low loss
M17/213-00001 17-05-92 AA-8066 BC 7/.0296 PE 33BC XLPE NA 0.121 50 +/-2 32.2 5,000 -40 +176 400 MHz Non halogen M17/226-00002 17-041-99 AA-8903 BC Tube Foam PE 30TC: Al Tape XLPE Alum. Braid 0.427 50 +/-2 23.4 7,000 -22 +185 0.05-2.5 GHz Armored
0.0888 0.285 0.318 0.405 UnSwept Low smoke 0.262 0.680 0.732 0.870 0.945 Swept M17/226-00001
(2.26) (7.24) (8.08) (10.29) (0.180) 66 (105.6) (-40 +80) M17/163-00001 (6.65) (17.27) (18.59) (22.10) (24.00) (0.636) 87 (76.8) (-30 +85)
M17/214-00001 17-05-92 AA-8067 SC 7/.0296 PE 34SC:34SC XLPE NA 0.154 50 +/-2 32.2 7,000 -40 +176 400 MHz Non halogen M17/227-00001 17-041-99 AA-8475 BC Tube Foam PE 30TC: Al Tape XLPE NA 0.686 50 +/-2 23.1 8,000 -22 +185 0.05-2.5 GHz Non-halogen
0.888 0.285 0.343 0.425 UnSwept Low smoke 0.349 0.920 0.972 1.200 Swept Low smoke
(2.26) (7.24) (8.71) (10.80) (0.229) 66 (105.6) (-40 +80) M17/164-00001 (8.86) (23.37) (24.69) (30.48) (1.022) 88 (75.8) (-30 +85) Low loss
M17/215-00001 17-05-92 AA-8068 BC PE 33BC:33BC XLPE NA 0.248 50 +/-2 32.2 7,000 -40 +176 400 MHz Non halogen M17/227-00002 17-041-99 AA-8904 BC Tube Foam PE 30TC: Al Tape XLPE Alum. Braid 0.758 50 +/-2 23.1 8,000 -22 +185 0.05-2.5 GHz Armored
0.1060 0.370 0.403 0.545 UnSwept Low smoke 0.349 0.920 0.972 1.200 1.300 Swept M17/227-00001
(2.69) (9.40) (10.24) (13.84) (0.369) 66 (105.6) (-40 +80) M17/165-00001 (8.86) (23.37) (24.69) (30.48) (33.02) (1.129) 88 (75.8) (-30 +85)
M17/216-00001 17-05-92 AA-8069 BC PE 30BC XLPE NA 0.521 50 +/-2 32.2 11,000 -40 +176 400 MHz Non halogen M17/228-00001 17-041-99 AA-8476 BC Tube Foam PE 30TC: Al Tape XLPE NA 1.05 50 +/-2 22.8 10,000 -22 +185 0.05-2.5 GHz Non-halogen
0.195 0.680 0.726 0.870 UnSwept Low smoke 0.527 1.350 1.401 1.670 Swept Low smoke
(4.95) (17.27) (18.44) (22.10) (0.776) 66 (105.6) (-40 +80) M17/166-00001 (13.39) (34.29) (35.59) (42.42) (1.564) 89 (74.8) (-30 +85) Low loss
M17/217-00001 17-05-92 AA-8070 BCCS 7/.0063 PE 38TC XLPE NA 0.010 50 +/-2 32.2 1,500 -40 +176 400 MHz Non halogen M17/228-00002 17-041-99 AA-8905 BC Tube Foam PE 30TC: Al Tape XLPE Alum. Braid 1.13 50 +/-2 22.8 10,000 -22 +185 0.05-2.5 GHz Armored
0.0189 0.060 0.078 0.110 UnSwept Low smoke 0.527 1.350 1.401 1.670 1.300 Swept M17/228-00001
(0.48) (1.52) (1.98) (2.79) (0.015) 66 (105.6) (-40 +80) M17/173-00001 (13.39) (34.29) (35.59) (42.42) (33.02) (1.683) 89 (74.8) (-30 +85)
M17/218-00001 17-05-92 AA-8071 BCCS Air Spaced PE 33BC XLPE NA 0.095 125 +/-6 11.0 750 -40 +176 1 GHz Non halogen M17/233-0001 QPL AA-9600 BC 7/.0159 CPE & PE 34 TC XLPE Magnetic 0.235 72 +/-3 24.0 5,000 -40 +176 1 GHz Magnetic Shielded
0.0253 0.285 0.318 0.405 UnSwept Low smoke Pending 0.0477 0.295 0.324 0.405 Shield +XLPE UnSwept M17/211-00003
(0.64) (7.24) (8.08) (10.29) (0.142) 86 (36.1) (-40 +80) M17/31-RG63 (1.21) (7.49) (8.23) (10.29) .560 (14.22) (0.350) 63 (78.7) (-40 +80)
8A 7/.0285 BC PE 1:BC PVC-IIA NA 0.106 52 29.6 5,000 -40 +80 Use: M17/74-RG213
Notes:
Attenuation (typical) at any Frequency = k1 x SqRt (Fmhz) + k2 (Fmhz)
0.0855 0.285 0.405
BC shielded cables used up to 1 GHz maximum due to braid oxidation over time.
TC shielded cables used up to 1 GHz maximum due to high loss of Tin Plating. 9 7/.0285 SC PE 2:SC,BC PVC-II NA 0.140 51 30.2 4,000 -40 +80 Use: M17/75-RG214
SPC shielded cables may be used up to their Cutoff Frequency. 0.0855 0.280 0.420
Maximum Frequency listed in Table is as specified by MIL-C-17.
Cutoff frequency may be higher than M17 max frequency. 9A 7/.0285 SC PE 2:SC PVC-II NA 0.140 51 30.2 4,000 -40 +80 Use: M17/75-RG214
Power Data Given for 50 ohm Cables Only. 0.0855 0.280 0.420
Power Data for SPC/PTFE based on +250C center conductor.
Power Data for PE dielectrics based on +80C center conductor. 9B 7/.0285 SC PE 2:SC PVC-IIA NA 0.150 50 30.8 5,000 -40 +80 Use: M17/75-RG214
Power Data for foam PE dielectrics based on +100C center conductor. 0.0855 0.280 0.420
DC resistance of outer conductor includes all shield layers in parallel.
Consult Factory for not listed. 10 7/.0285 BC PE 1:BC PVC-II Alum. Braid 0.146 52 29.6 4,000 -40 +80 Use: M17/74-RG215
0.0855 0.285 0.405 0.463
10A 7/.0285 BC PE 1:BC PVC-IIA Alum. Braid 0.146 52 29.6 5,000 -40 +80 Use: M17/74-RG215
0.0855 0.285 0.405 0.463
11 7/.0159 TC PE 1:BC PVC-I NA 0.096 75 20.6 4,000 -40 +80 Use: M17/6-RG11
0.0477 0.285 0.405
11A 7/.0159 TC PE 1:BC PVC-IIA NA 0.096 75 20.6 5,000 -40 +80 Use: M17/6-RG11
0.0477 0.285 0.405
12 7/.0159 TC PE 1:BC PVC-II Alum. Braid 0.141 75 20.6 4,000 -40 +80 Use: M17/6-RG12
0.0477 0.285 0.405 0.463
12A 7/.0159 TC PE 1:BC PVC-IIA Alum. Braid 0.141 75 20.6 5,000 -40 +80 Use: M17/6-RG12
0.0477 0.285 0.405 0.463
13 7/.0159 TC PE 2:BC PVC-I NA 0.126 74 20.8 4,000 -40 +80 Use: M17/77-RG216
0.0477 0.280 0.420
13A 7/.0159 TC PE 2:BC PVC-IIA NA 0.126 74 20.8 5,000 -40 +80 Use: M17/77-RG216
0.0477 0.370 0.420
14A BC PE 2:BC PVC-IIA NA 0.216 52 29.6 7,000 -40 +80 Use: M17/78-RG217
0.102 0.370 0.545
8A 7/.0285 BC PE 1:BC PVC-IIA NA 0.106 52 29.6 5,000 -40 +80 Use: M17/74-RG213
Notes:
Attenuation (typical) at any Frequency = k1 x SqRt (Fmhz) + k2 (Fmhz)
0.0855 0.285 0.405
BC shielded cables used up to 1 GHz maximum due to braid oxidation over time.
TC shielded cables used up to 1 GHz maximum due to high loss of Tin Plating. 9 7/.0285 SC PE 2:SC,BC PVC-II NA 0.140 51 30.2 4,000 -40 +80 Use: M17/75-RG214
SPC shielded cables may be used up to their Cutoff Frequency. 0.0855 0.280 0.420
Maximum Frequency listed in Table is as specified by MIL-C-17.
Cutoff frequency may be higher than M17 max frequency. 9A 7/.0285 SC PE 2:SC PVC-II NA 0.140 51 30.2 4,000 -40 +80 Use: M17/75-RG214
Power Data Given for 50 ohm Cables Only. 0.0855 0.280 0.420
Power Data for SPC/PTFE based on +250C center conductor.
Power Data for PE dielectrics based on +80C center conductor. 9B 7/.0285 SC PE 2:SC PVC-IIA NA 0.150 50 30.8 5,000 -40 +80 Use: M17/75-RG214
Power Data for foam PE dielectrics based on +100C center conductor. 0.0855 0.280 0.420
DC resistance of outer conductor includes all shield layers in parallel.
Consult Factory for not listed. 10 7/.0285 BC PE 1:BC PVC-II Alum. Braid 0.146 52 29.6 4,000 -40 +80 Use: M17/74-RG215
0.0855 0.285 0.405 0.463
10A 7/.0285 BC PE 1:BC PVC-IIA Alum. Braid 0.146 52 29.6 5,000 -40 +80 Use: M17/74-RG215
0.0855 0.285 0.405 0.463
11 7/.0159 TC PE 1:BC PVC-I NA 0.096 75 20.6 4,000 -40 +80 Use: M17/6-RG11
0.0477 0.285 0.405
11A 7/.0159 TC PE 1:BC PVC-IIA NA 0.096 75 20.6 5,000 -40 +80 Use: M17/6-RG11
0.0477 0.285 0.405
12 7/.0159 TC PE 1:BC PVC-II Alum. Braid 0.141 75 20.6 4,000 -40 +80 Use: M17/6-RG12
0.0477 0.285 0.405 0.463
12A 7/.0159 TC PE 1:BC PVC-IIA Alum. Braid 0.141 75 20.6 5,000 -40 +80 Use: M17/6-RG12
0.0477 0.285 0.405 0.463
13 7/.0159 TC PE 2:BC PVC-I NA 0.126 74 20.8 4,000 -40 +80 Use: M17/77-RG216
0.0477 0.280 0.420
13A 7/.0159 TC PE 2:BC PVC-IIA NA 0.126 74 20.8 5,000 -40 +80 Use: M17/77-RG216
0.0477 0.370 0.420
14A BC PE 2:BC PVC-IIA NA 0.216 52 29.6 7,000 -40 +80 Use: M17/78-RG217
0.102 0.370 0.545
16 BC tube PE 1:BC PVC-I NA 0.254 52 29.6 6,000 -40 +80 29 BC PE 1:TC PE-III NA 0.021 53.5 28.8 1,900 -55 +80 Use: M17/28-RG58
0.125 0.460 0.630 0.032 0.116 0.184
17 BC PE 1:BC PVC-II NA 0.460 52 29.6 11,000 -40 +80 Use: M17/79-RG218 30 BC 7/.0159 PIB 1:BC PVC-I NA 0.044 50 27.0 1,500 -40 +80 Use: M17/73-RG212
0.188 0.680 0.870 0.0477 0.185 0.250
17A BC PE 1:BC PVC-IIA NA 0.460 52 29.6 11,000 -40 +80 Use: M17/79-RG218 31 BC 7/.0285 PIB 1:BC PVC-I NA 0.106 51 31.0 2,000 -40 +80 Use: M17/74-RG213
0.188 0.680 0.870 0.0855 0.285 0.405
32 BC 7/.0285 PIB 1:BC PVC-I Al. Braid 0.141 51 29.0 2,000 -40 +80 Use: M17/74-RG215
17B ANCELLED, REASSIGNED NEW NOMENCLATURE RG177
C 0.0855 0.285 0.405 0.465
18 BC PE 1:BC PVC-II Alum. Braid 0.585 52 29.6 11,000 -40 +80 Use: M17/79-RG219 33 BC PE None Lead NA 0.390 51 30.2 6,000 -55 +80 Times does not supply
0.188 0.680 0.870 0.925 0.1019 0.370 0.470
18A BC PE 1:BC PVC-IIA Alum. Braid 0.585 52 29.6 11,000 -40 +80 Use: M17/79-RG219 34 BC 7/.0285 PE 1:BC PVC-I NA 0.224 71 21.7 5,200 -40 +80 Use: M17/24-RG34
0.188 0.680 0.870 0.928 0.0855 0.455 0.625
19 BC PE 1:BC PVC-II NA 0.740 52 29.6 14,000 -40 +80 Use: M17/81-00001 34A BC 7/.0249 PE 1:BC PVC-IIA NA 0.224 75 20.6 6,500 -40 +80 Use: M17/24-RG34
0.25 0.91 1.120 0.0747 0.460 0.630
19A BC PE 1:BC PVC-IIA NA 0.740 52 29.6 14,000 -40 +80 Use: M17/81-00001 34B BC 7/.0249 PE 1:BC PVC-IIA NA 0.224 75 20.6 6,500 -40 +80 Use: M17/24-RG34
0.25 0.91 1.120 0.0747 0.460 0.630
20 BC PE 1:BC PVC-II Al. Braid 0.925 52 29.6 14,000 -40 +80 Use: M17/81-00002 35 BC PE 1:BC PVC-II Al. Braid 0.525 71 21.7 10,000 -40 +80 Use: M17/64-RG35
0.25 0.91 1.120 1.178 0.1144 0.680 0.870 0.928
20A BC PE 1:BC PVC-IIA Al. Braid 0.925 52 29.6 14,000 -40 +80 Use: M17/81-00002 35A BC PE 1:BC PVC-IIA Al. Braid 0.525 75 20.6 10,000 -40 +80 Use: M17/64-RG35
0.25 0.91 1.12 1.178 0.1045 0.680 0.870 0.928
21 HR PE 2:SC PVC-II NA 0.087 53 29.0 2,700 -40 +80 35B BC PE 1:BC PVC-IIA Al. Braid 0.525 75 20.6 10,000 -40 +80 Use: M17/64-RG35
0.0508 0.185 0.332 0.1045 0.680 0.870 0.928
21A HR PE 2:SC PVC-IIA NA 0.087 53 29.0 2,700 -40 +80 36 BC PE 1:BC PVC-I Al. Braid 0.805 69 22.3 13,000 -40 +80
0.0508 0.185 0.332 0.162 0.910 1.120 1.180
22 2 : BC 7/.0152 PE 1:TC PVC-I NA 0.105 95 16.3 1,000 -40 +80 Use: M17/15-RG22 37 TC Rubber-C 1:TC PE-III NA 0.040 52.5 38.0 750 -55 +80 Times does not supply
0.0456 0.285 0.405 0.032 0.140 0.210
22A 2 : BC 7/.0152 PE 2:TC PVC-II NA 0.151 95 16.3 1,000 -40 +80 Use: M17/15-RG22 38 TC Rubber-C 2:TC PE-III NA 0.110 52.5 38.0 1,000 -55 +80 Times does not supply
0.0456 0.285 0.420 0.0453 0.196 0.312
22B 2 : BC 7/.0152 PE 2:TC PVC-IIA NA 0.151 95 16.3 1,000 -40 +80 Use: M17/15-RG22 39 CCS Rubber-C 2:TC PE-III NA 0.100 72.5 28.6 1,000 -55 +80 Times does not supply
0.0456 0.285 0.420 0.0253 0.196 0.312
23 2 : BC 7/.0285 PE, 2cores 2:BC PVC-I NA 0.490 125 12.0 3,000 -40 +80 Use: M17/16-RG23 40 CCS Rubber-C 2:TC Rubber-IV NA 0.150 72.5 28.0 1,000 -40 +80 Times does not supply
0.0855 0.380 0.650x0.945 0.0253 0.196 0.420
23A 2 : BC 7/.0285 PE, 2cores 2:BC PVC-IIA NA 0.490 125 12.0 3,000 -40 +80 Use: M17/16-RG23 41 TC 16/.010 Rubber-C 1:TC Rubber-IV NA 0.150 67.5 27.6 3,000 -40 +80 Times does not supply
0.0855 0.380 0.650x0.945 0.049 0.250 0.425
24 2 : BC 7/.0285 PE, 2 cores 2:BC PVC-IIA Al. Braid 0.670 125 12.0 3,000 -40 +80 Use: M17/16-RG24 42 Resistance wire PE 2:SC PVC-II NA 0.050 78 19.7 2,700 -40 +80 Use: M17/2-RG6
0.0855 0.380 0.650x0.945 0.708x1.003 0.0285 0.196 0.342
24A 2 : BC 7/.0285 PE, 2 cores 2:BC PVC-II Al. Braid 0.670 125 12.0 3,000 -40 +80 Use: M17/16-RG24 43 2:BC 7/.0285 Rubber-B 1:BC PVC-I NA 95 17.6 1,500 -40 +80 Use: M17/56-RG131
0.0855 0.380 0.650x0.945 0.708x1.003 0.0855 0.472 0.617
