100% found this document useful (1 vote)
780 views33 pages

Semiconductor Doping and Current Calculations

1) The document contains problems related to semiconductor physics and pn junction diodes. 2) It provides calculations to determine properties like doping concentration, drift current, built-in potential, depletion capacitance and reverse saturation current. 3) The problems apply concepts of carrier concentration, mobility, resistivity, voltage and current relationships in pn junctions under various bias conditions.

Uploaded by

Zheng Yu
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
100% found this document useful (1 vote)
780 views33 pages

Semiconductor Doping and Current Calculations

1) The document contains problems related to semiconductor physics and pn junction diodes. 2) It provides calculations to determine properties like doping concentration, drift current, built-in potential, depletion capacitance and reverse saturation current. 3) The problems apply concepts of carrier concentration, mobility, resistivity, voltage and current relationships in pn junctions under various bias conditions.

Uploaded by

Zheng Yu
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 33

2   The  electrons in a piece of n‐type semiconductor take 10 ps to cross from one end to 

another  end  when  a  potential  of  1  V  is  applied  across  it.  Find  the  length  of  the 
semiconductor bar. 

Solution    

L
 10 ps
V
V
But V  n E and E  
L
L2  10 ps  nV  10 ps  1350  1
L  1.16  104 cm  1.16  m

 
3    A  current of 0.05 μA flows through an n‐type silicon bar of length 0.2 μm and cross           
section area of 0.01 μm  0.01 μm when a voltage of 1 V is applied across it. Find the doping 
level at room temperature. 

Solution   

I  0.05 A
L  0.2 m
A  0.01 m  0.01 m  1  1012 cm 2
I tot  I drift  q  nn  p  p  AE ----(1)

n 2 1.08  10 
10 2

p i 
n n
n  1350cm / (V.s)
2
 p  480 cm 2 /(V.s)  
V 1V
E   5  104 V / cm
L 0.2 m
Substituting these values in Eq. (1) we get
 (1.08  1010 ) 2  480  12
0.05  106 A  1.6  1019  n  1350   10  5  10
4

 n 
n  4.63  1015 cm 3 .

 
4. Repeat Problem 2.3 for Ge. Assume μn=3900cm2/(V·s) and
μp =1900cm2/(V·s).

In order to obtain the doping level proceed as follows. We use the formula
1

q ( n n  p  p )

For n-type semiconductor n>>p, and hence

 1
nqn

Given:-
I  0.05 A
l  0.2 m
A  (0.01 m)2
V  1V
n  3900cm 2 / (V s)
 p  1900cm 2 / (V s)

Resistance of the Ge bar;


V
R
I
1V

0.05 A
 20MΩ
Therefore resistivity,
A
R
l
(0.01 m)2
 20MΩ 
0.2 m
 1cm
1
Again,  
nen
1
or, n 
 e n
Substituting the values, we get
1
ND  n  19
1cm 1.6 10  3900cm 2 / (V s)
1

6.24 1016 cm3
 1.6 1015 cm3
Since at room temperature all the impurities are ionized and hence carrier
concentration n is equal to the doping density.
  9 A  Si semiconductor cube with side equal to 1 μm is doped with 4  1017 cm–3 
phosphorous impurities. Calculate the drift current when a voltage of 5 V is applied across it. 

Solution 

n  4  1017 cm 3
ni2 (1.08  1010 ) 2
p   291.6
n 4  1017
n  1350 cm 2 /(V.s) and  p  480 cm 2 /(V.s)
V 5V
E   5  104 V /cm  
L 1m
A  1  m  1  m  108 cm 2
Since nn   p , we can write
I tot  qnn AE  0.0432 A

 
10   One side of pn junction is doped with pentavalent impurities which gives a net 
doping of 5  1018 cm–3. Find the doping concentration to be added to the other side to get a 
built‐in potential of 0.6 V at room temperature. 

Solution 

N A ND
V0  VT ln
ni2
N D  5  1018 cm 3 , VT  26 mV, ni  1.08  1010 cm 3 , V0  0.6 V  
 N  5  1018 
0.6  0.026 ln  A 10 2 
 N A  2.45  1011 cm 3
 (1.08  10 ) 

 
11   The built‐in potential of an equally doped pn junction is 0.65 V at room temperature. 
When the doping level in n‐side is doubled, keeping the doping of the p‐side unchanged, 
calculate the new built‐in potential and the doping level in P and N region. 

Solution 

N A ND
V0  VT ln
ni2
N A  N D , VT  26 mV, ni  1.08  1010 cm 3 , V0  0.65 V
 NA  NA   
0.65  0.026 ln  10 2 
 N A  2.89  1015 cm 3
 (1.08  10 ) 
 2  2.89  1015  2.89  1015 
V0  0.026 ln    0.668 V
 (1.08  1010 ) 2 

 
12   A silicon pn junction diode having ND = 1015 cm–3 and NA= 1017 cm–3 gives a total 
depletion capacitance of 0.41 pF/m2. Determine the voltage applied across the diode. 

Solution 

NA ND 1015  1017
V0  VT ln  0.026 ln  0.7144 V
ni2 (1.08  1010 ) 2
 si q N A N D 1 11.7  8.854  1014  1015  1017
C j0     1.072  108 F/cm 2
2 N A  ND V0 2  (1015  1017 )  0.7144
C j0  
Cj 
V
1 R
V0
 C  2   1.072  108 
VR  V0   1  0.7144 
j0
 8 
 4.167 V
 C j    0.41  10 
 

 
14   Two identical pn junction diodes are connected in series. Calculate the current 
flowing through each diode when a forward bias of 1 V is applied across the series 
combination. Assume the reverse saturation current is 1.44  10–17 A for each diode. 

Solution 

 VVF   0.0026
.5

  17
I D  I S e  1  1.44  10  e
T   1  3.23  10 9 A  
 
   

 
16   Consider a pn junction in forward bias. Initially a current of 1 mA flows through it, 
and the current increases by 10 times when the forward voltage is increased by 1.5 times. 
Determine the initial bias applied and reverse saturation current. 

Solution 
VF

I D  I S e VT
VF

1 mA  I S e VT
(1)
1.5VF

10 mA  I S e VT
(2)  
VT
VF  ln(100)  0.239 V
0.5
From Eq. (1), we get I S  107 A

You might also like