25A TC 19/.0117 Rubber-E 2:TC Rubber-IV 0.205 48 50.0 10,000 -40 +80 Times does not supply 44-47 STUD SUPPORTED RIGID LINES Times does not supply
0.0585 0.288 0.505 See MIL-HDBK 216, Para. 5.5
26A TC 19/.0117 Rubber-E 1:TC Rubber-IV Al. Braid 0.189 48 50.0 10,000 -40 +80 Times does not supply 48-53 RECTANGULAR WAVE GUIDE COVERED BY MIL-W-85 Times does not supply
0.0585 0.288 0.483 See MIL-HDBK 216, Para. 623
27A TC 19/.0185 Rubber-D 1:TC Rubber-IV Al. Braid 0.304 48 50.0 15,000 -40 +80 Times does not supply 54 BC 7/.0159 PE 1:BC PVC-I NA 0.045 58 26.5 2,500 -40 +80 Use: M17/73-RG212
0.0925 0.455 0.653 0.0477 0.185 0.275
16 BC tube PE 1:BC PVC-I NA 0.254 52 29.6 6,000 -40 +80 29 BC PE 1:TC PE-III NA 0.021 53.5 28.8 1,900 -55 +80 Use: M17/28-RG58
0.125 0.460 0.630 0.032 0.116 0.184
17 BC PE 1:BC PVC-II NA 0.460 52 29.6 11,000 -40 +80 Use: M17/79-RG218 30 BC 7/.0159 PIB 1:BC PVC-I NA 0.044 50 27.0 1,500 -40 +80 Use: M17/73-RG212
0.188 0.680 0.870 0.0477 0.185 0.250
17A BC PE 1:BC PVC-IIA NA 0.460 52 29.6 11,000 -40 +80 Use: M17/79-RG218 31 BC 7/.0285 PIB 1:BC PVC-I NA 0.106 51 31.0 2,000 -40 +80 Use: M17/74-RG213
0.188 0.680 0.870 0.0855 0.285 0.405
32 BC 7/.0285 PIB 1:BC PVC-I Al. Braid 0.141 51 29.0 2,000 -40 +80 Use: M17/74-RG215
17B ANCELLED, REASSIGNED NEW NOMENCLATURE RG177
C 0.0855 0.285 0.405 0.465
18 BC PE 1:BC PVC-II Alum. Braid 0.585 52 29.6 11,000 -40 +80 Use: M17/79-RG219 33 BC PE None Lead NA 0.390 51 30.2 6,000 -55 +80 Times does not supply
0.188 0.680 0.870 0.925 0.1019 0.370 0.470
18A BC PE 1:BC PVC-IIA Alum. Braid 0.585 52 29.6 11,000 -40 +80 Use: M17/79-RG219 34 BC 7/.0285 PE 1:BC PVC-I NA 0.224 71 21.7 5,200 -40 +80 Use: M17/24-RG34
0.188 0.680 0.870 0.928 0.0855 0.455 0.625
19 BC PE 1:BC PVC-II NA 0.740 52 29.6 14,000 -40 +80 Use: M17/81-00001 34A BC 7/.0249 PE 1:BC PVC-IIA NA 0.224 75 20.6 6,500 -40 +80 Use: M17/24-RG34
0.25 0.91 1.120 0.0747 0.460 0.630
19A BC PE 1:BC PVC-IIA NA 0.740 52 29.6 14,000 -40 +80 Use: M17/81-00001 34B BC 7/.0249 PE 1:BC PVC-IIA NA 0.224 75 20.6 6,500 -40 +80 Use: M17/24-RG34
0.25 0.91 1.120 0.0747 0.460 0.630
20 BC PE 1:BC PVC-II Al. Braid 0.925 52 29.6 14,000 -40 +80 Use: M17/81-00002 35 BC PE 1:BC PVC-II Al. Braid 0.525 71 21.7 10,000 -40 +80 Use: M17/64-RG35
0.25 0.91 1.120 1.178 0.1144 0.680 0.870 0.928
20A BC PE 1:BC PVC-IIA Al. Braid 0.925 52 29.6 14,000 -40 +80 Use: M17/81-00002 35A BC PE 1:BC PVC-IIA Al. Braid 0.525 75 20.6 10,000 -40 +80 Use: M17/64-RG35
0.25 0.91 1.12 1.178 0.1045 0.680 0.870 0.928
21 HR PE 2:SC PVC-II NA 0.087 53 29.0 2,700 -40 +80 35B BC PE 1:BC PVC-IIA Al. Braid 0.525 75 20.6 10,000 -40 +80 Use: M17/64-RG35
0.0508 0.185 0.332 0.1045 0.680 0.870 0.928
21A HR PE 2:SC PVC-IIA NA 0.087 53 29.0 2,700 -40 +80 36 BC PE 1:BC PVC-I Al. Braid 0.805 69 22.3 13,000 -40 +80
0.0508 0.185 0.332 0.162 0.910 1.120 1.180
22 2 : BC 7/.0152 PE 1:TC PVC-I NA 0.105 95 16.3 1,000 -40 +80 Use: M17/15-RG22 37 TC Rubber-C 1:TC PE-III NA 0.040 52.5 38.0 750 -55 +80 Times does not supply
0.0456 0.285 0.405 0.032 0.140 0.210
22A 2 : BC 7/.0152 PE 2:TC PVC-II NA 0.151 95 16.3 1,000 -40 +80 Use: M17/15-RG22 38 TC Rubber-C 2:TC PE-III NA 0.110 52.5 38.0 1,000 -55 +80 Times does not supply
0.0456 0.285 0.420 0.0453 0.196 0.312
22B 2 : BC 7/.0152 PE 2:TC PVC-IIA NA 0.151 95 16.3 1,000 -40 +80 Use: M17/15-RG22 39 CCS Rubber-C 2:TC PE-III NA 0.100 72.5 28.6 1,000 -55 +80 Times does not supply
0.0456 0.285 0.420 0.0253 0.196 0.312
23 2 : BC 7/.0285 PE, 2cores 2:BC PVC-I NA 0.490 125 12.0 3,000 -40 +80 Use: M17/16-RG23 40 CCS Rubber-C 2:TC Rubber-IV NA 0.150 72.5 28.0 1,000 -40 +80 Times does not supply
0.0855 0.380 0.650x0.945 0.0253 0.196 0.420
23A 2 : BC 7/.0285 PE, 2cores 2:BC PVC-IIA NA 0.490 125 12.0 3,000 -40 +80 Use: M17/16-RG23 41 TC 16/.010 Rubber-C 1:TC Rubber-IV NA 0.150 67.5 27.6 3,000 -40 +80 Times does not supply
0.0855 0.380 0.650x0.945 0.049 0.250 0.425
24 2 : BC 7/.0285 PE, 2 cores 2:BC PVC-IIA Al. Braid 0.670 125 12.0 3,000 -40 +80 Use: M17/16-RG24 42 Resistance wire PE 2:SC PVC-II NA 0.050 78 19.7 2,700 -40 +80 Use: M17/2-RG6
0.0855 0.380 0.650x0.945 0.708x1.003 0.0285 0.196 0.342
24A 2 : BC 7/.0285 PE, 2 cores 2:BC PVC-II Al. Braid 0.670 125 12.0 3,000 -40 +80 Use: M17/16-RG24 43 2:BC 7/.0285 Rubber-B 1:BC PVC-I NA 95 17.6 1,500 -40 +80 Use: M17/56-RG131
0.0855 0.380 0.650x0.945 0.708x1.003 0.0855 0.472 0.617
25A TC 19/.0117 Rubber-E 2:TC Rubber-IV 0.205 48 50.0 10,000 -40 +80 Times does not supply 44-47 STUD SUPPORTED RIGID LINES Times does not supply
0.0585 0.288 0.505 See MIL-HDBK 216, Para. 5.5
26A TC 19/.0117 Rubber-E 1:TC Rubber-IV Al. Braid 0.189 48 50.0 10,000 -40 +80 Times does not supply 48-53 RECTANGULAR WAVE GUIDE COVERED BY MIL-W-85 Times does not supply
0.0585 0.288 0.483 See MIL-HDBK 216, Para. 623
27A TC 19/.0185 Rubber-D 1:TC Rubber-IV Al. Braid 0.304 48 50.0 15,000 -40 +80 Times does not supply 54 BC 7/.0159 PE 1:BC PVC-I NA 0.045 58 26.5 2,500 -40 +80 Use: M17/73-RG212
0.0925 0.455 0.653 0.0477 0.185 0.275
54A BC 7/.0152 PE 1:TC PE-III NA 0.041 58 26.5 3,000 -55 +80 Use: M17/73-RG212 64A TC 19/.0117 Rubber-E 2:TC Rubber-IV NA 0.205 48 50.0 10,000 -40 +80 Times does not supply
0.0456 0.178 0.245 0.0585 0.288 0.460
55 BC PE 2:TC PE-III NA 0.032 53.5 28.8 1,900 -55 +80 Use: M17/84-RG223 65 0.008 Formex-F PE 1:BC PVC-I NA 0.096 950 44.0 1,000 -40 +80 Use: M17/34-RG65
0.0320 0.116 0.200 0.1280 dia Helix 0.285 0.405
55A SC PE 2:SC PVC-IIA NA 0.034 50 30.8 1,900 -40 +80 Use: M17/84-RG223 65A 0.008 Formex-F PE 1:BC PVC-IIA NA 0.096 950 44.0 1,000 -40 +80 Use: M17/34-RG65
0.0350 0.116 0.200 0.1280 dia Helix 0.285 0.405
55B SC PE 2:TC PVC-IIA NA 0.033 53.5 28.8 1,900 -55 +80 Use: M17/84-RG223 66-69 RECTANGULAR WAVE GUIDE COVERED BY MIL-W-25 Times does not supply
0.0320 0.116 0.200 See Mil HDBK 216, Para. 6.17 -6.23
56 TC 19/.0117 Rubber-D 2:BC PVC-I NA 0.243 48 50.0 8,000 -40 +80 Times does not supply 71 CCS Air-Space PE 2:TC PVC-I 0.046 93 13.5 750 -40 +80 Use: M17/90-RG71
0.0585 0.308 0.535 0.0253 0.146 0.245
57 2:BC 7/.0285 PE 1:TC PVC-I NA 0.225 95 16.3 3,000 -40 +80 Use: M17/56-RG130 71A CCS Air-Space PE 2:TC PE-III 0.046 93 13.5 750 -55 +80 Use: M17/90-RG71
0.0855 0.472 0.625 0.0253 0.146 0.245
57A 2:BC 7/.0285 PE 1:TC PVC-IIA NA 0.225 95 16.3 3,000 -40 +80 Use: M17/56-RG130 71B CCS Air-Space PE 2:TC PE-IIIA NA 0.046 93 13.5 750 -55 +80 Use: M17/90-RG71
0.0855 0.472 0.625 0.0253 0.146 0.245
58 BC PE 1:TC PVC-I NA 0.029 53.5 28.8 1,900 -40 +80 Use: M17/28-RG58 72 CCS Air-Space PE 1:BC PVC-I NA 0.169 150 7.8 750 -40 +80 Low Capacitance
0.0320 0.116 0.195 0.0253 0.460 0.630
58A TC 19/.0071 PE 1:TC PVC-I NA 0.029 52 29.6 1,900 -40 +80 Use: M17/28-RG58 73 BC PE 2:BC Copper Braid NA 0.031 25 61.6 1,000 -55 +80 Low Impedence
0.0355 0.116 0.195 0.0650 0.116 0.175
58B BC PE 1:TC PVC-IIA NA 0.029 53.5 28.8 1,900 -40 +80 Use: M17/28-RG58 74 BC PE 2:BC PVC-II Al.Braid 0.310 52 29.6 5,500 -40 +80 Use: M17/165-00002
0.0320 0.116 0.195 0.1020 0.370 0.545 0.603
58C TC 19/.0071 PE 1:TC PVC-IIA NA 0.029 50 30.8 1,900 -40 +80 Use: M17/28-RG58 74A BC PE 2:BC PVC-IIA Al.braid 0.310 52 29.6 7,000 -40 +80 Use: M17/165-00002
0.0355 0.116 0.195 0.1020 0.370 0.545 0.603
59 CCS PE 1:BC PVC-I NA 0.032 73 21.1 2,300 -40 +80 Use: M17/29-RG59 75 RECTANGULAR WAVE GUIDE COVERED BY MIL-W-25 Times does not supply
0.0253 0.146 0.242 See Mil HDBK 216, Para. 6.17 -6.21
59A CCS PE 1:BC PVC-IIA NA 0.032 73 21.1 2,300 -40 +80 Use: M17/29-RG59 76 STUD SUPPORTED RIGID LINE NA Times does not supply
0.0253 0.146 0.242 See Mil HDBK 216, Para. 5.5
59B CCS PE 1:BC PVC-IIA NA 0.032 75 20.6 2,300 -40 +80 Use: M17/29-RG59 77A TC 19/.0117 Rubber-E 2:TC PVC-IIA NA 0.195 48 50.0 8,000 -40 +80 Times does not supply
0.0230 0.146 0.242 0.0585 0.288 0.450 peak
78A TC 19/.0117 Rubber-E 1:TC PVC-IIA NA 0.149 48 50.0 8,000 -40 +80 Times does not supply
60 Str. C Rubber-C 1:BC Rubber-IV NA 0.150 50 39.0 1,100 -40 +80 Times does not supply 0.0585 0.288 0.420 peak
0.0508 0.250 0.425
79 CCS Air-space PE 1:BC PVC-I Al. Braid 0.136 125 10.0 1,000 -40 +80 Use: M17/31-RG79
61 SPECIAL 500 OHM LINE Times does not supply 0.0253 0.285 0.405 0.463
62 CCS Air Space PE 1:BC PVC-I NA 0.038 93 13.5 750 -40 +80 Use: M17/30-RG62 79A CCS Air-space PE 1:BC PVC-I Al. Braid 0.130 125 10.0 1,000 -40 +80 Use: M17/31-RG79
0.0253 0.146 0.242 0.0253 0.285 0.405 0.463
62A CCS Air Space PE 1:BC PVC-IIA NA 0.038 93 13.5 750 -40 +80 Use: M17/30-RG62 79B CCS Air-space PE 1:BC PVC-IIA Al. Braid 0.136 125 10.0 1,000 -40 +80 Use: M17/31-RG79
0.0253 0.146 0.242 0.0253 0.285 0.405 0.463
62B CCS 7/.0080 Air Space PE 1:BC PVC-IIA NA 0.038 93 13.5 750 -40 +80 Use: M17/30-RG62 80 RIGID LINE See Mil HDBK 216 para 5.2 Times does not supply
0.0240 0.146 0.242
63 CCS Air Space PE 1:BC PVC-I NA 0.083 125 10.0 1,000 -40 +80 Use: M17/31-RG63 81 BC MGO-G None Copper Tube NA 0.172 50 37.0 3,000 >250 Times does not supply
0.0253 0.285 0.405 0.0625 0.321 .325
63A BC Air Space PE 1:BC PVC-I NA 0.083 125 10.0 1,000 -40 +80 Use: M17/31-RG63 82 BC MGO-G None Copper Tube NA 0.698 50 36.0 5,000 >250 Times does not supply
0.0253 0.285 0.405 0.1250 0.650 .750
63B CCS Air-space PE 1:BC PVC-IIA NA 0.083 125 10.0 1,000 -40 +80 Use: M17/31-RG63 83 BC PE 1:BC PVC-I NA 0.120 35 44.0 2,000 -40 +80 Low Impedance
0.0253 0.285 0.405 0.102 0.240 0.405
64 TC 19/.0117 Rubber-D 2:TC Rubber-IV NA 0.225 48 60.0 10,000 -40 +80 Times does not supply 84A BC PE 1:BC PVC-IIA Lead 1.325 75 20.6 10,000 -40 +80 Times does not supply
0.0585 0.308 0.495 0.1045 0.680 1.000
54A BC 7/.0152 PE 1:TC PE-III NA 0.041 58 26.5 3,000 -55 +80 Use: M17/73-RG212 64A TC 19/.0117 Rubber-E 2:TC Rubber-IV NA 0.205 48 50.0 10,000 -40 +80 Times does not supply
0.0456 0.178 0.245 0.0585 0.288 0.460
55 BC PE 2:TC PE-III NA 0.032 53.5 28.8 1,900 -55 +80 Use: M17/84-RG223 65 0.008 Formex-F PE 1:BC PVC-I NA 0.096 950 44.0 1,000 -40 +80 Use: M17/34-RG65
0.0320 0.116 0.200 0.1280 dia Helix 0.285 0.405
55A SC PE 2:SC PVC-IIA NA 0.034 50 30.8 1,900 -40 +80 Use: M17/84-RG223 65A 0.008 Formex-F PE 1:BC PVC-IIA NA 0.096 950 44.0 1,000 -40 +80 Use: M17/34-RG65
0.0350 0.116 0.200 0.1280 dia Helix 0.285 0.405
55B SC PE 2:TC PVC-IIA NA 0.033 53.5 28.8 1,900 -55 +80 Use: M17/84-RG223 66-69 RECTANGULAR WAVE GUIDE COVERED BY MIL-W-25 Times does not supply
0.0320 0.116 0.200 See Mil HDBK 216, Para. 6.17 -6.23
56 TC 19/.0117 Rubber-D 2:BC PVC-I NA 0.243 48 50.0 8,000 -40 +80 Times does not supply 71 CCS Air-Space PE 2:TC PVC-I 0.046 93 13.5 750 -40 +80 Use: M17/90-RG71
0.0585 0.308 0.535 0.0253 0.146 0.245
57 2:BC 7/.0285 PE 1:TC PVC-I NA 0.225 95 16.3 3,000 -40 +80 Use: M17/56-RG130 71A CCS Air-Space PE 2:TC PE-III 0.046 93 13.5 750 -55 +80 Use: M17/90-RG71
0.0855 0.472 0.625 0.0253 0.146 0.245
57A 2:BC 7/.0285 PE 1:TC PVC-IIA NA 0.225 95 16.3 3,000 -40 +80 Use: M17/56-RG130 71B CCS Air-Space PE 2:TC PE-IIIA NA 0.046 93 13.5 750 -55 +80 Use: M17/90-RG71
0.0855 0.472 0.625 0.0253 0.146 0.245
58 BC PE 1:TC PVC-I NA 0.029 53.5 28.8 1,900 -40 +80 Use: M17/28-RG58 72 CCS Air-Space PE 1:BC PVC-I NA 0.169 150 7.8 750 -40 +80 Low Capacitance
0.0320 0.116 0.195 0.0253 0.460 0.630
58A TC 19/.0071 PE 1:TC PVC-I NA 0.029 52 29.6 1,900 -40 +80 Use: M17/28-RG58 73 BC PE 2:BC Copper Braid NA 0.031 25 61.6 1,000 -55 +80 Low Impedence
0.0355 0.116 0.195 0.0650 0.116 0.175
58B BC PE 1:TC PVC-IIA NA 0.029 53.5 28.8 1,900 -40 +80 Use: M17/28-RG58 74 BC PE 2:BC PVC-II Al.Braid 0.310 52 29.6 5,500 -40 +80 Use: M17/165-00002
0.0320 0.116 0.195 0.1020 0.370 0.545 0.603
58C TC 19/.0071 PE 1:TC PVC-IIA NA 0.029 50 30.8 1,900 -40 +80 Use: M17/28-RG58 74A BC PE 2:BC PVC-IIA Al.braid 0.310 52 29.6 7,000 -40 +80 Use: M17/165-00002
0.0355 0.116 0.195 0.1020 0.370 0.545 0.603
59 CCS PE 1:BC PVC-I NA 0.032 73 21.1 2,300 -40 +80 Use: M17/29-RG59 75 RECTANGULAR WAVE GUIDE COVERED BY MIL-W-25 Times does not supply
0.0253 0.146 0.242 See Mil HDBK 216, Para. 6.17 -6.21
59A CCS PE 1:BC PVC-IIA NA 0.032 73 21.1 2,300 -40 +80 Use: M17/29-RG59 76 STUD SUPPORTED RIGID LINE NA Times does not supply
0.0253 0.146 0.242 See Mil HDBK 216, Para. 5.5
59B CCS PE 1:BC PVC-IIA NA 0.032 75 20.6 2,300 -40 +80 Use: M17/29-RG59 77A TC 19/.0117 Rubber-E 2:TC PVC-IIA NA 0.195 48 50.0 8,000 -40 +80 Times does not supply
0.0230 0.146 0.242 0.0585 0.288 0.450 peak
78A TC 19/.0117 Rubber-E 1:TC PVC-IIA NA 0.149 48 50.0 8,000 -40 +80 Times does not supply
60 Str. C Rubber-C 1:BC Rubber-IV NA 0.150 50 39.0 1,100 -40 +80 Times does not supply 0.0585 0.288 0.420 peak
0.0508 0.250 0.425
79 CCS Air-space PE 1:BC PVC-I Al. Braid 0.136 125 10.0 1,000 -40 +80 Use: M17/31-RG79
61 SPECIAL 500 OHM LINE Times does not supply 0.0253 0.285 0.405 0.463
62 CCS Air Space PE 1:BC PVC-I NA 0.038 93 13.5 750 -40 +80 Use: M17/30-RG62 79A CCS Air-space PE 1:BC PVC-I Al. Braid 0.130 125 10.0 1,000 -40 +80 Use: M17/31-RG79
0.0253 0.146 0.242 0.0253 0.285 0.405 0.463
62A CCS Air Space PE 1:BC PVC-IIA NA 0.038 93 13.5 750 -40 +80 Use: M17/30-RG62 79B CCS Air-space PE 1:BC PVC-IIA Al. Braid 0.136 125 10.0 1,000 -40 +80 Use: M17/31-RG79
0.0253 0.146 0.242 0.0253 0.285 0.405 0.463
62B CCS 7/.0080 Air Space PE 1:BC PVC-IIA NA 0.038 93 13.5 750 -40 +80 Use: M17/30-RG62 80 RIGID LINE See Mil HDBK 216 para 5.2 Times does not supply
0.0240 0.146 0.242
63 CCS Air Space PE 1:BC PVC-I NA 0.083 125 10.0 1,000 -40 +80 Use: M17/31-RG63 81 BC MGO-G None Copper Tube NA 0.172 50 37.0 3,000 >250 Times does not supply
0.0253 0.285 0.405 0.0625 0.321 .325
63A BC Air Space PE 1:BC PVC-I NA 0.083 125 10.0 1,000 -40 +80 Use: M17/31-RG63 82 BC MGO-G None Copper Tube NA 0.698 50 36.0 5,000 >250 Times does not supply
0.0253 0.285 0.405 0.1250 0.650 .750
63B CCS Air-space PE 1:BC PVC-IIA NA 0.083 125 10.0 1,000 -40 +80 Use: M17/31-RG63 83 BC PE 1:BC PVC-I NA 0.120 35 44.0 2,000 -40 +80 Low Impedance
0.0253 0.285 0.405 0.102 0.240 0.405
64 TC 19/.0117 Rubber-D 2:TC Rubber-IV NA 0.225 48 60.0 10,000 -40 +80 Times does not supply 84A BC PE 1:BC PVC-IIA Lead 1.325 75 20.6 10,000 -40 +80 Times does not supply
0.0585 0.308 0.495 0.1045 0.680 1.000
87A SC 7/.032 PTFE 2:SC FG Braid-V NA 0.180 50 29.4 5,000 -55 +250 Use: M17/127-RG393 114A CCS Air-space PE 1:BC PVC-I NA 0.087 185 6.5 1,000 -40 +80 Use: M17/47-RG114
0.0960 0.280 0.425 0.0070 0.285 0.405
88 TC 19/.0117 Rubber-E 4:TC PVC-I NA 0.211 48 50.0 10,000 -40 +80 Times does not supply 115 SC 7/.0280 Taped PTFE 2:SC FG Braid-V NA 0.148 50 29.0 5,000 -55 +250 Use: M17/168-00001
0.0585 0.288 0.515 0.0840 0.250 0.375
88A TC 19/.0117 Rubber-E 4:TC PVC-IIA NA 0.211 48 50.0 10,000 -40 +80 Times does not supply 115A SC 7/.0280 Taped PTFE 2:SC FG Braid-V NA 0.180 50 29.0 5,000 -55 +250 Use: M17/168-00001
0.0585 0.288 0.515 0.0840 0.255 0.415
88B TC 19/.0117 Rubber-E 4:TC Rubber-IV NA 0.238 48 50.0 10,000 -40 +80 Times does not supply 116 SC 7/.0320 PTFE 2:SC FG Braid-V Al. Braid 0.198 50 29.4 5,000 -55 +250 Use: M17/86-00002
0.0585 0.288 0.565 0.0960 0.280 0.475
89 CCS Air-Space PE 1:BC PVC-I NA 0.195 125 10.0 1,000 -40 +80 Use: M17/31-RG63 117 BC PTFE 1:BC FG Braid-V NA 0.641 50 29.4 7,000 -55 +250 Use: M17/72-RG211
0.0253 0.285 0.632 0.1880 0.620 .730
90 SC 7/.0201 PE 3:SC, GC, SC PVC-IIA NA 50 30.8 3,000 -40 +80 Excellent Shielding 117A BC PTFE 1:BC FG Braid-V NA 0.641 50 29.4 7,000 -55 +250 Use: M17/72-RG211
0.0603 0.195 0.425 0.1880 0.620
91 RECTANGULAR WAVE GUIDE COVERED BY MIL-W-85 Times does not supply 118 BC PTFE 1:BC FG Braid-V Al. Braid 0.682 50 29.4 7,000 -55 +250 Use: M17/161-00002
See MIL HDBK 216, Para . 6.17 -6.23 0.1880 0.620 0.780
92 RIGID COAXIAL LINE, See MIL HDBK 216 para. 5.2 Times does not supply 118A BC PTFE 1:BC FG Braid-V Al. Braid 0.682 50 29.4 7,000 -55 +250 Use: M17/161-00002
0.1880 0.620 0.780
93 BC 19/.0400 Taped PTFE 1:BC FG Braid-V NA 0.475 50 29.0 10,000 -55 +250 Use: M17/72-RG211
0.2000 0.573 0.710 119 BC PTFE 2:BC FG Braid-V NA 0.225 50 29.4 6,000 -55 +250 Use: M17/52-RG119
0.1020 0.332 0.465
94 SC 19/.0225 Taped PTFE 2:BC FG Braid-V 0.270 50 29.0 7,000 -55 +250 Use: M17/87-00001
0.1125 0.292 0.445 120 BC PTFE 2:BC FG Braid-V Al. Braid 0.282 50 29.4 6,000 -55 +250 Use: M17/52-RG120
0.1020 0.332 0.523
94A SC 19/.0254 Taped PTFE 2:BC FG Braid-V 0.445 50 29.0 7,000 -55 +250 Use: M17/87-00001
0.1270 0.370 0.500 121 ECTANGULAR WAVE GUIDE COVERED BY MIL-W-85
R Times does not supply
See MIL HDBK 216, Para 17 -6.23
95-99 RECTANGULAR WAVE GUIDE COVERED BY MIL-W-85 Times does not supply
See Mil HDBK 216, Para 6.17 -6.23 122 TC 27/.0050 PE 1:TC PVC-IIA NA 0.016 50 30.8 1,900 -40 +80 Use: M17/54-RG122
0.0300 0.096 0.160
100 BC 19/.0147 PE 1:BC PVC-I NA 0.046 35 44.0 2,000 -40 +80 Use up to 1000 MHz
0.0735 0.146 0.242 124 TCCS Taped PTFE 1:TC FG Braid-V NA 0.210 73 19.9 2,300 -55 +250 Use: M17/110-RG302
0.0253 0.135 0.240
101 BC Rubber 1:TC NA NA 75 Times does not supply
0.0641 .588 125 CCS Air-space PE 1:BC PVC-IIA NA 0.180 150 7.8 2,000 -40 +80 Low Capacitance
0.0159 0.46 0.600
102 2:BC Rubber 1:TC NA NA 140 Times does not supply
0.0808 1.088 126 HR 7/.0203 PTFE 1:HR FG Braid-V NA 0.070 50 29.4 3,000 -55 +250 Use: M17/109-RG301
0.0609 0.185 0.280
103-107 RECTANGULAR WAVE GUIDE COVERED BY MIL-W-85 Times does not supply
See MIL HDBK 216, Para. 6.17 -6.23 127 RECTANGULAR WAVE GUIDE COVERED BY MIL-W-85 Times does not supply
See MIL HDBK 216, Para. 6.17 -6.23
108 2:TC 7/.0126 PE (each) 1:TC PVC-II NA 0.032 78 19.7 1,000 -40 +80 Use: M17/45-RG108
0.0378 0.079 0.235 128 RIGID LINE See MIL HDBK 216, Para. 5.2 Times does not supply
108A 2:TC 7/.0126 PE (each) 1:TC PVC-IIA NA 0.032 78 19.7 1,000 -40 +80 Use: M17/45-RG108 129 RECTANGULAR WAVE GUIDE COVERED BY MIL-W-85 Times does not supply
0.0378 0.079 0.235 See MIL HDBK 216, Para. 6.17 -6.23
109-110 RECTANGULAR WAVE GUIDE COVERED BY MIL-W-85 Times does not supply 130 2:BC 7/.0285 PE 1:TC PVC-I NA 0.220 95 17.0 3,000 -40 +80 Use: M17/56-RG130
See MIL HDBK 216, Para. 6.17 -6.23 0.0855 0.472 0.625
111 2:BC 7/.0152 PE 2:TC PVC-II Al. Braid 0.146 95 16.3 1,000 -40 +80 Use: M17/15-RG111 131 2:BC 7/.0285 PE 1:TC PVC-I Al. Braid 0.290 95 17.0 3,000 -40 +80 Use: M17/56-RG131
0.0456 0.285 0.478 0.0855 0.472 0.625 0.683
111A 2:BC 7/.0152 PE 2:TC PVC-IIA Al. Braid 0.146 95 16.3 1,000 -40 +80 Use: M17/15-RG111 132 RECTANGULAR WAVE GUIDE COVERED BY MIL-W-85 Times does not supply
0.0456 0.285 0.478 See MIL HDBK 216, Para. 6.17 -6.23
87A SC 7/.032 PTFE 2:SC FG Braid-V NA 0.180 50 29.4 5,000 -55 +250 Use: M17/127-RG393 114A CCS Air-space PE 1:BC PVC-I NA 0.087 185 6.5 1,000 -40 +80 Use: M17/47-RG114
0.0960 0.280 0.425 0.0070 0.285 0.405
88 TC 19/.0117 Rubber-E 4:TC PVC-I NA 0.211 48 50.0 10,000 -40 +80 Times does not supply 115 SC 7/.0280 Taped PTFE 2:SC FG Braid-V NA 0.148 50 29.0 5,000 -55 +250 Use: M17/168-00001
0.0585 0.288 0.515 0.0840 0.250 0.375
88A TC 19/.0117 Rubber-E 4:TC PVC-IIA NA 0.211 48 50.0 10,000 -40 +80 Times does not supply 115A SC 7/.0280 Taped PTFE 2:SC FG Braid-V NA 0.180 50 29.0 5,000 -55 +250 Use: M17/168-00001
0.0585 0.288 0.515 0.0840 0.255 0.415
88B TC 19/.0117 Rubber-E 4:TC Rubber-IV NA 0.238 48 50.0 10,000 -40 +80 Times does not supply 116 SC 7/.0320 PTFE 2:SC FG Braid-V Al. Braid 0.198 50 29.4 5,000 -55 +250 Use: M17/86-00002
0.0585 0.288 0.565 0.0960 0.280 0.475
89 CCS Air-Space PE 1:BC PVC-I NA 0.195 125 10.0 1,000 -40 +80 Use: M17/31-RG63 117 BC PTFE 1:BC FG Braid-V NA 0.641 50 29.4 7,000 -55 +250 Use: M17/72-RG211
0.0253 0.285 0.632 0.1880 0.620 .730
90 SC 7/.0201 PE 3:SC, GC, SC PVC-IIA NA 50 30.8 3,000 -40 +80 Excellent Shielding 117A BC PTFE 1:BC FG Braid-V NA 0.641 50 29.4 7,000 -55 +250 Use: M17/72-RG211
0.0603 0.195 0.425 0.1880 0.620
91 RECTANGULAR WAVE GUIDE COVERED BY MIL-W-85 Times does not supply 118 BC PTFE 1:BC FG Braid-V Al. Braid 0.682 50 29.4 7,000 -55 +250 Use: M17/161-00002
See MIL HDBK 216, Para . 6.17 -6.23 0.1880 0.620 0.780
92 RIGID COAXIAL LINE, See MIL HDBK 216 para. 5.2 Times does not supply 118A BC PTFE 1:BC FG Braid-V Al. Braid 0.682 50 29.4 7,000 -55 +250 Use: M17/161-00002
0.1880 0.620 0.780
93 BC 19/.0400 Taped PTFE 1:BC FG Braid-V NA 0.475 50 29.0 10,000 -55 +250 Use: M17/72-RG211
0.2000 0.573 0.710 119 BC PTFE 2:BC FG Braid-V NA 0.225 50 29.4 6,000 -55 +250 Use: M17/52-RG119
0.1020 0.332 0.465
94 SC 19/.0225 Taped PTFE 2:BC FG Braid-V 0.270 50 29.0 7,000 -55 +250 Use: M17/87-00001
0.1125 0.292 0.445 120 BC PTFE 2:BC FG Braid-V Al. Braid 0.282 50 29.4 6,000 -55 +250 Use: M17/52-RG120
0.1020 0.332 0.523
94A SC 19/.0254 Taped PTFE 2:BC FG Braid-V 0.445 50 29.0 7,000 -55 +250 Use: M17/87-00001
0.1270 0.370 0.500 121 ECTANGULAR WAVE GUIDE COVERED BY MIL-W-85
R Times does not supply
See MIL HDBK 216, Para 17 -6.23
95-99 RECTANGULAR WAVE GUIDE COVERED BY MIL-W-85 Times does not supply
See Mil HDBK 216, Para 6.17 -6.23 122 TC 27/.0050 PE 1:TC PVC-IIA NA 0.016 50 30.8 1,900 -40 +80 Use: M17/54-RG122
0.0300 0.096 0.160
100 BC 19/.0147 PE 1:BC PVC-I NA 0.046 35 44.0 2,000 -40 +80 Use up to 1000 MHz
0.0735 0.146 0.242 124 TCCS Taped PTFE 1:TC FG Braid-V NA 0.210 73 19.9 2,300 -55 +250 Use: M17/110-RG302
0.0253 0.135 0.240
101 BC Rubber 1:TC NA NA 75 Times does not supply
0.0641 .588 125 CCS Air-space PE 1:BC PVC-IIA NA 0.180 150 7.8 2,000 -40 +80 Low Capacitance
0.0159 0.46 0.600
102 2:BC Rubber 1:TC NA NA 140 Times does not supply
0.0808 1.088 126 HR 7/.0203 PTFE 1:HR FG Braid-V NA 0.070 50 29.4 3,000 -55 +250 Use: M17/109-RG301
0.0609 0.185 0.280
103-107 RECTANGULAR WAVE GUIDE COVERED BY MIL-W-85 Times does not supply
See MIL HDBK 216, Para. 6.17 -6.23 127 RECTANGULAR WAVE GUIDE COVERED BY MIL-W-85 Times does not supply
See MIL HDBK 216, Para. 6.17 -6.23
108 2:TC 7/.0126 PE (each) 1:TC PVC-II NA 0.032 78 19.7 1,000 -40 +80 Use: M17/45-RG108
0.0378 0.079 0.235 128 RIGID LINE See MIL HDBK 216, Para. 5.2 Times does not supply
108A 2:TC 7/.0126 PE (each) 1:TC PVC-IIA NA 0.032 78 19.7 1,000 -40 +80 Use: M17/45-RG108 129 RECTANGULAR WAVE GUIDE COVERED BY MIL-W-85 Times does not supply
0.0378 0.079 0.235 See MIL HDBK 216, Para. 6.17 -6.23
109-110 RECTANGULAR WAVE GUIDE COVERED BY MIL-W-85 Times does not supply 130 2:BC 7/.0285 PE 1:TC PVC-I NA 0.220 95 17.0 3,000 -40 +80 Use: M17/56-RG130
See MIL HDBK 216, Para. 6.17 -6.23 0.0855 0.472 0.625
111 2:BC 7/.0152 PE 2:TC PVC-II Al. Braid 0.146 95 16.3 1,000 -40 +80 Use: M17/15-RG111 131 2:BC 7/.0285 PE 1:TC PVC-I Al. Braid 0.290 95 17.0 3,000 -40 +80 Use: M17/56-RG131
0.0456 0.285 0.478 0.0855 0.472 0.625 0.683
111A 2:BC 7/.0152 PE 2:TC PVC-IIA Al. Braid 0.146 95 16.3 1,000 -40 +80 Use: M17/15-RG111 132 RECTANGULAR WAVE GUIDE COVERED BY MIL-W-85 Times does not supply
0.0456 0.285 0.478 See MIL HDBK 216, Para. 6.17 -6.23
133A BC PE 1:TC PVC-IIA NA 0.094 95 16.3 4,000 -40 +80 Use: M17/100-RG133 160 2:TC,2:BC 19/.0142 PE 1:BC PVC-I NA 125 12.0 3,000 - 40 +80 4 conductor balanced line
0.0253 0.285 0.405 0.071 0.322 1.055
134 RIGID LINE See MIL HDBK 216, Para. 5.2 Times does not supply 161 S Cad.BR 7/.004 PTFE 1:SC Nylon NA 0.015 70 20.9 1,000 -60 +120
0.012 0.057 0.082
135-139 RECTANGULAR WAVE GUIDE COVERED BY MIL-W-85 Times does not supply 162 RIGID LINE See MIL HDBK 216, Para. 5.2 Times does not supply
See MIL HDBK 216, Para. 6.17 -6.23
140 SCCS PTFE 1:SC FG Braid-V NA 0.056 75 19.5 2,300 -55 +250 Use: M17/110-RG302 163 RECTANGULAR WAVE GUIDE COVERED BY MIL-W-85 Times does not supply
0.0250 0.146 0.233 See MIL HDBK 216, para. 6.17 - 6.23
141 SCCS PTFE 1:SC FG Braid-V NA 0.036 50 29.4 1,900 -55 +250 Use: M17/111-RG303 164 BC PE 1:BC PVC-IIA NA 0.490 75 20.6 10,000 -40 +80 Use: M17/64-RG164
0.0359 0.116 0.190 0.1045 0.680 0.870
141A SCCS PTFE 1:SC FG Braid-V NA 0.036 50 29.4 1,900 -55 +250 Use: M17/111-RG303 165 SC 7/.0320 PTFE 1:SC FG Braid-V NA 0.121 50 29.4 5,000 -55 +250 Use: M17/65-RG165
0.0390 0.116 0.190 0.0960 0.285 0.410
142 SCCS PTFE 2:SC FG Braid-V NA 0.047 50 29.4 1,900 -55 +250 Use: M17/60-RG142 166 SC 7/.0320 PTFE 1:SC FG Braid-V Al. Braid 0.144 50 29.4 5,000 -55 +250 Use: M17/65-RG166
0.0359 0.116 0.195 0.0960 0.285 0.410 0.460
142A SCCS PTFE 2:SC FG Braid-V NA 0.047 50 29.4 1,900 -55 +250 Use: M17/60-RG142 167- RECTANGULAR WAVE GUIDE COVERED BY MIL-W-85 Times does not supply
0.0390 0.116 0.195 173 See MIL HDBK 216, para. 6.17 - 6.23
142B SCCS PTFE 2:SC FEP NA 0.050 50 29.4 1,900 -55 +250 Use: M17/60-RG142 174 CCS 7/.0063 PE 1:TC PVC-I NA 0.008 50 30.8 1,500 -40 +80 Use: M17/119-RG174
0.0390 0.116 0.195 0.0189 0.060 0.100
143 SCCS PTFE 2:SC FG Braid-V NA 0.114 50 29.4 3,000 -55 +250 Use: M17/112-RG304 174A CCS 7/.0063 PE 1:TC PVC-IIA NA 0.008 50 30.8 1,500 -40 +80 Use: M17/119-RG174
0.0570 0.185 0.325 0.0189 0.060 0.100
143A SCCS PTFE 2:SC FG Braid-V NA 0.109 50 29.4 3,000 -55 +250 Use: M17/112-RG304 175 RIGID LINE Times does not supply
0.0590 0.185 0.325
144 SCCS 7/.0179 PTFE 1:SC FG Braid-V NA 0.137 75 19.5 5,000 -55 +250 Use: M17/62-RG144 176 Helix over magnetic PE 1:Magnet PVC-I NA 0.120 2240 49.0 5,000 -40 +80 Times does not supply
0.0537 0.285 0.410 core 0.135 0.285 wire 0.405
145 2:BC Air-space PE BC Tube Lead/tar NA 75 14.6 Times does not supply 177 BC PE 2:SC PVC-IIA NA 0.470 50 30.8 11,000 -40 +80 Use: M17/67-RG177
0.0720 0.1950 0.680 0.895
146 CCS Air-space PTFE 1:BC FG Braid-V NA 0.108 190 6.0 1,000 -55 +200 Low capacitance 178 SCCS 7/.0040 PTFE 1:SC KEL-F NA 0.0054 50 29.4 1,000 -40 +150 Use: M17/93-RG178
0.0070 0.285 0.375 0.0120 0.036 0.072
147 BC PE 1:BC PVC-I Al. Braid 52 29.6 14,000 -40 +80 Use: M17/81-00002 178A SCCS 7/.0040 PTFE 1:SC KEL-F NA 0.005 50 29.4 1,000 -40 +150 Use: M17/93-RG178
0.2500 0.910 1.120 1.937 0.0120 0.034 0.072
148 BC 7/.0285 PE 1:BC PVC-I Al. Braid 52 29.6 4,000 -40 +80 Use: M17/74-RG213 178B SCCS 7/.0040 PTFE 1:SC FEP-IX NA 0.0054 50 29.4 1,000 -55 +200 Use: M17/93-RG178
0.0855 0.285 0.405 0.800 0.0120 0.034 0.072
149 TC 7/.0159 PE 1:BC PVC-IIA NA 0.105 75 20.6 5,000 -40 +80 Use: M17/126-RG391 179 SCCS 7/.0040 PTFE 1:SC KEL-F NA 0.010 70 20.9 1,200 -55 +150 Use: M17/94-RG179
0.0480 0.285 0.405 0.0120 0.057 0.100
150 TC 7/.0159 PE 1:BC PVC-IIA Al. Braid 0.112 75 20.6 5,000 -40 +80 Use: M17/126-RG392 179A SCCS 7/.0040 PTFE 1:SC KEL-F NA 0.010 75 19.5 1,200 -40 +150 Use: M17/94-RG179
0.0480 0.285 0.405 0.463 0.0120 0.063 0.100
151-155 RIGID LINES COVERED BY MIL-L-3890. Times does not supply 179B SCCS 7/.0040 PTFE 1:SC FEP-IX NA 0.010 75 19.5 1,200 -55 +200 Use: M17/94-RG179
See MIL HDBK 216, para. 5.4 0.0120 0.063 0.100
156 TC 7/.0285 PE & CPE 3:TC,GS,TC PVC-IIA NA 0.211 50 32.8 10,000 -40 +80 Triaxial Pulse Cable 180 SCCS 7/.0040 PTFE 1:SC KEL-F NA 0.019 93 15.4 1,500 -40 +150 Use: M17/95-RG180
0.0855 0.285 0.540 0.0120 0.103 0.140
157 TC 19/.0201 PE & CPE 3:TC,GS,TC PVC-IIA NA 0.317 50 32.8 15,000 -40 +80 Triaxial Pulse Cable 180A SCCS 7/.0040 PTFE 1:SC KEL-F NA 0.019 95 15.4 1,500 -40 +150 Use: M17/95-RG180
0.1005 0.455 0.725 0.0120 0.102 0.140
158 TC 37/.0284 PE & C PE 3:TC,GS,TC PVC-IIA NA 0.380 25 65.5 15,000 -40 +80 Triaxial Pulse Cable 180B SCCS 7/.0040 PTFE 1:SC FEP-IX NA 0.019 95 15.4 1,500 -55 +200 Use: M17/95-RG180
0.1988 0.455 0.725 0.0120 0.102 0.140
133A BC PE 1:TC PVC-IIA NA 0.094 95 16.3 4,000 -40 +80 Use: M17/100-RG133 160 2:TC,2:BC 19/.0142 PE 1:BC PVC-I NA 125 12.0 3,000 - 40 +80 4 conductor balanced line
0.0253 0.285 0.405 0.071 0.322 1.055
134 RIGID LINE See MIL HDBK 216, Para. 5.2 Times does not supply 161 S Cad.BR 7/.004 PTFE 1:SC Nylon NA 0.015 70 20.9 1,000 -60 +120
0.012 0.057 0.082
135-139 RECTANGULAR WAVE GUIDE COVERED BY MIL-W-85 Times does not supply 162 RIGID LINE See MIL HDBK 216, Para. 5.2 Times does not supply
See MIL HDBK 216, Para. 6.17 -6.23
140 SCCS PTFE 1:SC FG Braid-V NA 0.056 75 19.5 2,300 -55 +250 Use: M17/110-RG302 163 RECTANGULAR WAVE GUIDE COVERED BY MIL-W-85 Times does not supply
0.0250 0.146 0.233 See MIL HDBK 216, para. 6.17 - 6.23
141 SCCS PTFE 1:SC FG Braid-V NA 0.036 50 29.4 1,900 -55 +250 Use: M17/111-RG303 164 BC PE 1:BC PVC-IIA NA 0.490 75 20.6 10,000 -40 +80 Use: M17/64-RG164
0.0359 0.116 0.190 0.1045 0.680 0.870
141A SCCS PTFE 1:SC FG Braid-V NA 0.036 50 29.4 1,900 -55 +250 Use: M17/111-RG303 165 SC 7/.0320 PTFE 1:SC FG Braid-V NA 0.121 50 29.4 5,000 -55 +250 Use: M17/65-RG165
0.0390 0.116 0.190 0.0960 0.285 0.410
142 SCCS PTFE 2:SC FG Braid-V NA 0.047 50 29.4 1,900 -55 +250 Use: M17/60-RG142 166 SC 7/.0320 PTFE 1:SC FG Braid-V Al. Braid 0.144 50 29.4 5,000 -55 +250 Use: M17/65-RG166
0.0359 0.116 0.195 0.0960 0.285 0.410 0.460
142A SCCS PTFE 2:SC FG Braid-V NA 0.047 50 29.4 1,900 -55 +250 Use: M17/60-RG142 167- RECTANGULAR WAVE GUIDE COVERED BY MIL-W-85 Times does not supply
0.0390 0.116 0.195 173 See MIL HDBK 216, para. 6.17 - 6.23
142B SCCS PTFE 2:SC FEP NA 0.050 50 29.4 1,900 -55 +250 Use: M17/60-RG142 174 CCS 7/.0063 PE 1:TC PVC-I NA 0.008 50 30.8 1,500 -40 +80 Use: M17/119-RG174
0.0390 0.116 0.195 0.0189 0.060 0.100
143 SCCS PTFE 2:SC FG Braid-V NA 0.114 50 29.4 3,000 -55 +250 Use: M17/112-RG304 174A CCS 7/.0063 PE 1:TC PVC-IIA NA 0.008 50 30.8 1,500 -40 +80 Use: M17/119-RG174
0.0570 0.185 0.325 0.0189 0.060 0.100
143A SCCS PTFE 2:SC FG Braid-V NA 0.109 50 29.4 3,000 -55 +250 Use: M17/112-RG304 175 RIGID LINE Times does not supply
0.0590 0.185 0.325
144 SCCS 7/.0179 PTFE 1:SC FG Braid-V NA 0.137 75 19.5 5,000 -55 +250 Use: M17/62-RG144 176 Helix over magnetic PE 1:Magnet PVC-I NA 0.120 2240 49.0 5,000 -40 +80 Times does not supply
0.0537 0.285 0.410 core 0.135 0.285 wire 0.405
145 2:BC Air-space PE BC Tube Lead/tar NA 75 14.6 Times does not supply 177 BC PE 2:SC PVC-IIA NA 0.470 50 30.8 11,000 -40 +80 Use: M17/67-RG177
0.0720 0.1950 0.680 0.895
146 CCS Air-space PTFE 1:BC FG Braid-V NA 0.108 190 6.0 1,000 -55 +200 Low capacitance 178 SCCS 7/.0040 PTFE 1:SC KEL-F NA 0.0054 50 29.4 1,000 -40 +150 Use: M17/93-RG178
0.0070 0.285 0.375 0.0120 0.036 0.072
147 BC PE 1:BC PVC-I Al. Braid 52 29.6 14,000 -40 +80 Use: M17/81-00002 178A SCCS 7/.0040 PTFE 1:SC KEL-F NA 0.005 50 29.4 1,000 -40 +150 Use: M17/93-RG178
0.2500 0.910 1.120 1.937 0.0120 0.034 0.072
148 BC 7/.0285 PE 1:BC PVC-I Al. Braid 52 29.6 4,000 -40 +80 Use: M17/74-RG213 178B SCCS 7/.0040 PTFE 1:SC FEP-IX NA 0.0054 50 29.4 1,000 -55 +200 Use: M17/93-RG178
0.0855 0.285 0.405 0.800 0.0120 0.034 0.072
149 TC 7/.0159 PE 1:BC PVC-IIA NA 0.105 75 20.6 5,000 -40 +80 Use: M17/126-RG391 179 SCCS 7/.0040 PTFE 1:SC KEL-F NA 0.010 70 20.9 1,200 -55 +150 Use: M17/94-RG179
0.0480 0.285 0.405 0.0120 0.057 0.100
150 TC 7/.0159 PE 1:BC PVC-IIA Al. Braid 0.112 75 20.6 5,000 -40 +80 Use: M17/126-RG392 179A SCCS 7/.0040 PTFE 1:SC KEL-F NA 0.010 75 19.5 1,200 -40 +150 Use: M17/94-RG179
0.0480 0.285 0.405 0.463 0.0120 0.063 0.100
151-155 RIGID LINES COVERED BY MIL-L-3890. Times does not supply 179B SCCS 7/.0040 PTFE 1:SC FEP-IX NA 0.010 75 19.5 1,200 -55 +200 Use: M17/94-RG179
See MIL HDBK 216, para. 5.4 0.0120 0.063 0.100
156 TC 7/.0285 PE & CPE 3:TC,GS,TC PVC-IIA NA 0.211 50 32.8 10,000 -40 +80 Triaxial Pulse Cable 180 SCCS 7/.0040 PTFE 1:SC KEL-F NA 0.019 93 15.4 1,500 -40 +150 Use: M17/95-RG180
0.0855 0.285 0.540 0.0120 0.103 0.140
157 TC 19/.0201 PE & CPE 3:TC,GS,TC PVC-IIA NA 0.317 50 32.8 15,000 -40 +80 Triaxial Pulse Cable 180A SCCS 7/.0040 PTFE 1:SC KEL-F NA 0.019 95 15.4 1,500 -40 +150 Use: M17/95-RG180
0.1005 0.455 0.725 0.0120 0.102 0.140
158 TC 37/.0284 PE & C PE 3:TC,GS,TC PVC-IIA NA 0.380 25 65.5 15,000 -40 +80 Triaxial Pulse Cable 180B SCCS 7/.0040 PTFE 1:SC FEP-IX NA 0.019 95 15.4 1,500 -55 +200 Use: M17/95-RG180
0.1988 0.455 0.725 0.0120 0.102 0.140
185 Mag wire Helix on Air-space PE MW PVC-IIA NA 2000 -40 +80 Delay line cable 211 BC PTFE 1:BC FG Braid-V NA 0.641 50 29.4 7,000 -55 +250 Use: M17/72-RG211
PE core 0.0031 0.188 0.282 0.1900 0.620 0.730
186 TFE Helix over core Air-space PE MW PVC-IIA NA 1000 -40 +80 Delay line cable 211A BC PTFE 1:BC FG Braid-V NA 0.641 50 29.4 7,000 -55 +250 Use: M17/72-RG211
0.008 0.292 0.405 0.1900 0.620 0.730
187 SCCS 7/.0040 PTFE 1:SC PTFE NA 0.010 75 19.5 1,200 -55 +250 Use: M17/136-00001 212 SC PE 2SC PVC-IIA NA 0.083 50 29.4 3,000 -40 +80 Use: M17/73-RG212
0.0120 0.060 0.105 0.0556 0.185 0.332
187A SCCS 7/.0040 PTFE 1:SC PTFE NA 0.010 75 19.5 1,200 -55 +250 Use: M17/136-00001 213 BC 7/.0296 PE 1:BC PVC-IIA NA 0.099 50 30.8 5,000 -40 +80 Use: M17/74-RG213
0.0120 0.060 0.105 0.0888 0.285 0.405
188 SCCS 7/.0067 PTFE 1:SC PTFE NA 0.011 50 29.4 1,200 -55 +250 Use: M17/138-00001 214 SC 7/.0296 PE 2:SC PVC-IIA NA 0.126 50 30.8 5,000 -40 +80 Use: M17/75-RG214
0.0201 0.060 0.105 0.0888 0.285 0.425
188A SCCS 7/.0067 PTFE 1:SC PTFE NA 0.011 50 29.4 1,200 -55 +250 Use: M17/138-00001 215 BC 7/.0296 PE 1:BC PVC-IIA Al. Braid 0.121 50 30.8 5,000 -40 +80 Use: M17/74-RG215
0.0201 0.060 0.105 0.0888 0.285 0.425 0.463
189 BC PS Helix 2:SC PE-IIIA NA 0.570 50 23.0 3,500 -55 +80 Use RG389 216 TC 7/.0159 PE 2:BC PVC-IIA NA 0.114 75 20.6 5,000 -40 +80 Use: M17/77-RG216
0.2510 0.632 0.875 0.0477 0.285 0.425
190 TC 19/.0117 Rubber H,J 3:TC,GS,TC Neoprene VIII NA 0.353 50 50.0 15,000 -55 +80 Times does not supply 217 BC PE 2:BC PVC-IIA NA 0.201 50 30.8 7,000 -40 +80 Use: M17/78-RG217
0.0585 0.380 0.700 0.106 0.370 0.545
191 TC Braid Rubber H,J,H 3:TC,GS,TC Neoprene VIII NA 1.469 25 85.0 15,000 -55 +80 Times does not supply 218 BC PE 1:BC PVC-IIA NA 0.460 50 30.8 11,000 -40 +80) Use: M17/79-RG218
0.485 1.065 1.460 peak 0.195 0.680 0.870
192 GS Tube TC Braid Butyl Rubber 3:TC,GS,TC Rubber NA 12.5 175.0 15,000 -55 +80 Times does not supply 219 BC PE 1:BC PVC-IIA Al. Braid 0.585 50 30.8 11,000 -40 +80 Use: M17/79-RG219
1.055 2.200 peak 0.195 0.680 0.870 0.928
193 GS Tube TC Braid Silicon 3:TC,GS,TC Rubber NA 12.5 159.0 30,000 -55 +80 Times does not supply 220 BC PE 1:BC PVC-IIA NA 0.740 50 30.8 14,000 -40 +80 Use: M17/81-00001
1.055 Rubber 2.100 peak 0.260 0.910 1.120
194 GS Tube TC Braid Silicon 3:TC,GS,TC Rubber Al. Armor 12.5 159.0 30,000 -55 +80 Times does not supply 221 BC PE 1:BC PVC-IIA Al. Braid 0.925 50 30.8 14,000 -40 +80 Use: M17/81-00002
1.055 Rubber 1.945 peak 0.260 0.910 1.120 1.178
195 SCCS 7/.004 PTFE 1:SC PTFE NA 0.020 95 15.4 1,500 -55 +250 Use: M17/137-00001 222 HR PE 2:SC PVC-IIA NA 0.087 50 30.8 3,000 -40 +80 Use: M17/162-00001
0.012 0.102 0.145 0.0556 0.185 0.332
195A SCCS 7/.004 PTFE 1:SC PTFE NA 0.020 95 15.4 1,500 -55 +250 Use: M17/137-00001 223 SC PE 2:SC PVC-IIA NA 0.034 50 30.8 1,900 -40 +80 Use: M17/84-RG223
0.012 0.102 0.145 0.0350 0.116 0.211
196 SCCS 7/.004 PTFE 1:SC PTFE NA 0.006 50 29.4 1,000 -55 +250 Use: M17/93-00001 224 BC PE 2:BC PVC-IIA Al. Braid 0.310 50 30.8 7,000 -40 +80 Use: M17/165-00002
0.012 0.034 0.072 0.106 0.370 0.545 0.603
196A SCCS 7/.004 PTFE 1:SC PTFE NA 0.006 50 29.4 1,000 -55 +250 Use: M17/93-00001 225 SC 7/.0312 PTFE 2:SC FG Braid-V NA 0.180 50 29.4 5,000 -55 +250 Use: M17/86-00001
0.012 0.034 0.072 0.0936 0.285 0.430
197 BC PS Helix Al. Tube None NA 0.500 50 22.0 2,400 -55 +80 Use Times M17/227- 226 SC 19/.0254 Taped PTFE 2:BC FG Braid-V NA 0.445 50 29.4 7,000 -55 +250 Use: M17/87-00001
00001 0.300 0.758 .875 peak 0.127 0.370 0.500
198 BC PS Helix Al. Tube PE NA 0.155 70 16.0 1,300 -55 +80 Times does not supply 227 SC 7/.0312 PTFE 2:SC FG Braid-V Al. Braid 0.198 50 29.4 5,000 -55 +250 Use: M17/86-00002
0.114 0.421 .500’ 0.600 peak 0.0936 0.285 0.430 0.488
199 BC PS Helix Al. Tube PE NA 0.435 70 16.0 2,400 -55 +80 Times does not supply 228 BC PTFE 1:BC FG Braid-V Al. Braid 0.682 50 29.4 7,000 -55 +250 Use: M17/161-00002
0.209 0.758 .875 1.015 peak 0.1900 0.620 0.730 0.788
185 Mag wire Helix on Air-space PE MW PVC-IIA NA 2000 -40 +80 Delay line cable 211 BC PTFE 1:BC FG Braid-V NA 0.641 50 29.4 7,000 -55 +250 Use: M17/72-RG211
PE core 0.0031 0.188 0.282 0.1900 0.620 0.730
186 TFE Helix over core Air-space PE MW PVC-IIA NA 1000 -40 +80 Delay line cable 211A BC PTFE 1:BC FG Braid-V NA 0.641 50 29.4 7,000 -55 +250 Use: M17/72-RG211
0.008 0.292 0.405 0.1900 0.620 0.730
187 SCCS 7/.0040 PTFE 1:SC PTFE NA 0.010 75 19.5 1,200 -55 +250 Use: M17/136-00001 212 SC PE 2SC PVC-IIA NA 0.083 50 29.4 3,000 -40 +80 Use: M17/73-RG212
0.0120 0.060 0.105 0.0556 0.185 0.332
187A SCCS 7/.0040 PTFE 1:SC PTFE NA 0.010 75 19.5 1,200 -55 +250 Use: M17/136-00001 213 BC 7/.0296 PE 1:BC PVC-IIA NA 0.099 50 30.8 5,000 -40 +80 Use: M17/74-RG213
0.0120 0.060 0.105 0.0888 0.285 0.405
188 SCCS 7/.0067 PTFE 1:SC PTFE NA 0.011 50 29.4 1,200 -55 +250 Use: M17/138-00001 214 SC 7/.0296 PE 2:SC PVC-IIA NA 0.126 50 30.8 5,000 -40 +80 Use: M17/75-RG214
0.0201 0.060 0.105 0.0888 0.285 0.425
188A SCCS 7/.0067 PTFE 1:SC PTFE NA 0.011 50 29.4 1,200 -55 +250 Use: M17/138-00001 215 BC 7/.0296 PE 1:BC PVC-IIA Al. Braid 0.121 50 30.8 5,000 -40 +80 Use: M17/74-RG215
0.0201 0.060 0.105 0.0888 0.285 0.425 0.463
189 BC PS Helix 2:SC PE-IIIA NA 0.570 50 23.0 3,500 -55 +80 Use RG389 216 TC 7/.0159 PE 2:BC PVC-IIA NA 0.114 75 20.6 5,000 -40 +80 Use: M17/77-RG216
0.2510 0.632 0.875 0.0477 0.285 0.425
190 TC 19/.0117 Rubber H,J 3:TC,GS,TC Neoprene VIII NA 0.353 50 50.0 15,000 -55 +80 Times does not supply 217 BC PE 2:BC PVC-IIA NA 0.201 50 30.8 7,000 -40 +80 Use: M17/78-RG217
0.0585 0.380 0.700 0.106 0.370 0.545
191 TC Braid Rubber H,J,H 3:TC,GS,TC Neoprene VIII NA 1.469 25 85.0 15,000 -55 +80 Times does not supply 218 BC PE 1:BC PVC-IIA NA 0.460 50 30.8 11,000 -40 +80) Use: M17/79-RG218
0.485 1.065 1.460 peak 0.195 0.680 0.870
192 GS Tube TC Braid Butyl Rubber 3:TC,GS,TC Rubber NA 12.5 175.0 15,000 -55 +80 Times does not supply 219 BC PE 1:BC PVC-IIA Al. Braid 0.585 50 30.8 11,000 -40 +80 Use: M17/79-RG219
1.055 2.200 peak 0.195 0.680 0.870 0.928
193 GS Tube TC Braid Silicon 3:TC,GS,TC Rubber NA 12.5 159.0 30,000 -55 +80 Times does not supply 220 BC PE 1:BC PVC-IIA NA 0.740 50 30.8 14,000 -40 +80 Use: M17/81-00001
1.055 Rubber 2.100 peak 0.260 0.910 1.120
194 GS Tube TC Braid Silicon 3:TC,GS,TC Rubber Al. Armor 12.5 159.0 30,000 -55 +80 Times does not supply 221 BC PE 1:BC PVC-IIA Al. Braid 0.925 50 30.8 14,000 -40 +80 Use: M17/81-00002
1.055 Rubber 1.945 peak 0.260 0.910 1.120 1.178
195 SCCS 7/.004 PTFE 1:SC PTFE NA 0.020 95 15.4 1,500 -55 +250 Use: M17/137-00001 222 HR PE 2:SC PVC-IIA NA 0.087 50 30.8 3,000 -40 +80 Use: M17/162-00001
0.012 0.102 0.145 0.0556 0.185 0.332
195A SCCS 7/.004 PTFE 1:SC PTFE NA 0.020 95 15.4 1,500 -55 +250 Use: M17/137-00001 223 SC PE 2:SC PVC-IIA NA 0.034 50 30.8 1,900 -40 +80 Use: M17/84-RG223
0.012 0.102 0.145 0.0350 0.116 0.211
196 SCCS 7/.004 PTFE 1:SC PTFE NA 0.006 50 29.4 1,000 -55 +250 Use: M17/93-00001 224 BC PE 2:BC PVC-IIA Al. Braid 0.310 50 30.8 7,000 -40 +80 Use: M17/165-00002
0.012 0.034 0.072 0.106 0.370 0.545 0.603
196A SCCS 7/.004 PTFE 1:SC PTFE NA 0.006 50 29.4 1,000 -55 +250 Use: M17/93-00001 225 SC 7/.0312 PTFE 2:SC FG Braid-V NA 0.180 50 29.4 5,000 -55 +250 Use: M17/86-00001
0.012 0.034 0.072 0.0936 0.285 0.430
197 BC PS Helix Al. Tube None NA 0.500 50 22.0 2,400 -55 +80 Use Times M17/227- 226 SC 19/.0254 Taped PTFE 2:BC FG Braid-V NA 0.445 50 29.4 7,000 -55 +250 Use: M17/87-00001
00001 0.300 0.758 .875 peak 0.127 0.370 0.500
198 BC PS Helix Al. Tube PE NA 0.155 70 16.0 1,300 -55 +80 Times does not supply 227 SC 7/.0312 PTFE 2:SC FG Braid-V Al. Braid 0.198 50 29.4 5,000 -55 +250 Use: M17/86-00002
0.114 0.421 .500’ 0.600 peak 0.0936 0.285 0.430 0.488
199 BC PS Helix Al. Tube PE NA 0.435 70 16.0 2,400 -55 +80 Times does not supply 228 BC PTFE 1:BC FG Braid-V Al. Braid 0.682 50 29.4 7,000 -55 +250 Use: M17/161-00002
0.209 0.758 .875 1.015 peak 0.1900 0.620 0.730 0.788
333 CCA Foam PE Al. Tube PE-IIIA NA 0.548 50 25.4 4,500 -55 +80 Use Times
388 SC PE SC PE-IIIA NA 50 30.8 -55 +80 Watertight Cable
0.2880 0.801 .875 1.015 M17/227-00001
0.545
334 BC Foam PE Al. Tube None NA 0.109 75 16.9 2,500 -55 +80 Per MIL-C-23806
389 BCCAl PE Spline 2:SC PE-IIIA NA 0.366 50 22.8 2,000 -55 +80 Low loss RG189/U
0.098 0.450 .500
0.2500 0.635 0.875
335 BC Foam PE Al. Tube PE-IIIA NA 0.143 75 16.9 2,500 -55 +80 Jacketed RG334/U
390 DATA NOT AVAILABLE
0.098 0.450 .500 0.625
391 TC 7/.0159 CPE & PE 1:TC PVC-IIA NA 0.092 72 23.0 5,000 -55 +80 Use M17/126-RG391
336 BC Foam PE Al. Tube None NA 0.315 75 16.9 4,000 -55 +80 Per MIL-C-23806
0.0480 0.285 0.405
0.173 0.801 .875
392 TC 7/.0159 CPE & PE 1:TC PVC-IIA Al. braid 0.114 72 23.0 5,000 -55 +80 Use M17/126-RG392
337-359 ECTANGULAR WAVE GUIDES COVERED BY MIL-W-85.
R Times does not supply
0.0480 0.285 0.405 0.475
See MIL HDBK 216, Para 6.17 - 6.23
393 SC 7/.0312 PTFE 2:SC FEP-IX NA 0.165 50 29.4 5,000 -55 +200 Use M17/127-RG393
360 BC Foam PE Al. Tube PE-IIIA NA 0.397 50 25.4 4,000 -55 +80 Per MIL-C-23806
0.0936 0.285 0.390
0.243 0.676 .750 0.825
397 SC 7/.032 Air-space 2:SC FEP-IX NA 0.125 50 25.4 2,000 -55 +200 Low loss RG393/U
361-365 DATA NOT AVAILABLE
0.0960 PTFE 0.270 0.350
366 BC Foam PE Corr. BC PE-IIIA NA 50 25.4 4,000 -55 +80 Use Times M17/225-00001
400 SC 19/.0077 PTFE 2:SC FEP-IX NA 0.050 50 29.4 1,900 -55 +200 Use M17/128-RG400
0.1600 0.540 0.620
0.0384 0.116 0.195
367 Corr. BC PE Helix Corr. BC PE-IIIA NA 4.590 50 21.7 830KW -55 +80 Times does not supply
401 SC PTFE BC. Tube None NA 0.081 50 29.4 3,000 -55 +90 Use M17/129-RG401
5.200 PEAK
0.0645 0.215 .250
369 BC PE Tubes Al.Tube PE-IIIA NA 0.140 50 24.0 700 -55 +80 Use Times M17/223-
402 SCCS PTFE BC. Tube None NA 0.0320 50 29.4 2,500 -55 +100 Use M17/130-RG402
0.117 0.318 .390 0.470 00001
0.036 0.119 .141
370 BC PE Tubes Al.Tube None NA 0.100 50 24.0 700 -40 +80 Use Times M17/223-
403 SC 7/.004 PTFE 2:SC, FEP-IX NA 0.0075 50 29.4 1,000 -55 +200 Use M17/131-RG403
0.117 0.318 .390 00001
0.012 0.034 FEP Int.Lay 0.116
372-373 EXPERIMENTAL BUOYANT COAXIAL TRANSMISSION LINE
404 SC 7/.004 PTFE & CPT 1:SC FEP-IX NA 0.0054 50 31.5 2,000 -55 +200 Use M17/132-00001
0.012 0.034 0.072
374 BC PE None Foam PE NA 0.097 -55 +80 Buyoant Antenna
0.0285 0.160 0.650
405 SCCS PTFE BC Tube None NA 0.0150 50 29.4 1,500 -55 +100 Use M17/133-RG405
0.0201 0.066 .0865
375 RECTANGULAR WAVE GUIDE Times does not supply
376 BC Tube Foam PE Corr. Al. PE-IIIA NA 0.390 50 25.4 6,000 -55 +80 Use Times M17/227-
0.3120 Tube 1.060 00001
377 SC Tube PTFE Tubes Al.Tube None NA 0.170 50 24.0 1,000 -55 +250
0.1650 .530
378 BC Tube PE Helix Corr. Al. PE-IIIA NA 0.620 50 22.1 145 KW -55 +80 Times does not supply
0.7130 Tube 2.000 peak
382 RIGID LINE Times does not supply
383 2: (2000 pound break) PE None Foam PE NA 100 -55 +80 Buoyant Twisted pair
0.0403 0.650
385 SC Semi-solid Corr. Al Optional NA 0.178 50 25.4 1,500 -55 +250 Low loss cable
0.1530 PTFE 0.425 Tube 0.660 per MIL-C-22931
333 CCA Foam PE Al. Tube PE-IIIA NA 0.548 50 25.4 4,500 -55 +80 Use Times
388 SC PE SC PE-IIIA NA 50 30.8 -55 +80 Watertight Cable
0.2880 0.801 .875 1.015 M17/227-00001
0.545
334 BC Foam PE Al. Tube None NA 0.109 75 16.9 2,500 -55 +80 Per MIL-C-23806
389 BCCAl PE Spline 2:SC PE-IIIA NA 0.366 50 22.8 2,000 -55 +80 Low loss RG189/U
0.098 0.450 .500
0.2500 0.635 0.875
335 BC Foam PE Al. Tube PE-IIIA NA 0.143 75 16.9 2,500 -55 +80 Jacketed RG334/U
390 DATA NOT AVAILABLE
0.098 0.450 .500 0.625
391 TC 7/.0159 CPE & PE 1:TC PVC-IIA NA 0.092 72 23.0 5,000 -55 +80 Use M17/126-RG391
336 BC Foam PE Al. Tube None NA 0.315 75 16.9 4,000 -55 +80 Per MIL-C-23806
0.0480 0.285 0.405
0.173 0.801 .875
392 TC 7/.0159 CPE & PE 1:TC PVC-IIA Al. braid 0.114 72 23.0 5,000 -55 +80 Use M17/126-RG392
337-359 ECTANGULAR WAVE GUIDES COVERED BY MIL-W-85.
R Times does not supply
0.0480 0.285 0.405 0.475
See MIL HDBK 216, Para 6.17 - 6.23
393 SC 7/.0312 PTFE 2:SC FEP-IX NA 0.165 50 29.4 5,000 -55 +200 Use M17/127-RG393
360 BC Foam PE Al. Tube PE-IIIA NA 0.397 50 25.4 4,000 -55 +80 Per MIL-C-23806
0.0936 0.285 0.390
0.243 0.676 .750 0.825
397 SC 7/.032 Air-space 2:SC FEP-IX NA 0.125 50 25.4 2,000 -55 +200 Low loss RG393/U
361-365 DATA NOT AVAILABLE
0.0960 PTFE 0.270 0.350
366 BC Foam PE Corr. BC PE-IIIA NA 50 25.4 4,000 -55 +80 Use Times M17/225-00001
400 SC 19/.0077 PTFE 2:SC FEP-IX NA 0.050 50 29.4 1,900 -55 +200 Use M17/128-RG400
0.1600 0.540 0.620
0.0384 0.116 0.195
367 Corr. BC PE Helix Corr. BC PE-IIIA NA 4.590 50 21.7 830KW -55 +80 Times does not supply
401 SC PTFE BC. Tube None NA 0.081 50 29.4 3,000 -55 +90 Use M17/129-RG401
5.200 PEAK
0.0645 0.215 .250
369 BC PE Tubes Al.Tube PE-IIIA NA 0.140 50 24.0 700 -55 +80 Use Times M17/223-
402 SCCS PTFE BC. Tube None NA 0.0320 50 29.4 2,500 -55 +100 Use M17/130-RG402
0.117 0.318 .390 0.470 00001
0.036 0.119 .141
370 BC PE Tubes Al.Tube None NA 0.100 50 24.0 700 -40 +80 Use Times M17/223-
403 SC 7/.004 PTFE 2:SC, FEP-IX NA 0.0075 50 29.4 1,000 -55 +200 Use M17/131-RG403
0.117 0.318 .390 00001
0.012 0.034 FEP Int.Lay 0.116
372-373 EXPERIMENTAL BUOYANT COAXIAL TRANSMISSION LINE
404 SC 7/.004 PTFE & CPT 1:SC FEP-IX NA 0.0054 50 31.5 2,000 -55 +200 Use M17/132-00001
0.012 0.034 0.072
374 BC PE None Foam PE NA 0.097 -55 +80 Buyoant Antenna
0.0285 0.160 0.650
405 SCCS PTFE BC Tube None NA 0.0150 50 29.4 1,500 -55 +100 Use M17/133-RG405
0.0201 0.066 .0865
375 RECTANGULAR WAVE GUIDE Times does not supply
376 BC Tube Foam PE Corr. Al. PE-IIIA NA 0.390 50 25.4 6,000 -55 +80 Use Times M17/227-
0.3120 Tube 1.060 00001
377 SC Tube PTFE Tubes Al.Tube None NA 0.170 50 24.0 1,000 -55 +250
0.1650 .530
378 BC Tube PE Helix Corr. Al. PE-IIIA NA 0.620 50 22.1 145 KW -55 +80 Times does not supply
0.7130 Tube 2.000 peak
382 RIGID LINE Times does not supply
383 2: (2000 pound break) PE None Foam PE NA 100 -55 +80 Buoyant Twisted pair
0.0403 0.650
385 SC Semi-solid Corr. Al Optional NA 0.178 50 25.4 1,500 -55 +250 Low loss cable
0.1530 PTFE 0.425 Tube 0.660 per MIL-C-22931
Reference Data
and Application Notes
feet
dB/100 t
i n d B /100 fee
o n
A ttenuati t
α =
t r i c constan t
Die l e c cien degrees
ε = eflection coeffi
Γ = R l e n g t h pF/foot
a l
φ = Electric e uH/foot
an c
C = capacit e ohms
a n c
Induct %
L = n c e
mpeda ation
Zo = IVelocity of propagr
V p = a c t o nS/foot
Dissipa
ti o n f
MHz
d f =
d e l a y /C
Time t ppm
Td = equency f fi c i e n
Fr ure coe C
F = hase temperat ( t 2 t 0 t 1 )
P erature feet
PTC = hange in temp d
egrees
= C t 2 )
∆T
ngth length (
t1 t o
T H = L e e c t r i c a l inches
L Change
in e l
inches
∆ φ = c d i a m eter
ielect r i
D = dBraid wire size
Useful dDesign s = aEquations, id facto
r Materials Properties,
d = B r
F b
raid caand r r i e r s
Abbreviation C = BKey
s p e r arrier Characteristics
Critical
c inches
= B raid end ickness inches
to Consider N when r iSelecting
p t h or Designing
Flat st dB
t = at strip width
Coaxial Cables w = Fleturn loss
R g w a v e ratio dB
SRL = Voltage standi
n
dB
VSWR =Forward power
FWD = Reflected power
RFL =
62 (800)-TMS-COAX • www.timesmicrowave.com • (203)-949-8400 (800)-TMS-COAX • www.timesmicrowave.com • (203)-949-8400 63
Notes
Reference Data
and Application Notes
feet
dB/100 t
i n d B /100 fee
o n
A ttenuati t
α =
t r i c constan t
Die l e c cien degrees
ε = eflection coeffi
Γ = R l e n g t h pF/foot
a l
φ = Electric e uH/foot
an c
C = capacit e ohms
a n c
Induct %
L = n c e
mpeda ation
Zo = IVelocity of propagr
V p = a c t o nS/foot
Dissipa
ti o n f
MHz
d f =
d e l a y /C
Time t ppm
Td = equency f fi c i e n
Fr ure coe C
F = hase temperat ( t 2 t 0 t 1 )
P erature feet
PTC = hange in temp d
egrees
= C t 2 )
∆T
ngth length (
t1 t o
T H = L e e c t r i c a l inches
L Change
in e l
inches
∆ φ = c d i a m eter
ielect r i
D = dBraid wire size
Useful dDesign s = aEquations, id facto
r Materials Properties,
d = B r
F b
raid caand r r i e r s
Abbreviation C = BKey
s p e r arrier Characteristics
Critical
c inches
= B raid end ickness inches
to Consider N when r iSelecting
p t h or Designing
Flat st dB
t = at strip width
Coaxial Cables w = Fleturn loss
R g w a v e ratio dB
SRL = Voltage standi
n
dB
VSWR =Forward power
FWD = Reflected power
RFL =
62 (800)-TMS-COAX • www.timesmicrowave.com • (203)-949-8400 (800)-TMS-COAX • www.timesmicrowave.com • (203)-949-8400 63
MATERIALS ABBREVIATIONS LEGEND Table 1
Coax Cable Design Equations
CONDUCTORS & BRAID MATERIALS JACKET MATERIALS
AL Aluminum E-CTFE Ethylene Chlorotrifluoroethylene IMPEDANCE (ohms) ELECTRICAL LENGTH (degrees)
BC Bare Copper Type XI per MIL-C-17 D
BeCu
BCCAI
Beryllium-Copper Alloy 172
Bare Copper Clad Aluminum
ETFE Ethylene Tetrafluoroethylene Copolymer
D
(
Zo = 138 Vp log d • ks = 60 Vp In d • ks ) ( ) φ = 360 • F • LTH
Type X per MIL-C-17 984 • Vp 100
CCS Bare Copper Clad Steel FEP Fluorinated Ethylene Propylene ( D
Zo = 138 log d •Dks = 60 In d • ks ) ( )
GS
HR
Galvanized Steel
High Resistance Wire
Type IX per MIN-C-17 ε ε φ = 360 • F • LTH • ε
FG Braid Fiberglass; Impregnated 984
MW
NC
Magnet Wire
Nickel Covered Copper Type V per MIL-C-17 Zo = L/C
SA Silver Covered Alloy PE Clear Polyethylene PHASE TEMPERATURE COEFFICIENT (ppm/
Type III per MIL-C-17 VELOCITY OF PROPAGATION (%)
PTC = ∆φ • 1 x 10
SC Silver Covered Copper 6
SCBeCu Silver Covered Beryllium Copper LS/LT Low Smoke/Low Toxicity AND DIELECTRIC CONSTANT
SCCadBr Silver Covered Cadmium Bronze (XLPE) Vp = 1 ε = 1 2 φ • ∆T
SCCAl Silver Covered Copper Clad Aluminum PE Polyethylene, black HMW εVp
SCCS Silver Covered Copper Clad Steel Type IIIA per MIL-C-17 PHASE STABILITY (degrees)
SNCCS Silver Covered Nickel Covered Copper Clad
Steel
PFA Perfluoroalkoxy TIME DELAY (nS/foot)
∆φ = PTC • φ • ∆T
Type XIII per MIL-C-17
SCS Silver Covered Copper Strip PTFE Polytetrafluoroethylene Td = 1.016 = 1.016 ε 1 x 106
TC Tinned Copper Type VIIA per MIL-C-17
Vp
PUR Polyurethane, black
RETURN LOSS (dB)
DIELECTRIC MATERIALS CAPACITANCE (pF/foot)
PE Solid Low Density Polyethylene
Type XII per MIL-C-17 RL = -20 log Γ
C = 7.36ε = 16.95ε
PVC-I Polyvinyl Chloride, black (contaminating)
PTFE Solid Polytetrafluoroethylene
LDTFE Low Density PTFE
Type 1 per MIL-C-17 D D RL = -20 log VSWR-1
Foam PE Gas Injected Foam PE PVC-II Polyvinyl Chloride, grey (non-contaminating) log (d • ks) In (d • ks) VSWR+1
FEP Solid Fluorinated Ethylene Propylene Type II per MIL-C-17
7.36 = 16.95
RL = -10 log RFL
CPT Conductive PTFE PVC-IIA Polyvinyl Chloride, black (non-contaminating) C= FWD
CPE Conductive Polyethylene (Type A-5 per MIL- Type IIA per MIL-C-17 D D
C-17) Rubber Per MIL-C-17 (obsolete) Vp2 log (d • ks) Vp2 ln (d • ks) VSWR
Rubber per MIL-C-17 (obsolete) SIL/DAC Dacron Braid over Silicone Rubber
Type VI per MIL-C-17 C = 1016 VSWR = 1 + Γ
INTERLAYER MATERIALS TPE Thermo Plastic Elastomer
Zo • Vp 1- Γ
PE Solid Polyethylene XLPE Crosslinked Polyolefin
INDUCTANCE (uH/foot)
VSWR = + 10(RL/20)
1
PTFE Solid Polytetrafluoroethylene Type XIV per MIL-C-17 1 - 10(RL/20)
MY Polyester D D
KP Polyimide ( )
L = .140 log d • ks = .0606 In d • ks ( ) VSWR = 1 + RFL/FWD
ALMY Aluminum-Polyester Laminate 2
ALKP Aluminum-Polyimide Laminate L = Zo • C 1 - RFL/FWD
CPC Copper-Polyester-Copper Laminate 1 x 106
REFLECTION COEFFICIENT
COAXIAL CABLE EQUATIONS LEGEND ATTENUATION (dB/100 feet) Γ = 10 -RL/20
Symbol
α
Definition
= Attenuation in dB/100 feet
Units
dB/100 feet
Symbol Definition
Fco = Cutoff frequency GHz
Units
α = .4343
Zo • D
[ d • ks + Fbd]
D
F + 2.78 • df • F
Vp Γ = VSWR -1
ε = Dielectric constant C = Braid carriers VSWR +1
Γ = Reflection coefficient N = Braid ends per carrier α = k1 F + k2 F Γ= RFL/FWD
φ = Electrical length degrees t = Flat strip thickness inches
C = capacitance pF/foot w = Flat strip width inches BRAID FACTOR MATCH EFFICIENCY (%)
L = Inductance uH/foot SRL = Return loss dB
Round Wire Braid: Fbd = 8D + 16 ME = (1 - Γ2) • 100
VSWR = Voltage standing wave ratio
( VSWR -1 ) ] • 100
Zo = Impedance ohms C • N • ds 2
FWD = Forward power dB ME = [1 -
Fbd = 2π (D +2t)
Vp = Velocity of propagation %
df = Dissipation factor RFL = Reflected power dB Flat Strip Braid: VSWR +1
ME = ( ) • 100
Td = Time delay nS/foot MML = Mismatch loss dB C•W FWD-REL
F = Frequency MHz ME = Match efficiency % Solid Tube: Fbd = 1.0 FWD
PTC = Phase temperature coefficient ppm/C ks = 1.0 for solid center conductor
∆T = Change in temperature (t2 t0 t1) C = 0.939 for 7 strand center conductor MISMATCH LOSS (dB)
CUTOFF FREQUENCY
LTH = Length feet = 0.97 for 19 strand center conductor MML = -10 log (1 - Γ2)
∆φ log = logarithm to base 10 Fco = 7.5 • Vp 2
(VSWR+1 )
= Change in electrical length (t1 to t2) degrees
D = dielectric diameter inches In = logarithm to base e (D + (d•ks)) MML = -10 log [1 - VSWR-1
d = center conductor diameter inches k1 = resistive loss constant 7.5
MML = -10 log (1- RFL )
k2 = dielectric loss constant
Fco =
ds = Braid wire size inches ε (D + (d•ks))
Fbd = Braid factor FWD
64 (800)-TMS-COAX • www.timesmicrowave.com • (203)-949-8400 (800)-TMS-COAX • www.timesmicrowave.com • (203)-949-8400 65
MATERIALS ABBREVIATIONS LEGEND Table 1
Coax Cable Design Equations
CONDUCTORS & BRAID MATERIALS JACKET MATERIALS
AL Aluminum E-CTFE Ethylene Chlorotrifluoroethylene IMPEDANCE (ohms) ELECTRICAL LENGTH (degrees)
BC Bare Copper Type XI per MIL-C-17 D
BeCu
BCCAI
Beryllium-Copper Alloy 172
Bare Copper Clad Aluminum
ETFE Ethylene Tetrafluoroethylene Copolymer
D
(
Zo = 138 Vp log d • ks = 60 Vp In d • ks ) ( ) φ = 360 • F • LTH
Type X per MIL-C-17 984 • Vp 100
CCS Bare Copper Clad Steel FEP Fluorinated Ethylene Propylene ( D
Zo = 138 log d •Dks = 60 In d • ks ) ( )
GS
HR
Galvanized Steel
High Resistance Wire
Type IX per MIN-C-17 ε ε φ = 360 • F • LTH • ε
FG Braid Fiberglass; Impregnated 984
MW
NC
Magnet Wire
Nickel Covered Copper Type V per MIL-C-17 Zo = L/C
SA Silver Covered Alloy PE Clear Polyethylene PHASE TEMPERATURE COEFFICIENT (ppm/
Type III per MIL-C-17 VELOCITY OF PROPAGATION (%)
PTC = ∆φ • 1 x 10
SC Silver Covered Copper 6
SCBeCu Silver Covered Beryllium Copper LS/LT Low Smoke/Low Toxicity AND DIELECTRIC CONSTANT
SCCadBr Silver Covered Cadmium Bronze (XLPE) Vp = 1 ε = 1 2 φ • ∆T
SCCAl Silver Covered Copper Clad Aluminum PE Polyethylene, black HMW εVp
SCCS Silver Covered Copper Clad Steel Type IIIA per MIL-C-17 PHASE STABILITY (degrees)
SNCCS Silver Covered Nickel Covered Copper Clad
Steel
PFA Perfluoroalkoxy TIME DELAY (nS/foot)
∆φ = PTC • φ • ∆T
Type XIII per MIL-C-17
SCS Silver Covered Copper Strip PTFE Polytetrafluoroethylene Td = 1.016 = 1.016 ε 1 x 106
TC Tinned Copper Type VIIA per MIL-C-17
Vp
PUR Polyurethane, black
RETURN LOSS (dB)
DIELECTRIC MATERIALS CAPACITANCE (pF/foot)
PE Solid Low Density Polyethylene
Type XII per MIL-C-17 RL = -20 log Γ
C = 7.36ε = 16.95ε
PVC-I Polyvinyl Chloride, black (contaminating)
PTFE Solid Polytetrafluoroethylene
LDTFE Low Density PTFE
Type 1 per MIL-C-17 D D RL = -20 log VSWR-1
Foam PE Gas Injected Foam PE PVC-II Polyvinyl Chloride, grey (non-contaminating) log (d • ks) In (d • ks) VSWR+1
FEP Solid Fluorinated Ethylene Propylene Type II per MIL-C-17
7.36 = 16.95
RL = -10 log RFL
CPT Conductive PTFE PVC-IIA Polyvinyl Chloride, black (non-contaminating) C= FWD
CPE Conductive Polyethylene (Type A-5 per MIL- Type IIA per MIL-C-17 D D
C-17) Rubber Per MIL-C-17 (obsolete) Vp2 log (d • ks) Vp2 ln (d • ks) VSWR
Rubber per MIL-C-17 (obsolete) SIL/DAC Dacron Braid over Silicone Rubber
Type VI per MIL-C-17 C = 1016 VSWR = 1 + Γ
INTERLAYER MATERIALS TPE Thermo Plastic Elastomer
Zo • Vp 1- Γ
PE Solid Polyethylene XLPE Crosslinked Polyolefin
INDUCTANCE (uH/foot)
VSWR = + 10(RL/20)
1
PTFE Solid Polytetrafluoroethylene Type XIV per MIL-C-17 1 - 10(RL/20)
MY Polyester D D
KP Polyimide ( )
L = .140 log d • ks = .0606 In d • ks ( ) VSWR = 1 + RFL/FWD
ALMY Aluminum-Polyester Laminate 2
ALKP Aluminum-Polyimide Laminate L = Zo • C 1 - RFL/FWD
CPC Copper-Polyester-Copper Laminate 1 x 106
REFLECTION COEFFICIENT
COAXIAL CABLE EQUATIONS LEGEND ATTENUATION (dB/100 feet) Γ = 10 -RL/20
Symbol
α
Definition
= Attenuation in dB/100 feet
Units
dB/100 feet
Symbol Definition
Fco = Cutoff frequency GHz
Units
α = .4343
Zo • D
[ d • ks + Fbd]
D
F + 2.78 • df • F
Vp Γ = VSWR -1
ε = Dielectric constant C = Braid carriers VSWR +1
Γ = Reflection coefficient N = Braid ends per carrier α = k1 F + k2 F Γ= RFL/FWD
φ = Electrical length degrees t = Flat strip thickness inches
C = capacitance pF/foot w = Flat strip width inches BRAID FACTOR MATCH EFFICIENCY (%)
L = Inductance uH/foot SRL = Return loss dB
Round Wire Braid: Fbd = 8D + 16 ME = (1 - Γ2) • 100
VSWR = Voltage standing wave ratio
( VSWR -1 ) ] • 100
Zo = Impedance ohms C • N • ds 2
FWD = Forward power dB ME = [1 -
Fbd = 2π (D +2t)
Vp = Velocity of propagation %
df = Dissipation factor RFL = Reflected power dB Flat Strip Braid: VSWR +1
ME = ( ) • 100
Td = Time delay nS/foot MML = Mismatch loss dB C•W FWD-REL
F = Frequency MHz ME = Match efficiency % Solid Tube: Fbd = 1.0 FWD
PTC = Phase temperature coefficient ppm/C ks = 1.0 for solid center conductor
∆T = Change in temperature (t2 t0 t1) C = 0.939 for 7 strand center conductor MISMATCH LOSS (dB)
CUTOFF FREQUENCY
LTH = Length feet = 0.97 for 19 strand center conductor MML = -10 log (1 - Γ2)
∆φ log = logarithm to base 10 Fco = 7.5 • Vp 2
(VSWR+1 )
= Change in electrical length (t1 to t2) degrees
D = dielectric diameter inches In = logarithm to base e (D + (d•ks)) MML = -10 log [1 - VSWR-1
d = center conductor diameter inches k1 = resistive loss constant 7.5
MML = -10 log (1- RFL )
k2 = dielectric loss constant
Fco =
ds = Braid wire size inches ε (D + (d•ks))
Fbd = Braid factor FWD
64 (800)-TMS-COAX • www.timesmicrowave.com • (203)-949-8400 (800)-TMS-COAX • www.timesmicrowave.com • (203)-949-8400 65
GENERAL ELECTRICAL PROPERTIES APPLICATION NOTES
Cable Type Impedance Capacitane Velocity Dielecrtic Time Delay A guide to the selection of RF coaxial cable
(ohms) (p/F/foot) (%) Constant (nS/foot)
Solid Polyethylene 50 30.8 65.9 2.30 1.54 Choosing the best coaxial cable for a new appli- Fig. 1
Foam PE 50 24.5 83.0 1.45 1.22 cation requires an understanding of the application VSWR vs. Frequency
Foam PE 50 24.2 84.0 1.42 1.21 and of the range of cables to choose from. The best
50 OHM
Foam PE 50 23.9 85.0 1.38 1.20 choice can only be arrived at by a careful evaluation
Foam PE 50 23.6 86.0 1.35 1.18
of the performance and cost trade-offs. Our in-depth
Foam PE 50 23.3 87.0 1.32 1.17
Foam PE 50 23.1 88.0 1.29 1.16 expertise in all aspects of coaxial cable technology
Solid PTFE 50 29.2 69.5 2.07 1.46 can help you to arrive at the best choice for your
Tape PTFE 50 28.6 71.0 1.98 1.43 application.
Low Density PTFE 50 26.7 76.0 1.73 1.34 Times Microwave Systems offers the broadest
Low Density PTFE 50 25.4 80.0 1.56 1.27 range of coaxial cables of any manufacturer. We also
Solid Polyethylene 75 20.6 65.9 2.30 1.54 have the expertise to design and produce custom
Foam PE 75 16.3 83.0 1.45 1.22 cables if there is no design available for your ap-
Foam PE 75 16.1 84.0 1.42 1.21 plication.
75 OHM
Foam PE 75 15.9 85.0 1.38 1.20 In choosing the best coaxial cable for an applica-
Foam PE 75 15.8 86.0 1.35 1.18
Foam PE 75 15.6 87.0 1.32 1.17
tion, the cable characteristics listed below should be
Foam PE 75 15.4 88.0 1.29 1.16 considered. The following sections provide detailed
Solid PTFE 75 19.5 69.5 2.07 1.46 discussions of each characteristic.
Low Density PTFE 75 17.8 76.0 1.73 1.34
Low Density PTFE 75 16.9 80.0 1.56 1.27 A: Characteristic Impedance
Solid Polyethylene 95 16.2 65.9 2.30 1.54 B: VSWR & Impedance Uniformity
Foam PE 95 12.6 85.0 1.38 1.20 C: Attenuation
MISC
Air Spaced PE 95 12.6 85.0 1.38 1.20 · Attenuation Uniformity the center conductor and the inside diameter of the
Solid PTFE 95 15.4 69.5 2.07 1.46 · Attenuation Stability outer conductor. Impedance is selected to match
Air Spaced PE 125 09.6 85.0 1.38 1.20
D: Power Rating the system requirements.
Air Spaced PE 185 06.5 85.0 1.38 1.20 The most common coaxial cables impedances are
E: Operating Voltage
F: Shielding 50, 75, and 95 ohm. Other impedances from 35 to
G: Capacitance 185 ohms are sometimes used. Fifty ohm cables are
PROPERTIES OF WIRE AND CABLE H: Velocity of Propagation
I: Electrical Length Stability
used in microwave and wireless communications
applications. Seventy-five ohm cables are typically
INSULATING MATERIALS J: Cut-Off Frequency used in cable television applications and video ap-
plications. Ninety-five ohm cables are typically used
K: Pulse Response
Material Dielectric Dissipation Volume- Operating L: Self-Generated Cable Noise for data transmission applications.
Constant Factor Resistivity Temperature M: Operating Temperature Range For best system performance, the cable must
(ohm-cm) (Range oC) N: Flexibility be selected to match the impedance of the other
PTFE 2.07 0.0003 1019th -75 to +250 O: Environmental Resistance components in the system. Of the most commonly
Polyethylene 2.3 0.0003 1016th -65 to +80 P: Cable Strength used coaxial cables, 75 ohms impedance provides
Foam Polyethylene 1.29 - 1.64 0.0001 1012th -65 to +100 Q: Qualification & U L Approval the lowest attenuation and 35 ohms impedance pro-
Polyvinylchloride 3.0 - 8.0 0.07 - 0.16 2 x 1012th -50 to +105 vides the best power handling. For practical cables
Polyamide 3.5 - 4.6 0.03 - 0.4 4 x 1014th -60 to +120 Table 1 provides various formulae describing cable with non-ideal dielectrics and conductors, these
Silicone Rubber 2.1 - 3.5 0.007 - 0.016 1013th -70 to +250 differences are small. The availability of required
characteristics.
Ethylene Propylene 2.24 0.00046 1017th -40 to +105 components and cables with the appropriate char-
FEP 2.1 0.0007 1018th -70 to +200 acteristic impedance is usually the prime factor in
Low Density PTFE 1.38 - 1.73 0.00005 1019th -75 to +250 A. CHARACTERISTIC IMPEDANCE
The characteristic impedance of a coaxial cable selecting a given system impedance.
Foam FEP 1.45 0.0007 1018th -75 to +200
Polyimide 3.0 - 3.5 0.002 - 0.003 1013th -75 to +300 is determined by the ratio of the diameter of the
PFA 2.1 0.001 1016th -75 to +260 outer conductor to the inner conductor and the B. SIGNAL REFLECTION:
ETFE 2.6 0.005 1016th -75 to +150 dielectric constant of the insulating material be- VSWR, RETURN LOSS, REFLECTION FACTOR &
ECTFE 2.5 0.0015 1016th -65 to +150 tween the conductors. Because the RF energy in IMPEDANCE UNIFORMITY
PVDF 7.8 0.02 1014th -75 to +125 the cable travels on the surface of the conductors, There are three things that happen to RF energy
the important diameters are the outside diameter of input into a coaxial cable assembly:
66 (800)-TMS-COAX • www.timesmicrowave.com • (203)-949-8400 (800)-TMS-COAX • www.timesmicrowave.com • (203)-949-8400 67
GENERAL ELECTRICAL PROPERTIES APPLICATION NOTES
Cable Type Impedance Capacitane Velocity Dielecrtic Time Delay A guide to the selection of RF coaxial cable
(ohms) (p/F/foot) (%) Constant (nS/foot)
Solid Polyethylene 50 30.8 65.9 2.30 1.54 Choosing the best coaxial cable for a new appli- Fig. 1
Foam PE 50 24.5 83.0 1.45 1.22 cation requires an understanding of the application VSWR vs. Frequency
Foam PE 50 24.2 84.0 1.42 1.21 and of the range of cables to choose from. The best
50 OHM
Foam PE 50 23.9 85.0 1.38 1.20 choice can only be arrived at by a careful evaluation
Foam PE 50 23.6 86.0 1.35 1.18
of the performance and cost trade-offs. Our in-depth
Foam PE 50 23.3 87.0 1.32 1.17
Foam PE 50 23.1 88.0 1.29 1.16 expertise in all aspects of coaxial cable technology
Solid PTFE 50 29.2 69.5 2.07 1.46 can help you to arrive at the best choice for your
Tape PTFE 50 28.6 71.0 1.98 1.43 application.
Low Density PTFE 50 26.7 76.0 1.73 1.34 Times Microwave Systems offers the broadest
Low Density PTFE 50 25.4 80.0 1.56 1.27 range of coaxial cables of any manufacturer. We also
Solid Polyethylene 75 20.6 65.9 2.30 1.54 have the expertise to design and produce custom
Foam PE 75 16.3 83.0 1.45 1.22 cables if there is no design available for your ap-
Foam PE 75 16.1 84.0 1.42 1.21 plication.
75 OHM
Foam PE 75 15.9 85.0 1.38 1.20 In choosing the best coaxial cable for an applica-
Foam PE 75 15.8 86.0 1.35 1.18
Foam PE 75 15.6 87.0 1.32 1.17
tion, the cable characteristics listed below should be
Foam PE 75 15.4 88.0 1.29 1.16 considered. The following sections provide detailed
Solid PTFE 75 19.5 69.5 2.07 1.46 discussions of each characteristic.
Low Density PTFE 75 17.8 76.0 1.73 1.34
Low Density PTFE 75 16.9 80.0 1.56 1.27 A: Characteristic Impedance
Solid Polyethylene 95 16.2 65.9 2.30 1.54 B: VSWR & Impedance Uniformity
Foam PE 95 12.6 85.0 1.38 1.20 C: Attenuation
MISC
Air Spaced PE 95 12.6 85.0 1.38 1.20 · Attenuation Uniformity the center conductor and the inside diameter of the
Solid PTFE 95 15.4 69.5 2.07 1.46 · Attenuation Stability outer conductor. Impedance is selected to match
Air Spaced PE 125 09.6 85.0 1.38 1.20
D: Power Rating the system requirements.
Air Spaced PE 185 06.5 85.0 1.38 1.20 The most common coaxial cables impedances are
E: Operating Voltage
F: Shielding 50, 75, and 95 ohm. Other impedances from 35 to
G: Capacitance 185 ohms are sometimes used. Fifty ohm cables are
PROPERTIES OF WIRE AND CABLE H: Velocity of Propagation
I: Electrical Length Stability
used in microwave and wireless communications
applications. Seventy-five ohm cables are typically
INSULATING MATERIALS J: Cut-Off Frequency used in cable television applications and video ap-
plications. Ninety-five ohm cables are typically used
K: Pulse Response
Material Dielectric Dissipation Volume- Operating L: Self-Generated Cable Noise for data transmission applications.
Constant Factor Resistivity Temperature M: Operating Temperature Range For best system performance, the cable must
(ohm-cm) (Range oC) N: Flexibility be selected to match the impedance of the other
PTFE 2.07 0.0003 1019th -75 to +250 O: Environmental Resistance components in the system. Of the most commonly
Polyethylene 2.3 0.0003 1016th -65 to +80 P: Cable Strength used coaxial cables, 75 ohms impedance provides
Foam Polyethylene 1.29 - 1.64 0.0001 1012th -65 to +100 Q: Qualification & U L Approval the lowest attenuation and 35 ohms impedance pro-
Polyvinylchloride 3.0 - 8.0 0.07 - 0.16 2 x 1012th -50 to +105 vides the best power handling. For practical cables
Polyamide 3.5 - 4.6 0.03 - 0.4 4 x 1014th -60 to +120 Table 1 provides various formulae describing cable with non-ideal dielectrics and conductors, these
Silicone Rubber 2.1 - 3.5 0.007 - 0.016 1013th -70 to +250 differences are small. The availability of required
characteristics.
Ethylene Propylene 2.24 0.00046 1017th -40 to +105 components and cables with the appropriate char-
FEP 2.1 0.0007 1018th -70 to +200 acteristic impedance is usually the prime factor in
Low Density PTFE 1.38 - 1.73 0.00005 1019th -75 to +250 A. CHARACTERISTIC IMPEDANCE
The characteristic impedance of a coaxial cable selecting a given system impedance.
Foam FEP 1.45 0.0007 1018th -75 to +200
Polyimide 3.0 - 3.5 0.002 - 0.003 1013th -75 to +300 is determined by the ratio of the diameter of the
PFA 2.1 0.001 1016th -75 to +260 outer conductor to the inner conductor and the B. SIGNAL REFLECTION:
ETFE 2.6 0.005 1016th -75 to +150 dielectric constant of the insulating material be- VSWR, RETURN LOSS, REFLECTION FACTOR &
ECTFE 2.5 0.0015 1016th -65 to +150 tween the conductors. Because the RF energy in IMPEDANCE UNIFORMITY
PVDF 7.8 0.02 1014th -75 to +125 the cable travels on the surface of the conductors, There are three things that happen to RF energy
the important diameters are the outside diameter of input into a coaxial cable assembly:
66 (800)-TMS-COAX • www.timesmicrowave.com • (203)-949-8400 (800)-TMS-COAX • www.timesmicrowave.com • (203)-949-8400 67
APPLICATION NOTES
A guide to the selection of RF coaxial cable (continued)
ranges - less than 2%. Fig. 2
1. It is transmitted to the other end of the cable, as completed, factory assembled and tested cable Attenuation Temperature Correction Factor
is usually desired. assemblies should be considered for VSWR critical It is possible to fabricate cables having a charac
2. It is lost along the length of the cable either by applications. teristic impedance that varies through the length
being transformed into heat or by leaking out of the Note that actual input impedance at a particular of the cable for matching purposes. Thus a coaxial
cable. frequency may be quite different from the charac- cable can be used as a broadband impedance
3. It is reflected back towards the input end of the teristic impedance of the cable due to reflections in transformer to match differing source and load
cable. the line. The Voltage Standing Wave Ratio (or VSWR) impedances. The transforming action is related to
of a particular length of cable is an indicator of the cable length and the minimum operating frequency,
Reflections back towards the input end of the
difference between the actual input impedance of and the cable must be designed for the specific
cable are caused by variations in impedance along
the cable and its average characteristic impedance. application.
the length of the cable assembly. This includes
differences in impedance between the cable and The impedance of long lengths of cable will exhibit
very little change over their operating temperature C. ATTENUATION
the devices to which it is attached. Typically the
Attenuation is the loss of signal along the length
connectors and the interface between the connec- Table 2 of a cable. As the RF signal passes through the
tors and the cable will be major contributors to the VSWR Conversions cable, a portion of the signal is converted to heat
reflection. The cable itself can also contribute to
VSWR Return Reflection Mismatch Match and a portion of the signal leaks out of the cable
the reflections. One source of cable reflections is
(:1) Loss (dB) Coefficient Loss (dB) Efficiency (%) through the outer conductor. This loss of signal is
periodic variations in impedance which result from
1.011 45 0.006 0.000 100.00 usually expressed in decibels per unit of length at
the manufacturing process and add up at a specific
1.020 40 0.010 0.000 99.99 a specific frequency, since attenuation increases
frequency. When viewed in a sweep over a range of
1.036 35 0.018 0.001 99.97 with frequency.
frequencies this will show up as a spike. An example 1.065 30 0.032 0.004 99.90 For most applications, the objective is to minimize
of a spike is shown in Figure 1. 1.074 29 0.035 0.005 99.87 the losses in the cable runs or to stay within a loss
The magnitude of a reflection can be expressed in 1.08 28 0.400 0.007 99.84 budget. Minimum loss corresponds to an attenua-
several ways. Perhaps the most familiar is VSWR or 1.09 27 0.045 0.009 99.80 tion of 0 dB or a ratio of 1 to 1 between input and rected attenuation value from the tables.
Voltage Standing Wave Ratio. A value of 1.0:1 or just 1.11 26 0.050 0.011 99.75
output power. Because cable losses decrease with For cables with low attenuation for their size,see
1.0 indicates no reflected power or a perfect cable. 1.12 25 0.056 0.014 99.68
1.13 24 0.063 0.017 99.60
increasing cable diameter for the same type of con- the LMR, StripFlex, SFT, and CLL families of cables.
Alternatively, the reflection can be expressed as
1.15 23 0.071 0.022 99.50 struction, minimizing cable loss means maximizing
return loss—the ratio of the reflected power to the
1.17 22 0.079 0.027 99.37 cable size. Attenuation Uniformity
input power usually expressed in decibels. Table 1
1.20 21 0.089 0.035 99.21 Attenuation is determined by the conductive and The attenuation of any cable may not change
gives the formulas to convert between VSWR,
1.22 20 0.100 0.044 99.00 dielectric losses of the cable. Larger cables have uniformly as the frequency changes. Random and
return loss and reflection coefficient. A tabulation of 1.25 19 0.112 0.055 98.74 lower conductor losses, reducing attenuation. Di- periodic impedance variations give rise to random
the equivalent values of all three measures is also 1.29 18 0.126 0.069 98.42 electric loss is independent of size. Dielectric losses and periodic attenuation responses. Narrow-band
provided in Table 2. 1.33 17 0.141 0.088 98.00 increase linearly with frequency, while conductor attenuation “spikes” such as that shown in Figure
The lack of reflected power (or low VSWR) is often 1.38 16 0.158 0.110 97.49 losses increase with the square root of frequency. 3 can occur. If required, cables can be procured
used as a figure of merit for coaxial components, 1.43 15 0.178 0.140 96.84
Therefore, dielectric losses become a larger propor- in various lengths where a maximum attenuation
including cables, connectors and cable assemblies. 1.50 14 0.200 0.176 96.02
1.58 13 0.224 0.223 94.99
tion of the total cable loss as frequency increases. variation from nominal is specified over a customer
It is indicative of how well the uniformity of the
1.67 12 0.251 0.283 93.69 Attenuation must be modified by a correction defined frequency range.
cable is maintained along its length, whether the
1.78 11 0.282 0.359 92.06 factor for the ambient temperature (see Figure 2).
connectors are properly designed and attached
1.92 10 0.316 0.458 90.00 Elevated temperature increases cable attenuation Attenuation Stability
and how well the transitions between line sizes are
2.10 9 0.355 0.584 87.41 by increasing the resistance of the conductors and The attenuation of braided cables can increase
compensated for in the connectors. It is generally 2.32 8 0.398 0.749 84.15 by increasing the power factor of the dielectric (see with time and flexure. The change with time can
a function of frequency, with reflections generally 2.61 7 0.447 0.967 80.05 Figure 6 for correction factors). be caused by corrosion of the braided shield, by
getting higher as the frequency increases. 3.01 6 0.501 1.256 74.88 To select a cable construction for a particular contamination of the primary insulation due to
In many applications, low reflected power is critical 3.57 5 0.562 1.651 68.38 application, determine the desired attenuation at jacket plasticizers, and by moisture penetration
for proper system performance. In these cases, it is 4.42 4 0.631 2.205 60.19
the highest frequency from system requirements. through the jacket. These effects can be essentially
essential that this be considered in the selection of 5.85 3 0.708 3.021 49.88
Match efficiency - e.g. 100 Watts Forward Power at 1.33:1 Determine the corrected attenuation by dividing the eliminated by encapsulating the braid with an ap-
the cable and connectors. In addition, care must be
VSWR yields 98 Watts Output (i.e. 2 Watts Reflected) desired attenuation by the temperature correction propriate flooding compound, as is done in the DB
taken to properly attach the connectors to the cable
factor. Choose the smallest cable meeting the cor- versions of the LMR cables.
in order to achieve the proper results. Purchase of
68 (800)-TMS-COAX • www.timesmicrowave.com • (203)-949-8400 (800)-TMS-COAX • www.timesmicrowave.com • (203)-949-8400 69
APPLICATION NOTES
A guide to the selection of RF coaxial cable (continued)
ranges - less than 2%. Fig. 2
1. It is transmitted to the other end of the cable, as completed, factory assembled and tested cable Attenuation Temperature Correction Factor
is usually desired. assemblies should be considered for VSWR critical It is possible to fabricate cables having a charac
2. It is lost along the length of the cable either by applications. teristic impedance that varies through the length
being transformed into heat or by leaking out of the Note that actual input impedance at a particular of the cable for matching purposes. Thus a coaxial
cable. frequency may be quite different from the charac- cable can be used as a broadband impedance
3. It is reflected back towards the input end of the teristic impedance of the cable due to reflections in transformer to match differing source and load
cable. the line. The Voltage Standing Wave Ratio (or VSWR) impedances. The transforming action is related to
of a particular length of cable is an indicator of the cable length and the minimum operating frequency,
Reflections back towards the input end of the
difference between the actual input impedance of and the cable must be designed for the specific
cable are caused by variations in impedance along
the cable and its average characteristic impedance. application.
the length of the cable assembly. This includes
differences in impedance between the cable and The impedance of long lengths of cable will exhibit
very little change over their operating temperature C. ATTENUATION
the devices to which it is attached. Typically the
Attenuation is the loss of signal along the length
connectors and the interface between the connec- Table 2 of a cable. As the RF signal passes through the
tors and the cable will be major contributors to the VSWR Conversions cable, a portion of the signal is converted to heat
reflection. The cable itself can also contribute to
VSWR Return Reflection Mismatch Match and a portion of the signal leaks out of the cable
the reflections. One source of cable reflections is
(:1) Loss (dB) Coefficient Loss (dB) Efficiency (%) through the outer conductor. This loss of signal is
periodic variations in impedance which result from
1.011 45 0.006 0.000 100.00 usually expressed in decibels per unit of length at
the manufacturing process and add up at a specific
1.020 40 0.010 0.000 99.99 a specific frequency, since attenuation increases
frequency. When viewed in a sweep over a range of
1.036 35 0.018 0.001 99.97 with frequency.
frequencies this will show up as a spike. An example 1.065 30 0.032 0.004 99.90 For most applications, the objective is to minimize
of a spike is shown in Figure 1. 1.074 29 0.035 0.005 99.87 the losses in the cable runs or to stay within a loss
The magnitude of a reflection can be expressed in 1.08 28 0.400 0.007 99.84 budget. Minimum loss corresponds to an attenua-
several ways. Perhaps the most familiar is VSWR or 1.09 27 0.045 0.009 99.80 tion of 0 dB or a ratio of 1 to 1 between input and rected attenuation value from the tables.
Voltage Standing Wave Ratio. A value of 1.0:1 or just 1.11 26 0.050 0.011 99.75
output power. Because cable losses decrease with For cables with low attenuation for their size,see
1.0 indicates no reflected power or a perfect cable. 1.12 25 0.056 0.014 99.68
1.13 24 0.063 0.017 99.60
increasing cable diameter for the same type of con- the LMR, StripFlex, SFT, and CLL families of cables.
Alternatively, the reflection can be expressed as
1.15 23 0.071 0.022 99.50 struction, minimizing cable loss means maximizing
return loss—the ratio of the reflected power to the
1.17 22 0.079 0.027 99.37 cable size. Attenuation Uniformity
input power usually expressed in decibels. Table 1
1.20 21 0.089 0.035 99.21 Attenuation is determined by the conductive and The attenuation of any cable may not change
gives the formulas to convert between VSWR,
1.22 20 0.100 0.044 99.00 dielectric losses of the cable. Larger cables have uniformly as the frequency changes. Random and
return loss and reflection coefficient. A tabulation of 1.25 19 0.112 0.055 98.74 lower conductor losses, reducing attenuation. Di- periodic impedance variations give rise to random
the equivalent values of all three measures is also 1.29 18 0.126 0.069 98.42 electric loss is independent of size. Dielectric losses and periodic attenuation responses. Narrow-band
provided in Table 2. 1.33 17 0.141 0.088 98.00 increase linearly with frequency, while conductor attenuation “spikes” such as that shown in Figure
The lack of reflected power (or low VSWR) is often 1.38 16 0.158 0.110 97.49 losses increase with the square root of frequency. 3 can occur. If required, cables can be procured
used as a figure of merit for coaxial components, 1.43 15 0.178 0.140 96.84
Therefore, dielectric losses become a larger propor- in various lengths where a maximum attenuation
including cables, connectors and cable assemblies. 1.50 14 0.200 0.176 96.02
1.58 13 0.224 0.223 94.99
tion of the total cable loss as frequency increases. variation from nominal is specified over a customer
It is indicative of how well the uniformity of the
1.67 12 0.251 0.283 93.69 Attenuation must be modified by a correction defined frequency range.
cable is maintained along its length, whether the
1.78 11 0.282 0.359 92.06 factor for the ambient temperature (see Figure 2).
connectors are properly designed and attached
1.92 10 0.316 0.458 90.00 Elevated temperature increases cable attenuation Attenuation Stability
and how well the transitions between line sizes are
2.10 9 0.355 0.584 87.41 by increasing the resistance of the conductors and The attenuation of braided cables can increase
compensated for in the connectors. It is generally 2.32 8 0.398 0.749 84.15 by increasing the power factor of the dielectric (see with time and flexure. The change with time can
a function of frequency, with reflections generally 2.61 7 0.447 0.967 80.05 Figure 6 for correction factors). be caused by corrosion of the braided shield, by
getting higher as the frequency increases. 3.01 6 0.501 1.256 74.88 To select a cable construction for a particular contamination of the primary insulation due to
In many applications, low reflected power is critical 3.57 5 0.562 1.651 68.38 application, determine the desired attenuation at jacket plasticizers, and by moisture penetration
for proper system performance. In these cases, it is 4.42 4 0.631 2.205 60.19
the highest frequency from system requirements. through the jacket. These effects can be essentially
essential that this be considered in the selection of 5.85 3 0.708 3.021 49.88
Match efficiency - e.g. 100 Watts Forward Power at 1.33:1 Determine the corrected attenuation by dividing the eliminated by encapsulating the braid with an ap-
the cable and connectors. In addition, care must be
VSWR yields 98 Watts Output (i.e. 2 Watts Reflected) desired attenuation by the temperature correction propriate flooding compound, as is done in the DB
taken to properly attach the connectors to the cable
factor. Choose the smallest cable meeting the cor- versions of the LMR cables.
in order to achieve the proper results. Purchase of
68 (800)-TMS-COAX • www.timesmicrowave.com • (203)-949-8400 (800)-TMS-COAX • www.timesmicrowave.com • (203)-949-8400 69
APPLICATION NOTES
A guide to the selection of RF coaxial cable (continued)
Fig. 3 attenuation. Fig. 5 from the Attenuation and Power charts rated at this
Attenuation vs. Frequency d. The ultimate in attenuation stability can be Attenuation Stability effective power level.
achieved by specifying hermetically-sealed cable Note that the peak power handling capability of a
assemblies. These will preclude the ingress of con cable is related to the maximum operating voltage
taminants of any sort into the cable and result in the rating. See Section E, below.
best stability, such as MilTech assemblies. Contact
Times Microwave for more information on this type E. MAXIMUM OPERATING VOLTAGE
of assembly. Care must be taken to ensure that the continuous
For flexible cables in extreme environmental con- voltage (and the peak voltage related to pulsed
ditions, a protected braid (e.g. LMR-DB) is recom- power conditions) applied to a cable is held below
mended. its maximum voltage rating. Note that there are two
separate voltage ratings for a cable: Corona Voltage
D. AVERAGE POWER RATING and Dielectric Withstanding Voltage:
Electrical losses in a coaxial cable result in the gen- 1. Corona is a voltage related ionization phenom-
eration of heat in the center and outer conductors, enon which causes noise generation, long term
as well as in the dielectric core. The power handling dielectric damage, and eventual breakdown of the
capability of a cable is related to the ability of the cable. Thus, a cable cannot operate continuously
cable to dissipate this heat. The ultimate limiting with corona, and the maximum operating voltage
factor in power handling is the maximum allowable must be less than the corona extinction level (ex-
operating temperature of the materials used in the tinction voltage) of the cable. The determination of
(Vapor penetration occurs at differing rates through
cable, especially the dielectric. This is because most corona voltages requires sensitive instrumentation
all plastic and elastomeric materials.) Attenuation
of the heat is generated at the center conductor of capable of detecting the voltage induced ionization
degradation is more pronounced at frequencies
the cable. In general, the power handling capability tenuation, and directly related to its size. The other noise generation.
above 1 GHz. Cables
of a given cable is inversely proportional to its at- factor is the heat transfer properties of the cable, Fig. 6
Fig. 4 especially the dielectric. Power Temperature Correction Factor
having bare copper and tinned copper braids exhibit
Attenuation vs. Flexure Cable power ratings must be derated by correction
far greater attenuation degradation than cables with
factors for the ambient temperature, altitude and
silver plated braids. These effects are illustrated in
VSWR encountered in a particular application. High
Figure 5.
ambient temperature and high altitude reduce the
The following guidelines apply:
power rating of a cable by impeding heat transfer
a. Tin plated braids: Below 1 GHz, cables manu-
out of the cable. VSWR reduces power rating by
factured with tin plated braids have 15-20% more
causing localized hot spots in the cable.
attenuation than bare copper braids in the “as
To select the cable construction for a particular
manufactured” condition, but are more stable than
requirement, determine the average input power at
bare copper braided cables.
the highest frequency from system requirements.
b. Foam polyethylene: Flexible braided cables with
Then determine the effective average input power
foam polyethylene dielectrics have approximately
as follows:
15 to 40% lower attenuation than solid polyethylene
cables of the same core size and impedance. How- Effective Power = Average Power x (VSWR cor-
ever, some polyethylene foams can absorb moisture rection)
causing attenuation increases. LMR cables utilize (Temp. correction) x (Alt. cor-
a closed cell, non-hydroscopic foam composition rection)
and are not subject to this problem. Temperature and altitude corrections are shown on
See LMR cables. Figures 6 and 7.
c. If PVC jackets are used, a Type IIA, non-con-
taminating PVC should be specified for applications VSWR correction factor =
where attenuation uniformity over time is important. ___1___ ___1___
Type I PVC’s contain plasticizers which can leach 1/2 (VSWR + VSWR) + 1/2 k1 (VSWR - VSWR)
into the dielectric over time causing an increase in Where k, is shown in Figure 8. Select a cable
70 (800)-TMS-COAX • www.timesmicrowave.com • (203)-949-8400 (800)-TMS-COAX • www.timesmicrowave.com • (203)-949-8400 71
APPLICATION NOTES
A guide to the selection of RF coaxial cable (continued)
Fig. 3 attenuation. Fig. 5 from the Attenuation and Power charts rated at this
Attenuation vs. Frequency d. The ultimate in attenuation stability can be Attenuation Stability effective power level.
achieved by specifying hermetically-sealed cable Note that the peak power handling capability of a
assemblies. These will preclude the ingress of con cable is related to the maximum operating voltage
taminants of any sort into the cable and result in the rating. See Section E, below.
best stability, such as MilTech assemblies. Contact
Times Microwave for more information on this type E. MAXIMUM OPERATING VOLTAGE
of assembly. Care must be taken to ensure that the continuous
For flexible cables in extreme environmental con- voltage (and the peak voltage related to pulsed
ditions, a protected braid (e.g. LMR-DB) is recom- power conditions) applied to a cable is held below
mended. its maximum voltage rating. Note that there are two
separate voltage ratings for a cable: Corona Voltage
D. AVERAGE POWER RATING and Dielectric Withstanding Voltage:
Electrical losses in a coaxial cable result in the gen- 1. Corona is a voltage related ionization phenom-
eration of heat in the center and outer conductors, enon which causes noise generation, long term
as well as in the dielectric core. The power handling dielectric damage, and eventual breakdown of the
capability of a cable is related to the ability of the cable. Thus, a cable cannot operate continuously
cable to dissipate this heat. The ultimate limiting with corona, and the maximum operating voltage
factor in power handling is the maximum allowable must be less than the corona extinction level (ex-
operating temperature of the materials used in the tinction voltage) of the cable. The determination of
(Vapor penetration occurs at differing rates through
cable, especially the dielectric. This is because most corona voltages requires sensitive instrumentation
all plastic and elastomeric materials.) Attenuation
of the heat is generated at the center conductor of capable of detecting the voltage induced ionization
degradation is more pronounced at frequencies
the cable. In general, the power handling capability tenuation, and directly related to its size. The other noise generation.
above 1 GHz. Cables
of a given cable is inversely proportional to its at- factor is the heat transfer properties of the cable, Fig. 6
Fig. 4 especially the dielectric. Power Temperature Correction Factor
having bare copper and tinned copper braids exhibit
Attenuation vs. Flexure Cable power ratings must be derated by correction
far greater attenuation degradation than cables with
factors for the ambient temperature, altitude and
silver plated braids. These effects are illustrated in
VSWR encountered in a particular application. High
Figure 5.
ambient temperature and high altitude reduce the
The following guidelines apply:
power rating of a cable by impeding heat transfer
a. Tin plated braids: Below 1 GHz, cables manu-
out of the cable. VSWR reduces power rating by
factured with tin plated braids have 15-20% more
causing localized hot spots in the cable.
attenuation than bare copper braids in the “as
To select the cable construction for a particular
manufactured” condition, but are more stable than
requirement, determine the average input power at
bare copper braided cables.
the highest frequency from system requirements.
b. Foam polyethylene: Flexible braided cables with
Then determine the effective average input power
foam polyethylene dielectrics have approximately
as follows:
15 to 40% lower attenuation than solid polyethylene
cables of the same core size and impedance. How- Effective Power = Average Power x (VSWR cor-
ever, some polyethylene foams can absorb moisture rection)
causing attenuation increases. LMR cables utilize (Temp. correction) x (Alt. cor-
a closed cell, non-hydroscopic foam composition rection)
and are not subject to this problem. Temperature and altitude corrections are shown on
See LMR cables. Figures 6 and 7.
c. If PVC jackets are used, a Type IIA, non-con-
taminating PVC should be specified for applications VSWR correction factor =
where attenuation uniformity over time is important. ___1___ ___1___
Type I PVC’s contain plasticizers which can leach 1/2 (VSWR + VSWR) + 1/2 k1 (VSWR - VSWR)
into the dielectric over time causing an increase in Where k, is shown in Figure 8. Select a cable
70 (800)-TMS-COAX • www.timesmicrowave.com • (203)-949-8400 (800)-TMS-COAX • www.timesmicrowave.com • (203)-949-8400 71
APPLICATION NOTES
A guide to the selection of RF coaxial cable (continued)
Fig. 7 termination area. Fig. 9
Power Altitude Correction Factor Shielding Effectiveness
F. SHIELDING AND CROSS-TALK G. CAPACITANCE
(OR ISOLATION) Capacitance in a cable is related to the dielectric
material and the characteristic impedance. Typical
1. The shielding efficiency of a coaxial cable de- capacitance values are shown in the General Electri-
pends on the construction of its outer conductor. cal Properties on page 66 for some common coaxial
The most common constructions available are: lines.
Single Braid: Consisting of bare, tinned, or silver As seen in the table, the higher impedance cables
plated round copper wires (70 to 95% coverage). provide lower “capacitance per foot” values, result-
Double Braid: Consisting of two single braids as ing in reduced loading for data communications
described above with no insulation between them. applications.
Triaxial: Consisting of two single braids as
described above with a layer of insulation between H. VELOCITY OF PROPAGATION
them. The velocity of propagation in a coaxial cable is
Strip Braids: Consists of flat strips of copper rather determined primarily by the dielectric constant of
than round wires (90% coverage). the insulating material between the inner and outer
Strip Outer Conductors/Spiral Flat Strips: conductors. This property is usually expressed as
2. The Dielectric Withstanding Voltage, or dielectric Exhibiting @ 100% coverage. a percentage of the velocity of light in free space,
strength of the cable, is a measure of the voltage Solid Sheath: Consisting of aluminum or copper and is typically noted as Vg or Vp.
level required to abruptly break down the dielectric tubing ( 100% coverage). The General Electrical Properties on page 66 To estimate the total leakage in cables under 1100 ft.
employed in a cable. DWV testing requires less sen- 2. The relative shielding effectiveness of these shows the velocity of propagation and time delay long, add 20 log L to the figure read from the graph
sitive instrumentation, and is a test measurement constructions are illustrated in Figure 9 over the of cables insulated with commonly used dielectrics. (where L is the cable length in feet). The curve show-
where a voltage is applied to the cable for a limited frequency range from 10 MHz to 8 GHz. This graph Delay lines made from coaxial cable can some- ing the typical performance of the semi-flexible (or
time only, and monitored for current flow. shows the level of signal which leaks through the times benefit from using lower velocity cables, thus solid sheath) cables is based on theory. In practice
Maximum operating A.C. (RMS) voltage levels or outer shield of a one foot sample of each construc- providing maximum delay in the shortest length. But, the shielding efficiency of interconnections made
peak voltage are given for each construction in the tion. The curves describing the performance of the the difference in loss between the lower and higher using semi-flexible (solid sheath) cables is limited
Cable Data Section of this catalog. The maximum flexible cables, i.e., the triax braid, double braid, and velocity cables must also be taken into account. by the leakage at the connectors.
permissible D.C. voltage level is conservatively 3 single braid construction are based on measured 3. The isolation (or cross talk) between two coax
times the A.C. level. data. I. ELECTRICAL LENGTH STABILITY cable runs is the sum of the isolation factors of the
To select a cable for a particular application, de- Applications such as antenna feed systems may two cables and the isolation due to the “coupling
termine the actual RMS (peak /l.4) , require many cable assemblies that are trimmed to factor” between the runs. This coupling factor will
a specific electrical length. In these applications, depend on the relative spacing, positioning and
RMS voltage = (peak voltage value)
the change of the electrical length of the cable with environment of the cable runs and on the ground-
1.4
Fig. 8 temperature, flexure, tension and other environ- ing practices employed. The coupling factor will
or actual peak voltage = (RMS x value 1.4) Second VSWR Correction Factor Multiplier K mental factors is critical. The variation of electrical substantially affect the isolation between the cable
from system requirements. Then determine the ef- length with temperature for standard flexible cables runs.
fective input voltage by multiplying the actual input is shown in Figure 10. 4. Measurements show that the RF(1 -30 MHz)
voltage by the square root of the VSWR: For polyethylene insulated cables:-100 to -250 cross talk between two single braided coaxes over
Effective voltage = Actual voltage x (VSWR)1/2 parts per million/oC. a 20 foot run length is approximately 80 db down
For TFE insulated cables:-50 to -100 parts/million/ from the signal level inside the cables. The coaxes
Then select a cable with a maximum operating oC.
voltage greater than the effective RMS voltage. were laid side-by-side over the 20 foot test length.
The variation of electrical length with temperature (This test data illustrates the affect of the “coupling
Maximum operating voltages are listed in the cable
for the standard foam dielectric semiflexible cables factor” noted above.)
data section.
is -20 to -30 parts/million/oC. 5. Special Constructions that provide enhanced
As the altitude where a cable is being used increas-
Times has special flexible and semiflexible cable shielding characteristics are available. These cables
es, the maximum operating voltage of a completed
designs with improved electrical length versus tem- include the LMR, RD, and RDT families of cables,
cable assembly is reduced due to the reduction in
perature characteristics. Semiflexible cables and the StripFlex, SFT, and TFlex cables.
dielectric strength of the lower pressure air in the
dielectrics.
2. Preshoot is encountered in some balanced delay
lines and can be minimized by cable design.
e: Pulse Echoes
dielectrics.
2. Preshoot is encountered in some balanced delay
lines and can be minimized by cable design.
e: Pulse Echoes
USA
358 Hall Ave., Wallingford, CT 06492-5039 USA
Phone: 203-949-8400 Fax: 203-949-8423
800-TMS-COAX • www.timesmicrowave.com
Scotland
4 School Brae, Dysart
Kirkcaldy, Fife
Scotland KY1 2XB UK
Tel: +44 (0) 1592655428